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Exact ICL maximization in a non-stationary
time extension of the latent block model for

dynamic networks

Marco Corneli, Pierre Latouche and Fabrice Rossi

Université Paris 1 Panthéon-Sorbonne - Laboratoire SAMM
90 rue de Tolbiac, F-75634 Paris Cedex 13 - France

Abstract. The latent block model (LBM) is a flexible probabilistic tool
to describe interactions between node sets in bipartite networks, but it
does not account for interactions of time varying intensity between nodes
in unknown classes. In this paper we propose a non stationary temporal
extension of the LBM that clusters simultaneously the two node sets of a
bipartite network and constructs classes of time intervals on which inter-
actions are stationary. The number of clusters as well as the membership
to classes are obtained by maximizing the exact complete-data integrated
likelihood relying on a greedy search approach. Experiments on simulated
and real data are carried out in order to assess the proposed methodology.

1 Introduction

Since the interactions between nodes of a network generally have a time varying
intensity, the network has a non trivial time structure that we aim at inferring.
The approach we follow to introduce a temporal dimension, consists in partition-
ing the entire time horizon, during which we observe interactions, in disjoint time
intervals, having an arbitrary fixed length. Then, we simultaneously cluster the
nodes of the bipartite network and these time intervals, assuming interactions
are generated by a latent block model. A similar view is adopted by Randria-
manamihaga, Côme and Govaert [1], nonetheless with a substantial difference:
they consider time intervals whose membership is not hidden but known in ad-
vance and hence exogenous, whereas in this paper we infer the membership of
each interval by maximizing a likelihood criterion. A similar task is accom-
plished by Guigourès, Boullé and Rossi [3] in a different point of view: they
do not consider fixed-length time intervals, but associate a time stamp to each
interaction “in order to build time segments and clusters of nodes whose edge
distributions are similar and evolve in the same way over the time segments”.
In order to obtain the optimal number of time and nodes clusters, we maximize
the integrated complete-data likelihood (ICL) using a greedy search in a very
similar fashion as in Wyse, Frial and Latouche [4]. This paper is structured as
follows: in Section 2 we present the classical LBM and detail the time extension
proposed. In Section 3 we derive the ICL for this model and in Section 4 we
discuss the experiments we conducted with both simulated and real data. The
Section 5 concludes the paper.



2 A non stationary latent block model

We present here the LBM (Holland et al. [2]), as described in Wyse, Friel,
Latouche (2014). Two sets of nodes are considered: A = {a1, . . . , aN} and
B = {b1, . . . , bM}. Undirected links between node i from A and node j from
B, are counted by the observed variable Xij , being the component (i, j) of the
N ×M adjacency matrix X = {Xij}i≤N,j≤M . Nodes in A and B are clustered
in K and G disjointed subgroups respectively:

A = ∪k≤KAk, Ai ∩Aj = ∅, ∀i 6= j

and similarly for B. Nodes in the same cluster in A have linking attributes of the
same nature to clusters of B. We introduce two hidden vectors c = {c1, . . . , cN}
and w = {w1, . . . , wM} labeling each node’s membership:

ci = k iff ai ∈ Ak, ∀k ≤ K and wj = g iff bj ∈ Bg, ∀g ≤ G.

In order to introduce the temporal dimension, consider now a sequence of equally
spaced, adjacent time steps {∆u := tu − tu−1}u≤U over the interval [0, T ] and a
partition C1, . . . , CD of the same interval1. We introduce furthermore a random
vector y = {yu}u≤U , such that yu = d if and only if Iu :=]tu−1, tu] ∈ Cd,∀d ≤ D.
We attach to y a multinomial distribution:

p(y|β, D) =
∏
d≤D

β
|Cd|
d ,

where |Cd| = #{Iu : Iu ∈ Cd}. Now we define N Iu
ij as the number of observed

connections between ai and bj , in the time interval Iu and we make the following
crucial assumption:

p(N Iu
ij |ci = k,wj = g, yu = d) follows a Poisson(∆uλkgd), (1)

hence the number of interactions is conditionally distributed like a Poisson ran-
dom variable with parameter depending on k, g, d (∆u is constant).

Notation: In the following, for seek of simplicity, we will note:∏
k,g,d

:=
∏
k≤K

∏
g≤G

∏
d≤D

and
∏
ci

:=
∏
i:ci=k

and similarly for
∏
wj

and
∏
yu

.

The adjacency matrix, noted N∆, has three dimensions (N ×M × U) and its
observed likelihood can be computed explicitly:

p(N∆|Λ, c,w,y,K,G,D) =
∏
k,g,d

∆Skgd∏
ci

∏
wj

∏
yu
N Iu
ij !

e−∆λkgdRkgdλ
Skgd

kgd , (2)

1T and U are linked by the following relation: T = ∆uU .



where we noted Skgd :=
∑
ci

∑
wj

∑
yu
N Iu
ij and Rkgd := |Ak||Bg||Cd| and the

subscript u was removed from ∆u to emphasize that time steps are equally
spaced for every u.
Since c,w and y are not known, a multinomial factorizing probability density
p(c,w,y|Φ,K,G,D), depending on hyperparameter Φ, is introduced. The joint
distribution of labels looks finally as follows:

p(c,w,y|Φ,K,G,D) =

∏
k≤K

ω
|Ak|
k

∏
g≤G

ρ|Bg|
g

∏
d≤D

β
|Cd|
d

 , (3)

where Φ = {ω,ρ,β}.

3 Exact ICL for non stationary LBM

3.1 Exact ICL derivation

The integrated classification criterion (ICL) was introduced as a model selection
criterion in the context of Gaussian mixture models by Biernacky et al. [5].
Côme and Latouche [6] proposed an exact version of the ICL based on a Bayesian
approach for the stochastic block model and Wyse, Friel and Latouche [4] applied
the exact ICL to select the number of clusters in a bipartite network using an
LBM model. This is the approach we follow here. The quantity we focus on is the
complete data log-likelihood, integrated with respect to the model parameters Φ
and Λ = {λkgd}k≤K,g≤G,d≤D:

ICL = log

(∫
p(N∆, c,w,y,Λ,Φ|K,G,D)dΛdΦ

)
. (4)

Introducing a prior distribution ν(Λ,Φ|K,G,D) over the pair Φ,Λ and thanks
to ad hoc independence assumptions, the ICL can be rewritten as follows:

ICL = log
(
ν(N∆|c,w,y,K,G,D)

)
+ log (ν(c,w,y|K,G,D)) . (5)

The choice of prior distributions over the model parameters is crucial to have an
explicit form of the ICL.

3.2 A priori distributions

We consider the conjugate prior distributions. Thus we impose a Gamma a
priori over Λ:

ν(λkgd|akgd, bkgd) =
b
akgd

kgd

Γ(akgd)
λ
akgd−1
kgd e−bkgdλkgd

and a factorizing Dirichlet a priori distribution to Φ:

ν(Φ|K,G,D) = DirK(ω;α, . . . , α)×DirG(ρ; δ, . . . , δ)×DirD(β; γ, . . . , γ).



It can be proven that the two terms in (5), reduce to:

ν(N∆|c,w,y,K,G,D) =
∏
k,g,d

b
akgd

kgd ∆Skgd

Γ(akgd)
∏
ci

∏
wj

∏
yu
N Iu
ij !

(6)

Γ(Skgd + akgd)

[∆Rkgd + bkgd]Skgd+akgd

and:

ν(c,w,y|K,G,D) =
Γ(αK)

Γ(α)K

∏
k≤K Γ(|Ak|+ α)

Γ(N + αK)
× Γ(δG)

Γ(δ)G

∏
g≤G Γ(|Bg|+ δ)

Γ(M + δG)

×Γ(γD)

Γ(γ)D

∏
d≤D Γ(|Cd|+ γ)

Γ(U + γD)
. (7)

3.3 ICL Maximization

In order to maximize the integrated complete likelihood (ICL) in equation (5)
with respect to the six unknowns c,w,y,K,G,D, we rely on a greedy search over
labels and the number of nodes and time clusters. This approach is described in
Wyse, Frial and Latouche [4] for a stationary latent block model.

4 Experiments

4.1 Simulated data

Some experiments on simulated data have initially been conducted. Based on
the model described in Section 2, we simulated interactions between 50 source
nodes and 50 destination nodes, both clustered in three groups (K,G = 3).
Interactions take place into 24 time intervals of unitary length (ideally one hour),
clustered into three groups too (D = 3). Nodes and time intervals labels are
sampled from multinomial distributions, whose hyperparameters (ω,ρ, δ) have
all been set equal to {1/3, 1/3, 1/3}. With these settings, we consider 27 different
Poisson parameters (λs) generating connections between nodes. The generative
model used to produce them is described by:

λkgl = s1[k] + s2[g] + s3[l], k, g, l ∈ {1, 2, 3}
where:

s1 = [0, 2, 4] s2 = [0.5, 1, 1.5] s3 = [0.5, 1, 1.5]

ans s1[k] denotes the k-th component of s1. Similarly for s2 and s3. The greedy
search algorithm we coded was able to exactly recover these initial settings, con-
verging to the true ICL of −122410. Other experiments were run with different
values inside vectors s1, s2, s3. Not surprisingly the more nuanced differences
between λs are, the more difficult it is for the algorithm to converge to the true
value of the ICL2.

2Greedy search algorithms are path dependent and they could converge to local maxima.



4.2 Real Data

The dataset we used was collected during the ACM Hypertext conference
held in Turin, June 29th - July 1st, 2009. Conference attendees volunteered to
to wear radio badges that monitored their face-to-face proximity. The dataset
represents the dynamical network of face-to-face proximity of 113 conference
attendees over about 2.5 days3. Further details can be found in Isella, Stehlé,
Barrat, Cattuto, Pinton, Van den Broeck [7]. We focused on the first conference
day, namely the twenty four hours going from 8am of June 29th to 7.59am of
June 30th. The day was partitioned in small time intervals of 20 seconds in the
original data frame. We considered 15 minutes time aggregations, thus leading
to a partition of the day made of 96 consecutive quarter-hours (U = 96 with
previous notation). A typical row of the adjacency matrix we analyzed, looks
like:

Person 1 Person 2 Time Interval (15m) Number of interactions

52 26 5 16

It means that conference attendees 52 and 26, between 9am and 9.15am have
spoken for 16× 20s ≈ 5m30s.
The greedy search algorithm converged to a final ICL of -53217.4, corresponding
to 23 clusters for nodes (people) and 3 time clusters. In Figure (1a) we show how
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Fig. 1: The aggregated connections for every time interval (1b) and time clusters found
by our model (1a) are compared.

daily quarter-hours are assigned to each cluster: the class C1 contains intervals
marked by a weaker intensity of interactions (on average), whereas intervals in-
side C3 are characterized by the highest intensity of interactions. This can either
be verified analytically by averaging estimated Poisson intensities for each one
of the three clusters or graphically by looking at Figure (1b). In this Figure we

3More informations can be found at:
http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/.

http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/ 


computed the total number of interactions between conference attendees for each
quarter-hour and it can clearly be seen how time intervals corresponding to the
higher number of interactions have been placed in cluster C3, those correspond-
ing to an intermediate interaction intensity, in C2 and so on. It is interesting
to remark how the model can quite closely recover times of social gathering like
the lunch break (13.00-15.00) or the “wine and cheese reception” (18.00-19.00).
A complete program of the day can be found at:
http://www.ht2009.org/program.php.

5 Conclusions

We proposed a non-stationary evolution of the latent block model (LBM) al-
lowing us to simultaneously infer the time structure of a bipartite network and
cluster the two node sets. The approach we chose consists in partitioning the
entire time horizon in fixed-length time intervals to be clustered on the basis of
the intensity of connections in each interval. We derived the complete ICL for
such a model and maximized it numerically, by means of a greedy search, for two
different networks: a simulated and a real one. The results of these two tests
highlight the capacity of the model to capture non-stationary time structures.
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