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Introduction

Since the interactions between nodes of a network generally have a time varying intensity, the network has a non trivial time structure that we aim at inferring. The approach we follow to introduce a temporal dimension, consists in partitioning the entire time horizon, during which we observe interactions, in disjoint time intervals, having an arbitrary fixed length. Then, we simultaneously cluster the nodes of the bipartite network and these time intervals, assuming interactions are generated by a latent block model. A similar view is adopted by Randriamanamihaga, Côme and Govaert [START_REF] Randriamanamihaga | Clustering the Vélib' dynamic Origin/Destination flows using a family of Poisson mixture models[END_REF], nonetheless with a substantial difference: they consider time intervals whose membership is not hidden but known in advance and hence exogenous, whereas in this paper we infer the membership of each interval by maximizing a likelihood criterion. A similar task is accomplished by Guigourès, Boullé and Rossi [START_REF] Guigourès | A Triclustering Approach for Time Evolving Graphs[END_REF] in a different point of view: they do not consider fixed-length time intervals, but associate a time stamp to each interaction "in order to build time segments and clusters of nodes whose edge distributions are similar and evolve in the same way over the time segments". In order to obtain the optimal number of time and nodes clusters, we maximize the integrated complete-data likelihood (ICL) using a greedy search in a very similar fashion as in Wyse, Frial and Latouche [START_REF] Wyse | Inferring structure in bipartite networks using the latent block model and exact ICL[END_REF]. This paper is structured as follows: in Section 2 we present the classical LBM and detail the time extension proposed. In Section 3 we derive the ICL for this model and in Section 4 we discuss the experiments we conducted with both simulated and real data. The Section 5 concludes the paper.

We present here the LBM (Holland et al. [START_REF] Holland | Stochastic blockmodels: first steps[END_REF]), as described in Wyse, Friel, Latouche (2014). Two sets of nodes are considered: A = {a 1 , . . . , a N } and B = {b 1 , . . . , b M }. Undirected links between node i from A and node j from B, are counted by the observed variable X ij , being the component (i, j) of the N × M adjacency matrix X = {X ij } i≤N,j≤M . Nodes in A and B are clustered in K and G disjointed subgroups respectively:

A = ∪ k≤K A k , A i ∩ A j = ∅, ∀i = j
and similarly for B. Nodes in the same cluster in A have linking attributes of the same nature to clusters of B. We introduce two hidden vectors c = {c 1 , . . . , c N } and w = {w 1 , . . . , w M } labeling each node's membership:

c i = k iff a i ∈ A k , ∀k ≤ K and w j = g iff b j ∈ B g , ∀g ≤ G.
In order to introduce the temporal dimension, consider now a sequence of equally spaced, adjacent time steps {∆ u := t u -t u-1 } u≤U over the interval [0, T ] and a partition C 1 , . . . , C D of the same interval1 . We introduce furthermore a random vector y = {y u } u≤U , such that y u = d if and only if

I u :=]t u-1 , t u ] ∈ C d , ∀d ≤ D.
We attach to y a multinomial distribution:

p(y|β, D) = d≤D β |C d | d ,
where

|C d | = #{I u : I u ∈ C d }.
Now we define N Iu ij as the number of observed connections between a i and b j , in the time interval I u and we make the following crucial assumption:

p(N Iu ij |c i = k, w j = g, y u = d) follows a Poisson(∆ u λ kgd ), (1) 
hence the number of interactions is conditionally distributed like a Poisson random variable with parameter depending on k, g, d (∆ u is constant).

Notation: In the following, for seek of simplicity, we will note: The adjacency matrix, noted N ∆ , has three dimensions (N × M × U ) and its observed likelihood can be computed explicitly:

p(N ∆ |Λ, c, w, y, K, G, D) = k,g,d ∆ S kgd ci wj yu N Iu ij ! e -∆λ kgd R kgd λ S kgd kgd , (2) 
where we noted S kgd := ci wj yu N Iu ij and R kgd := |A k ||B g ||C d | and the subscript u was removed from ∆ u to emphasize that time steps are equally spaced for every u. Since c,w and y are not known, a multinomial factorizing probability density p(c, w, y|Φ, K, G, D), depending on hyperparameter Φ, is introduced. The joint distribution of labels looks finally as follows:

p(c, w, y|Φ, K, G, D) =   k≤K ω |A k | k     g≤G ρ |Bg| g     d≤D β |C d | d   , (3) 
where Φ = {ω, ρ, β}.

3 Exact ICL for non stationary LBM

Exact ICL derivation

The integrated classification criterion (ICL) was introduced as a model selection criterion in the context of Gaussian mixture models by Biernacky et al. [START_REF] Biernacky | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]. Côme and Latouche [START_REF] Côme | Model selection and clustering in stochastic block models with the exact integrated complete data likelihood[END_REF] proposed an exact version of the ICL based on a Bayesian approach for the stochastic block model and Wyse, Friel and Latouche [START_REF] Wyse | Inferring structure in bipartite networks using the latent block model and exact ICL[END_REF] applied the exact ICL to select the number of clusters in a bipartite network using an LBM model. This is the approach we follow here. The quantity we focus on is the complete data log-likelihood, integrated with respect to the model parameters Φ and Λ = {λ kgd } k≤K,g≤G,d≤D :

ICL = log p(N ∆ , c, w, y, Λ, Φ|K, G, D)dΛdΦ . (4) 
Introducing a prior distribution ν(Λ, Φ|K, G, D) over the pair Φ, Λ and thanks to ad hoc independence assumptions, the ICL can be rewritten as follows:

ICL = log ν(N ∆ |c, w, y, K, G, D) + log (ν(c, w, y|K, G, D)) . (5) 
The choice of prior distributions over the model parameters is crucial to have an explicit form of the ICL.

A priori distributions

We consider the conjugate prior distributions. Thus we impose a Gamma a priori over Λ: It can be proven that the two terms in (5), reduce to:

ν(λ kgd |a kgd , b kgd ) = b a kgd kgd Γ(a kgd ) λ a kgd -1 kgd e -b kgd
ν(N ∆ |c, w, y, K, G, D) = k,g,d b a kgd kgd ∆ S kgd Γ(a kgd ) ci wj yu N Iu ij ! (6) 
Γ(S kgd + a kgd ) [∆R kgd + b kgd ] S kgd +a kgd and:

ν(c, w, y|K, G, D) = Γ(αK) Γ(α) K k≤K Γ(|A k | + α) Γ(N + αK) × Γ(δG) Γ(δ) G g≤G Γ(|B g | + δ) Γ(M + δG) × Γ(γD) Γ(γ) D d≤D Γ(|C d | + γ) Γ(U + γD) . ( 7 
)

ICL Maximization

In order to maximize the integrated complete likelihood (ICL) in equation ( 5) with respect to the six unknowns c, w, y, K, G, D, we rely on a greedy search over labels and the number of nodes and time clusters. This approach is described in Wyse, Frial and Latouche [START_REF] Wyse | Inferring structure in bipartite networks using the latent block model and exact ICL[END_REF] for a stationary latent block model.

Experiments

Simulated data

Some experiments on simulated data have initially been conducted. Based on the model described in Section 2, we simulated interactions between 50 source nodes and 50 destination nodes, both clustered in three groups (K, G = 3). Interactions take place into 24 time intervals of unitary length (ideally one hour), clustered into three groups too (D = 3). Nodes and time intervals labels are sampled from multinomial distributions, whose hyperparameters (ω, ρ, δ) have all been set equal to {1/3, 1/3, 1/3}. With these settings, we consider 27 different Poisson parameters (λs) generating connections between nodes. The generative model used to produce them is described by:

λ kgl = s 1 [k] + s 2 [g] + s 3 [l], k, g, l ∈ {1, 2, 3}
where:

s 1 = [0, 2, 4] s 2 = [0.5, 1, 1.5] s 3 = [0.5, 1, 1.5] ans s 1 [k] denotes the k-th component of s 1 .
Similarly for s 2 and s 3 . The greedy search algorithm we coded was able to exactly recover these initial settings, converging to the true ICL of -122410. Other experiments were run with different values inside vectors s 1 , s 2 , s 3 . Not surprisingly the more nuanced differences between λs are, the more difficult it is for the algorithm to converge to the true value of the ICL2 .

Real Data

The dataset we used was collected during the ACM Hypertext conference held in Turin, June 29th -July 1st, 2009. Conference attendees volunteered to to wear radio badges that monitored their face-to-face proximity. The dataset represents the dynamical network of face-to-face proximity of 113 conference attendees over about 2.5 days 3 . Further details can be found in Isella, Stehlé, Barrat, Cattuto, Pinton, Van den Broeck [START_REF] Isella | What's in a crowd? Analysis of face-to-face behavioral networks[END_REF]. We focused on the first conference day, namely the twenty four hours going from 8am of June 29th to 7.59am of June 30th. The day was partitioned in small time intervals of 20 seconds in the original data frame. We considered 15 minutes time aggregations, thus leading to a partition of the day made of 96 consecutive quarter-hours (U = 96 with previous notation). A typical row of the adjacency matrix we analyzed, looks like: computed the total number of interactions between conference attendees for each quarter-hour and it can clearly be seen how time intervals corresponding to the higher number of interactions have been placed in cluster C 3 , those corresponding to an intermediate interaction intensity, in C 2 and so on. It is interesting to remark how the model can quite closely recover times of social gathering like the lunch break (13.00-15.00) or the "wine and cheese reception" (18.00-19.00).

A complete program of the day can be found at: http://www.ht2009.org/program.php.

Conclusions

We proposed a non-stationary evolution of the latent block model (LBM) allowing us to simultaneously infer the time structure of a bipartite network and cluster the two node sets. The approach we chose consists in partitioning the entire time horizon in fixed-length time intervals to be clustered on the basis of the intensity of connections in each interval. We derived the complete ICL for such a model and maximized it numerically, by means of a greedy search, for two different networks: a simulated and a real one. The results of these two tests highlight the capacity of the model to capture non-stationary time structures.
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 1 Fig. 1: The aggregated connections for every time interval (1b) and time clusters found by our model (1a) are compared.

T and U are linked by the following relation: T = ∆uU .

Greedy search algorithms are path dependent and they could converge to local maxima.

More informations can be found at: http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/.