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Abstract: Quality control lead times are one of most significant causes of loss of time in the 
pharmaceutical and cosmetics industries. This is partly due to the organization of laboratories that 
feature parallel multipurpose machines for chromatographic analyses. The testing process 
requires long setup times and operators are needed to launch the process. The various controls are 
non-preemptive and are characterized by a release date, a due date and available routings. These 
quality processes lead to significant delays, and we therefore evaluate the total tardiness criterion. 
Previous heuristics were defined for the total tardiness criterion, parallel machines, and setup 
such as ATC (Apparent Tardiness Cost) and ATCS (ATC with setups). We propose new rules 
and a simulated annealing procedure in order to minimize total tardiness. 
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1 Introduction 
The impact of pharmaceutical and cosmetics products on the human body requires that high 
levels of quality control are practiced in these industries. The quality control laboratory analyses 
samples from all the products batches at various stages of production: raw materials, in-process 
and finished products. Therefore, quality controls represent about 30% of manufacturing lead-
time. The main consequence of this amount of spent time on quality is the high level of tardiness: 
in the industrial case examined here, about 40% of jobs were late at the beginning of the study. 
Long, variable and uncontrolled quality control lead times are mainly caused by the use of high 
technology machines such as high performance liquid chromatography (HPLC) and gas 
chromatography (GC) chains. This paper focuses on the scheduling problem of these machines. 

During a chromatographic test, the substance to be analyzed is merged into an inert fluid flow 
(mobile phase) and pushed throughout a column full of a support (stationary phase) at stable and 
preset conditions of pressure, temperature and flow speed. This process separates the various 
components of the substance, which can then be quantified using detectors.  

The column is chosen depending on the nature of the substance to analyze (HPLC chains), or 
components to look for (GC chains). A long setup is needed (several hours) every time a column 
is changed. An operator is sometimes required only to launch the setup. There are enough 
operators for all possible simultaneous setups, but they are available only during specific time-
windows. The rest of the setup time is the delay required before obtaining the desired stable 
pressure and temperature conditions. The solution to avoid these setups delays is to group tests 
that use the same column. 



 

 

The laboratory is composed of a set of chains and a limited number of columns. Chains differ in 
terms of the technology used (HPLC or GC), the admissible columns, access conditions and 
detectors available. This means that only part of a chain is available to perform any given test.  

The plant makes hundreds different substances. A substance is analyzed at different steps of the 
manufacturing process. Each analysis is a job that has specific due dates and requires different 
chromatographic tests. Chromatographic tests are operations that can be done in parallel on 
different chains.  

To decrease lateness, and therefore improve organization, due dates have to be met. There are 
two principal ways of achieving this: grouping tests that need similar columns; and launching 
setups during the operator’s availability time-window which allows maximizes use of the time-
windows. This scheduling problem appears to be a parallel machine tardiness minimization 
problem with specific constraints: (i) only some of the parallel machines are eligible for each 
operation; (ii) setups are family sequence dependent; (iii) setup must start in time windows; (iv) 
secondary resources (columns) are limited in number. 
In this paper we will detail an approach based on a simulated annealing which allows us to 
minimize total tardiness. The remainder of this paper is organized as follows: in the next section 
we discuss how similar problems are managed according to the literature. We then propose a 
model and develop a resolution approach. Finally, we discuss the different results obtained.  

2 Related research on parallel machine problems 
There is considerable literature on parallel machine scheduling. Several dedicated reviews exist 
[1], [2], [3]. Minimization of total tardiness is an important and very common topic of industrial 
parallel machine scheduling problems. Since the problem 1||ΣTi has been shown as NP-hard [4] a 
wide range of industrial studies has, logically, interested researchers. However, problems on 
machines with limited flexibility, setup and secondary resource constraints were poorly studied 
[5]. Our bibliographic analysis distinguishes these three characteristics.  

2.1 Machine flexibility constraint 
Depending on the authors, when only a subset of machines can realize a given job, the machines 
are qualified as machine eligibility restriction [6] or multipurpose[7]. Several heuristics take this 
particularity into account. Pinedo (1995) shows the interest of flexibility-oriented heuristics such 
as LFJ or LFM-LFJ. Least Flexible Job (LFJ), which is optimal for Pm|pj=1,Mj|Cmax, gives 
priority to the Job which can be achieved on the smallest number of machines. LFM-LFJ first 
chooses the Least Flexible Machine that can achieve the smallest number of jobs and assigns to it 
the Least Flexible Job. However, there is no optimality proof using LFM-LFJ. Vairaktaraikis and 
Cai also propose two heuristics for makespan minimization by considering the flexibility of a 
problem without release dates: LTW-LPT and LAW-LPT [8]. The Least Total Workload – 
Longest Processing Time (LTW-LPT) heuristic computes the total potential load for each 
machine (workload of jobs which are already assigned plus workload of jobs which could be 
assigned). It selects the machine with the smallest potential workload and performs the job with 
the longest processing time. The Least Average Workload – Longest Processing Time (LAW-
LPT) heuristic makes the same computation, but divides the duration of each unassigned job by 
the number of eligible machines. The literature shows that LAW-LPT leads to results close to the 
optimum and that LTW-LPT stays competitive but is not robust.  



 

 

Centeno and Armacost try also to minimize the Cmax on parallel machines with eligibility 
restrictions [9]. They show that if the machines are not nested, the LPT/LFM rule performs better 
than the LFJ/LFM rule.  

Considering unrelated parallel machines (job durations depend on the assigned machine) and 
weighted earliness and tardiness criteria, Bank and Werner compare constructive heuristics with 
iterative metaheuristics [10]. The constructive heuristics first sort the jobs in increasing (INC) or 
decreasing (DEC) order, or according to release dates (RD), largest slack (SL) or smallest slack 
(SS) for the machines. Using this order, the jobs are successively assigned to the machines: 
mindful of jobs already assigned, a job is assigned to the machine that minimizes the Cmax. 
Finally, on each machine, assigned jobs are rescheduled in order to minimize compromises 
between earliness and tardiness. The best heuristic appears to be SL-DEC. Various metaheuristics 
are also considered (simulated annealing and threshold accepting) with various neighborhoods 
(SH shift one job off machine, PI pairwise interchange, SHM shift one job on machine). Authors 
show that both metaheuristics are equivalent and that the SH neighborhood is recommended. 

2.2 Setup constraint 
The second particularity of the problem leads us to focus on scheduling problems with setup 
constraints (sequence dependent si,j or not si) on parallel machines (unrelated Rm or identical Pm).  
The problem being NP-hard, most authors propose metaheuristics to access good solutions[11].  
Allahverdi et al. propose a survey of scheduling problems with setup times [12]. They classify 
the literature according to the environment (single machine, parallel machines, flow shops, etc.), 
the presence or absence of batches, the presence of setup depending (or not) on the job sequence 
and availability constraints. A traditional way of minimizing total tardiness is to reduce the 
number of setups. This naturally leads to grouping tasks into batches of jobs from the same 
family (following the terminology of [13]). The survey shows that few works deal with our 
parallel machine problem. 

Liaw et al [14] and Rocha et al [15] propose branch and bound optimization for the Rm|pi si,j|ΣTi, 
but the complexity of the algorithm lead to huge computation times for problems of a realistic 
size. Webster and Azizoglu minimize the flow time, considering identical parallel machines with 
setup [16]. They propose two dynamic programming heuristics (forward and backward) but 
complexity still remains a significant factor.   

Weng, Lu and Ren consider Rm|pi si,j|ΣwiCi (unrelated parallel machines, sequence dependent 
setup times and a weighted flow time criterion) [5]. They compare seven heuristics. The first six, 
sort the jobs according to the WSPT rule based either on the average job duration over the 
machines or on the minimal job duration. Then, jobs are successively assigned to the machines on 
the basis of either the minimal completion time, the minimal job duration, or the minimal job 
duration plus setup time. The seventh heuristic does not sort the jobs. It successively selects the 
couple (job/machine) that generates the minimum completion time. This last heuristic 
significantly outperforms all the others.  

Lee and Pinedo [17] address the Rm|pi, si,j|ΣTi problem. They introduce a dispatching rule ATCS 
as an extension of the ATC rule [18] that considers setups. It appears to give better results than 
WSPT and EDD. Authors also propose a simulated annealing procedure that manages a priority 
list of jobs and schedules them with the ATCS rule. Their neighborhood is a pairwise interchange 
of adjacent jobs in the list. When a job is moved to a new machine, all the following jobs on its 



 

 

initial machine are also moved. This enables the maintenance of machine sequences with good 
setup times. The job with the largest setup time is selected to define the neighbor. Park et al. 
extend this approach using neural networks to fix parameters of the ATCS heuristic [19]. Eom et 
al. propose a three phase algorithm: first groups of jobs are made that have similar due dates; 
secondly, for each group, jobs are sequenced in a list according to the ATCS rule and 
interchanges of jobs are made using a tabu search algorithm; thirdly, jobs are assigned to 
machines. This heuristics gives better results than ATCS [20]. 

Kim et al (2002) studied a simulated annealing procedure for the same problem. The authors 
propose six rules for building neighbors: interchange and insertion of lot or item, lot merge and 
lot split. The probability of choosing an item or lot depends on the tardiness of the item or the lot. 
The experiment shows the value of combining the various rules [21]. Kim et al. consider a batch 
scheduling problem with unrelated parallel machines and batch dependent setups [22]. They 
compare three greedy heuristics (WSPT, WEDD, a two-level batch scheduling called TH) with a 
simulated annealing procedure (SA). TH first prioritizes batches of jobs according to their 
weighed due dates, then it assigns jobs to machines in order to meet due dates and minimize 
setups. Experiments show that TH outperforms WSPT and WEDD rules. However, SA remains 
better. 

Low also proposes various types of neighborhood generation for a multi-stage flow-shop 
scheduling problem on unrelated parallel machines with setup constraint [23]. The algorithm uses 
two job interchange mechanisms at each iteration. The first mechanism randomly selects two 
jobs, which are not processed on the same machine. The second one corresponds to the choice of 
two adjacent jobs processed on the same machine. The authors show that this algorithm 
outperforms a basic simulated annealing. 

Akkiraju et al propose an agent based system that schedules jobs on multiple non-identical 
machines with multiple constraints and objectives [24]. Agents apply various heuristics to build 
or improve solutions. Their collaboration is based on the sharing of a population of good 
solutions. Authors report that their systems significantly outperform any single algorithm.  

2.3 Resource availability constraints 
Resources generally present two types of availability constraints: the first is due to the number of 
resources which limit the number of parallel tasks, and the second is linked to a calendar which 
limits the presence of the resource.  

When a setup time includes detaching a die and attaching of another one, with a limited number 
per type of die, the literature names the constraint as secondary resource [25]. Scheduling 
unrelated parallel machines with secondary resource constraints is poorly studied. Tamaki et al. 
propose a mathematical programming formulation of the problem and a binary representation of 
admissible schedules. Their best results are obtained with a binary simulated annealing. Chen and 
Wu (2006) present a combination of tabu search and threshold accepting algorithm for the 
tardiness minimization [26]. The algorithm identifies sets of operations that use the same die on 
the same machine. A set comprises either all the operations, or a sub-group, or one operation. All 
their neighborhood mechanisms move a set from the machine with the maximum tardiness to a 
second machine. Some also move a set from the second machine to a third machine.  

A time window constraint signifies that a date which is associated to an operation (start or end 
date) must take place in a given time window or a given set of time windows. In this paper, the 



 

 

time window constraint is expressed exclusively as the setup start date. To our knowledge, no 
paper takes this type of constraint into account.  

2.4 Proposition 
No rule exists in the reviewed literature that takes into account all the specific constraints of the 
problem. Nevertheless, some List Treatment Algorithms (LTA) have been defined and tried in 
closed situations. 

- EDD and SPT are good basic rules used in various parallel machine problems [6]; 
- the First Freed Machine (FFM), ATC [18] and ATCS [17] enabled prioritization of 

operations in unrelated parallel machine problems with due dates and setups; 
- LFM/LFO rules were evaluated for flexible parallel machine problems [6]. 

 
Metaheuristics gather a class of methods, which are able to solve a large amount of combinatorial 
optimization problems. Therefore, it is usually relevant to use a metaheuristic to solve scheduling 
problems with high complexity. Koulamas et al. present the simulated annealing (SA) algorithm 
as a general optimization technique for solving combinatorial optimization problems [2]. They 
underline four classes of problems that can well solved by SA: routing problems, layout 
problems, planning problems and scheduling problems. In the survey, many authors ([10], [17], 
[21], [22], [23], [25]) based their approach to find solutions on an SA. 
Based on the traditional rules, we propose here to adapt the most efficient one to our problem. 
Based on the results obtained with the LTA, and on the potential improvement given by a SA, we 
propose to develop a neighborhood search starting from the LTA result as an initial solution. As 
the literature suggests, several neighborhood will be introduced to take advantage of the problem 
characteristics. 

In the next part, we propose a model for our scheduling problem.  The LTA algorithms will then 
be studied. and n SA approach will be proposed and detailed. 

3 Model and notations 
The quality service is an environment composed of M machines working in parallel. Not every 
machine is able to perform each analysis. The analysis of a product sample is a job j. Each 
sample analysis needs one or several chromatographic tests. These tests are the job’s operations i. 
A sample can be split in smaller ones if necessary and operations can be achieved in parallel. 
Therefore routings are free. If an operation is processed on a machine, which was previously 
processing an operation from a different family, a setup (launched by an operator) is required. A 
job is ended when all its operations are complete and all jobs have been processed. To detail the 
proposed model of this industrial problem let introduce some notations. 

3.1  Jobs and machines 
Job characteristics are modeled as follows: for each job j (j = 1...v): 

• rj: release date of job j; 
• dj: due date of job j, 

Each job j is composed of a set of operations Oi,j (i = 1...wj). Each operation can only be 
performed by a subset of the machines but its duration does not depend on the chosen machine:  

• MEi,j: subset of the machines that are eligible for operation Oij; 
• pi,j: duration of the ith operation of job j. 



 

 

To be performed, an operation requires a secondary resource Srs (s = 1...S), a column, which is to 
be fixed on the machine. The type of column used to achieve an operation depends on the family 
of the test performed. Operations belonging to same family use the same column type in the same 
operating conditions (temperature, pressure, flow speed). No column change is required within a 
sequence of analysis made under identical conditions. Thus, two operations sequenced 
successively on the same machine do not require any setup if they belong to the same family. 
Therefore, let: 

• Fi,j: be the family of the ith operation of job j, which is also the type of secondary resource 
used for the operation; 

• NbSri,j: be the secondary resource number of type Fi,j. 
In the case of a column exchange, a column equilibrium (setup) si,j is required. During this setup, 
an operator is required to fix a column, to program the chain and to launch the operations. There 
are sufficient operators to launch several setups simultaneously. But they are only available 
during a set of time windows. The setup duration is lengthy comparing to the operating duration. 
So, let us consider that: 

• Aop: availability time windows of operator for setups; 
• sij: setup duration of the ith operation of job j. 

3.2 Constraints 
Four constraints are considered in this problem.  

• Each operation has to be assigned only once, to only one machine and one column, 
respecting the limited number of columns and machines. 

• Operations must be performed on eligible machines. 
• A change of column on a machine leads to a lengthy setup. 
• The beginning of any required setups must happen during an operator’s availability time 

window. 

3.3 Objective 
The quality controls and the different constraints linked to its process induce significant delays, 
without any added value. Within a sequence of operations, tardiness is generated by waiting for a 
specific column, respecting the human resources timetabling constraint, changing the product 
family too frequently. Therefore, the criterion to minimize is the total tardiness of jobs. 

∑
=

v

j
jT

1
min  

According to Graham’s notation, the problem can be formulated as:  
Pm|rj, dj, pj,Mj, columns, calendar synchronisation, si,j , Fj|ΣTj. 

4 Resolution approach 
The workshop manager has to assign and schedule a job set to a resource set (equipment) 
according to operators’ time window constraints. To solve this problem, we propose a static 
algorithm composed of a list treatment algorithm completed by a neighborhood search algorithm 
to improve the solution obtained.  



 

 

4.1 The list treatment algorithm 
In a list treatment algorithm, at each loop, one operation is assigned and scheduled to a machine. 
In order to detail our algorithm, let introduce some more notations: 

• m
jit , : starting time of operation Oi,j if it is assigned to the machine. If Oi,j requires a setup: 
m
jit , is the starting time of the setup; 

• m
jic , : completion time of operation Oi,j in machine m; 

• tm: availability date of machine m; 
• Lm: the list of operations that could be scheduled on machine m at date tm. At 

initialization, Lm ={Oi,j / m∈ MEi,j}; 
• LAWm: average potential load of machine m. It sums up the task durations that could be 

scheduled on m as suggested by [8]. LAWm= tm +Σ (pi,j / card (MEij) for Oi,j ∈Lm); 
• Fm: family of the last operation assigned to the machine m; 
• As: availability time windows of the secondary resource of type s. 

 
The main algorithm: 
Initialization: for all m, Lm={Oi,j / m∈ MEi,j},  tm=0 and Fm=∅; 
1/ For all machines m and for all Oi,j ∈Lm 

i. If Fi,j ≠ Fm Then  
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2/ choose one couple {m’; Ok,l ∈ Lm’ } with RULE; 
3/ Assign Ok,l to  m’     

tm’ = ck,l;  
Fm’ = Fk,l;  
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For all m ∈ MEk,l ,  
  LAWm= tm +Σ (pi,j / card (MEij) for Oi,j ∈Lm) 
  Lm ← Lm \ {Ok,l}; 

4/ If all Lm are empty then END, else go to 1/; 
 

The algorithm starts with the initialization of the list of admissible assignments for each machine.  
At step 1/ (earliest) starting and (earliest) completion times are computed for each machine m and 
each admissible assignment of Lm. Two cases are possible: 

i.  The operation requires setup (and therefore an operator); 
ii. The operation does not require any setup (and can be processed automatically). 

 
At step 2/ one assignment (m’ ; Okl) is selected with a RULE. RULE is a priority rule that selects 
an admissible assignment. The different rules applied, from the literature, are the following: 
EDD, ATC, ATCS, LFM, LFO, etc. 



 

 

Finally, the assignment is effective at step 3/   

Additionally, we propose the following rule: we propose to add two new exponential terms to 
ATC. The OEEi,j,m value measures the Overall Equipment Effectiveness due to an assignment. It 
measures the time of added value of an operation versus the time consumed. Therefore, it 
generalizes the second exponential term of the ATCS rule. 

The Fli,j term of the ATCOEEF rule (4), evaluates the flexibility of an operation as the number of 
machines on which this operation can be performed. 
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One difficulty is defining values for the parameters k1, k2 and k3. Let us compare two affectations 
(Oi,j ;m) and (Ok,l ;m’) with the same duration (pi,j = pk,l). 

Then, ATCOEE(i,j,m) = ATCOEE(k,l,m) ( )mjimlkmjimlk OEEOEEk
kpAtcAtc ,,',,
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k
kp expresses a period of time over which an in advance operation (Atc >0) is 

searched for in order to improve the machine’s OEE (OEE close to 1). 
In the same way, 
ATCOEE(i,j,m) = ATCOEE(k,l,m) ( ) ( )
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Consequently, k1/k3 expresses a period of time during which an operation can be anticipated if it 
has a low flexibility.  

4.2 Simulated annealing with complex neighborhoods 
Based on the initial solution, we propose to improve the quality of the solution obtained with the 
previously presented heuristic, by using a neighborhood search. We propose different neighbor 
structures to evaluate the ability to quickly find a good solution. Two types of parameters are 
listed to define our dedicated neighbors: 

•	
  Two structural parameters, which define what the neighbor is;  
•	
  Three parameters of generation, which define precise rules to obtain a neighbor.  



 

 

4.2.1 Structural parameters 
The first structural parameter corresponds to the “movement types”. From the literature review, it 
is clear that two major “movement types” are used to define a neighbor: insertion or exchange 
[21,22,23]. Exchange tries to maintain the load on the machines while insertion is used to change 
the load. Following these two techniques, a selected item is either inserted before or exchanged 
with a second selected item. In our study, we propose to apply movements to two types of items: 

•	
  A single operation; 
•	
   A set of operations, which is a set of operations of a same family continuously 
sequenced on a machine without any setup or operator waiting. A pack may comprise one 
operation only. 

The second structural parameter is the “family” constraint for choosing this second item. Two 
values are used: compulsory (the first and the second items must have the same family), not 
necessary (no constraint). 

4.2.2 Generation parameters 
The parameters of generation state the neighborhood mechanism. The literature review [21] 
underlines that the choice of the first item should depend on its tardiness. Therefore, we propose 
to use selection probability equal to its tardiness (item tardiness / total scheduling tardiness).  
The choice of the machine on which the second item is looked for is important. Several cases are 
considered for the “machine” parameter: idem (same machine as the first item), EM (all the 
eligible machines of the first item), unif (one of the eligible machines of the first item is chosen 
with a uniform probability). 
Considering any one machine, the second item is looked for between the first item ready date and 
the first item actual starting time. Between these two dates, several possibilities remain. The 
values of the “date” parameter can be unif (one of the possible items is uniformly selected ) and 
late (the latest one is selected). 

4.2.3 Complex neighborhood structure 
By combining all the parameters, we can define a complex neighborhood structure. But are 
complex neighborhoods necessary? To answer to this question, we propose investigating three 
neighborhood structures: 

•	
  Simple: the only neighbor mechanism is an operation insertion with a uniform selection 
of “machine” and “date” (see Table 3, neighbor 0); 
•	
  Operation: the “moved items” is always a single operation. Three mechanisms (see 
Table 3, neighbors 1 to 3) are considered as combinations of “move types”, “machine” 
and “family” parameter values; 
•	
   Operation-pack: “moved items” are “pack”. As for Operation, the same three 
combinations of “move types”, “machine” and “family” parameter values are considered 
(see table 3, neighbors 4 to 6). At the 7th	
  place the neighborhood mechanism corresponds 
to an “adjacent pack interchange” on a machine. 

 
The “simple” neighborhood structure only considers one neighbor generation mechanism, while 
the “operation” and “operation-pack” structures respectively consider 3 and 4 neighbor 
generation mechanisms. The mechanism is chosen randomly. For any given “Operation” 
mechanism there is an equal probability of being chosen.  



 

 

 
Neighbor move 

types 
moved 
items 

family machine date neighbor move 
types 

moved 
items 

family machine date 

0 insert op no unif unif 4 insert pack yes EM unif 
1 insert op yes EM unif 5 exchange pack yes EM unif 
2 exchange op yes EM unif 6 insert pack no unif unif 
3 insert op no unif unif 7 exchange pack no idem late 

Table 1: Definition of the complex neighborhood structure 

5 Industrial data application 
In order to evaluate the performance of the proposed approach, and thanks to our industrial 
partner, we based our tests on an industrial application. Different data sets are stochastically 
derived from the industrial data to test the proposed algorithms.  

5.1 Tests generation 
The industrial laboratory studied comprises 10 machines, 20 columns, and is open for operators 
Monday to Friday from 8 am to 6 pm. Machines are free at the beginning of the simulation. 
2 load situations are considered with respectively 70 jobs (normal load situation) and 140 jobs 
(high load situation). For each job, two routing cases are studied to test the workshop flexibility: 
10 different routings (or successions of operations) and 20 different routings. Each routing 
contains 1, 2 or 3 operations (the number of operations is uniformly chosen). 
Each operation has a total duration (setup time and analytical time per sample) uniformly chosen 
between 120 and 1440 minutes. The setup is either 50% or 75% of the total operation duration.  
Job release dates are generated between -8/+5 days around the beginning of the simulation and 
therefore some jobs can be available at the beginning of the simulation. The due date corresponds 
to the release date plus a lead-time generated by a Gauss curve centered on 10 days with a 
standard deviation of one day.  
In order to measure the impact of machine flexibility, the number of eligible machines for a 
routing operation is generated with a mean selected in the range “2, 4, 6, and 10” and with a 
standard deviation of 0.5 (except when mean equals 10, where all machines are always eligible). 
The number of equivalent columns to the 10% most used column is defined as being 3, then 2 for 
the next 30% and 1 for the rest. 

For each load situation (70 or 140 jobs), we test both rooting configurations (10 and 20 different 
routings), two setup durations (sij/(sij+pij) = 50% or 75%), and four machine flexibilities (2, 4, 6 or 
10). So, for each load instance, we generate 16 problem types. Each problem type is solved 10 
times in order to have an average effect on the values. Therefore, in both load situations, 160 
problems are solved. 

5.2 Rules comparison 
First we analyze the effect of the rules used in the list treatment algorithm. In this experiment we 
compare First Freed Machine (FFM)- Random (that randomly chooses an operation), FFM-ATC, 
FFM-ATCS, LFM-LFO, FFM-EDD, FFM-ATCOEE and FFM- ATCOEEF. In order to apply a 
variance analysis to validate the effects of parameters of the experiment, a check must first be 
made to ensure that the distribution of tardiness follows a normal distribution. Figure 1 depicts 



 

 

the density function of the tardiness measure for various rules. Shapes can be considered as 
normal. But, note that the tardiness-axis is logarithmic. Consequently, “log(Tardiness)” must be 

analyzed instead of “Tardiness”. 
Figure 1: density function of tardiness for various rules and 140 jobs 

Consequently, in the following tables, if the effect on log(tardiness) is x when fixing a parameter 
p to value v, this requires that the mean tardiness of all the experiments must be multiplied by 10x 
to obtain the tardiness when parameter p takes the value v. 
Tables 1-2 give the results of the variance analysis for both easy (70 jobs) and difficult (140 jobs) 
problems. Table 1 shows that the most important effect is due to rule. Other parameters have non-
significant or much less significant effects. No interaction between parameters is significant in 
the 70 jobs experiments (Table 2). For the 140 jobs experiment, Table 2 shows that the 
interaction between the rule and the number of eligible machines (Card ME) must be studied: the 
maximal interaction is  0.23 compared to the 0.56 of the effect of rule. 

 70 jobs problems 140 jobs problems 

parameter  Max effect 
experimental  

Fisher 
theoretical 

 Fisher Significant 
Max 

Effect 
experimental 

Fisher 
theoretical 

Fisher Significant 
rule 1.9 65.37 2.56 Yes 0.56 256.22 2.56 Yes 

Nb routing 0.18 33.89 7.17 Yes 0.01 4.22 7.17 No 
sij/(sij+pij) 0.17 29.96 7.17 Yes 0.07 93.98 7.17 Yes 
card_ME 0.13 2.29 4.2 No 0.06 28.45 4.2 Yes 

Table 2: F-test analysis of the effect of parameters on log(tardiness) 

  70 job problem 140 job problem 

parameter 1 parameter 2 Max Interaction 
experimental  

Fisher 
theoretical 

 Fisher Significant 
Max 

Interaction 
experimental 

Fisher 
theoretical 

Fisher Significant 
rule card_ME 0.36 0.73 2.1 No 0.23 3.29 2.1 Yes 

sij/(sij+pij) rule 0.27 0.99 2.56 No 0.11 4.19 2.56 Yes 

Nb routing 
rule 0.19 0.97 2.56 No 0.04 0.82 2.56 No 

card_ME 0.11 1.91 4.2 No 0.08 22.34 4.2 Yes 

sij/(sij+pij) 
card_ME 0.08 1.15 4.2 No 0.05 6.43 4.2 Yes 

Nb routing 0 0 7.17 No 0.02 10.54 7.17 Yes 
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Table 3: F-test analysis of the interactions between parameters on log(tardiness) 

Table 3 details the effect of the various scheduling rules. The least heuristics appears to be 
“random”. The rule based on the measure of the flexibility (LFM/LFO) is very poor. ATC and 
EDD are quite similar. The ATCS rule gives interesting results in high load situations (140 jobs 
problem). Finally, ATCOEE and ATCOEEF rules give the best results. Considering the 
parameter k1, k2 and k3 used to specify ATCS, ATCOEE and ATCOEEF rules, rules are named 
in Table 3 using the following notation: rule.k1.k2.k3. Choosing a low value for k1 gives slightly 
better results in the 70 jobs situations but significantly less good results in the 140 jobs problem. 
Choosing a high value of k3 is always preferable. This tends to minimize the interest of the 
flexibility term in ATCOEEF. Consequently, one can conclude that this flexibility term is useless 
and that the ATCOEE rule is preferable. 
 

rule 
70 job 

problem 
140 job 
problem rule 

70 job 
problem 

140 job 
problem 

atcoee.10.1 -0.7 -0.56 atcoee.1.1 -0.86 -0.15 
atcoeef.10.1.10 -0.68 -0.55 atcoeef.1.1.10 -0.85 -0.15 
atcoeef.10.1.1 -0.57 -0.49 atcoeef.1.1.1 -0.73 -0.09 

atcs.10.1 0.11 -0.27 atcs.1.1 -0.42 0.05 
lfm_lfo 1.52 0.4 atc 0.63 0.45 
random 1.9 0.56 edd 0.48 0.45 

Table 4: effect of the scheduling rules on log(tardiness) 

rule Card ME Interaction rule Card ME Interaction rule Card ME Interaction 

atc 

2 -0.16 

atcs.1.1 

2 -0.067 

atcoeef.1.1.1 

2 0.111 
4 -0.077 4 0.005 4 0.02 
6 0.003 6 0.011 6 -0.029 

10 0.234 10 0.052 10 -0.103 

atcoee.1.1 

2 0.011 

atcs.10.1 

2 -0.096 

atcoeef.1.1.10 

2 0.026 
4 0.031 4 -0.004 4 0.013 
6 -0.004 6 0.034 6 0. 

10 -0.038 10 0.066 10 -0.039 

atcoee.10.1 

2 0.105 

edd 

2 -0.025 

atcoeef.10.1.10 

2 0.128 
4 0. 4 0.017 4 -0.015 
6 -0.013 6 -0.003 6 -0.009 

10 -0.092 10 0.011 10 -0.104 

random 

2 0.054 

lfm_lfo 

2 -0.122 

atcoeef.10.1.1 

2 0.163 
4 -0.008 4 0.014 4 0.043 
6 -0.029 6 0.056 6 -0.047 

10 -0.016 10 0.052 10 -0.159 

Table 5: interaction of the scheduling rule with the number of eligible machines per operation (Card ME) for the 140 
jobs problems 

Let us now consider Table 4, which depicts the effect of the interaction between the number of 
eligible machines and the scheduling rules when considering high load problems (140 jobs). It 
can be noticed that improving the workshop flexibility (improving the number of eligible 
machines per operation) enables tardiness to decrease when using ATCOEE and ATCOEEF 
rules, but surprisingly induces an increase of tardiness when using other rules (ATC, ATCS, 



 

 

EDD, LFM-LFO). This latter effect can be explained by the fact that ATC, ATCS, EDD and 
LFM-LFO rules only take into account part of the constraints that impact decisions on 
operational assignment. Increasing flexibility can then induce inefficient assignments. 

5.3 Experiments with simulated annealing 
Experiments using Simulated Annealing procedures (SA) are performed using the same data and 
situations as for the heuristics. First, the SA starts with a descent phase on 100 iterations. Thus, 
the mean tardiness variation of the neighborhood structure is calculated. Then, the initial 
temperature of SA is evaluated so that the initial acceptance probability is fixed at 0.8 for a 
neighbor that generates a mean tardiness variation. Each temperature level is changed after 400 
iterations or 80 accepted neighbors. The temperature is decreased according to a geometric law 
by a factor of 0.95. The SA is finished when three temperature levels are reached without any 
acceptation, or after 15000 iterations. This can be defined as a “quick” SA resolution. In order to 
measure the worth of a longer resolution, we also report the results when applying a SA 
procedure, called ‘OP+PA SA 0.98’,  where 0.98 is used for the geometrical law and no limit exists 
on the number of iterations. 

This experiment also aims at studying the worth of a complex neighborhood structure. So, for the 
“quick” SA resolution, three neighborhood structures are compared as suggested in §4.2.3: 

- ‘SIMPLE SA 0.95’ is a basic SA algorithm that only uses operation insertion mechanisms; 
- ‘OP SA 0.95’ only moves operations but with various neighborhood mechanisms; 
- ‘OP+PA SA 0.95’ applies the various types of movement to operations and packs; 

Finally, results are also compared to a list treatment algorithm using the ATCOEE rule. 

Tables 5 and 6 report the results of the variance analysis of the effects and interactions of the 
experiment parameters for both situations (70 and 140 job problems). Here too it can be seen that 
the major effect is due to the type of SA algorithm. No significant or important interaction can be 
seen in both situations. This means that the best algorithm is the best for all the situations 
experimented. 

 70 job problem 140 job problem 

parameter Max effect 
experimental 

 Fisher 
theoretical  

Fisher Significant 
Max 

effect 
experimental 

Fisher 
theoretical 

Fisher Significant 
Algo 0.949 22.021 3.720 Yes 1.489 180.272 3.720 Yes 

Nb routing 0.245 21.477 7.171 Yes 0.075 3.340 7.171 No 
sij/(sij+pij) 0.062 1.363 7.171 No 0.518 158.390 7.171 Yes 
card_ME 0.060 0.161 4.199 No 0.161 1.759 4.199 No 

Table 6: F-test analysis of the effect of parameters on log(tardiness) when using SA algorithms 

  70 job problem 140 job problem 

parameter 1 parameter 2 Max Interaction 
experimental  

Fisher 
theoretical  

Fisher Significant 
Max 

Interaction 
experimental 

Fisher 
theoretical 

Fisher Significant 
Algo card_ME 0.176 0.138 2.562 No 0.295 1.220 2.562 No 

sij/(sij+pij) Algo 0.127 0.735 3.720 No 0.399 12.546 3.720 Yes 

Nb routing 
Algo 0.061 0.120 3.720 No 0.059 0.203 3.720 No 

card_ME 0.108 0.463 4.199 No 0.090 0.663 4.199 No 

sij/(sij+pij) 
card_ME 0.035 0.051 4.199 No 0.061 0.292 4.199 No 

Nb routing 0.002 0.001 7.171 No 0.069 2.844 7.171 No 



 

 

Table 7: F-test analysis of the interaction of parameters on log(tardiness) when using SA algorithms 

 
 70 job problem 140 job problem 

ATCOEE 0.949 1.489 
OP SA 0.95 -0.311 -0.562 

OP+PA SA 0.95 -0.328 -1.014 
OP+PA SA 0.98 -0.347 -1.083 
SIMPLE SA 0.95 0.038 1.17 

Table 8: effect of the scheduling SA Algorithm on log(tardiness) 

Table 7 shows the effect of the choice of an SA algorithm on log(Tardiness). Naturally, the best 
algorithm appears to be ‘OP+PA SA 0.98’, as this uses much more iteration and probably finds 
near-optimal solutions. But the performance of ‘OP+PA SA 0.95’ is almost as good. The gap with 
‘OP+PA SA 0.98’ on log(tardiness) is 0.02, which means a Tardiness gap of (100.02-1) = 4.4% for 
70 job problems and 100.07-1= 17.4% for 140 job problems. As it uses far fewer iterations, 
‘OP+PA SA 0.95’ appears to be a very good compromise. 

‘OP SA 0.95’ also performs well with simple problems (70 job problem) but less well with harder 
problems: for the 140 job problem the gap with ‘OP+PA SA 0.98’ is 0.52 on log(tardiness), which 
means 100.52 –1= 232% on tardiness. This means that in difficult situations ‘OP SA 0.95’ needs 
more iterations to converge. 

‘SIMPLE SA 0.95’ is the worst SA algorithm. The gap with ‘OP+PA SA 0.98’ is significant. In 
15000 iterations, ‘SIMPLE SA 0.95’ remains far from convergence. 

As a consequence, these results show the value of implementing the proposed combination of 
neighborhood mechanisms to ensure quick, good and robust convergence of the SA algorithm. 

The comparison between ATCOEE, the best List Treatment Algorithm, and ‘OP+PA SA 0.98’, the 
best SA algorithm, shows that the gap is enormous and becomes all the larger as the problem 
becomes harder (1800% for 70 job problems and 37200% for 140 job problems). This gap shows 
the difference between a heuristic rule that needs less than a second of computation time, and a 
meta-heuristic procedure that needs much more computation time (nearly 5 minutes for 15000 
iterations on a Sun Ultra 40 1GHz with 2GB of memory). From an industrial point of view, List 
Treatment algorithms are easy to implement in a ERP system. This gap illustrates the attraction 
of investing in dedicated optimization software. From an academic point of view, this gap 
suggests that future works are necessary to find better heuristic procedures. 

6 Conclusion 
This paper deals with a flexible parallel machine scheduling problem at an industrial 
pharmaceutical control laboratory. This problem refers to the resources bottleneck, the 
chromatography chains. Specific constraints such as calendar meeting points between operations 
and operators, secondary resource constraints and family dependent setups are considered.  
Heuristic rules from the literature are investigated (EDD, LFM, LFO, ATC, and ATCS). Two 
new rules are proposed as extensions of the ATC principle: ATCOEE and ATCOEEF. They 
include a measurement of the added value of an assignment and of solution flexibility.  

These heuristics are tested on a set of experimental data that correspond to various real-life 
situations. The experimental study shows that: (i) ATCOEE dominates the other heuristics in all 



 

 

situations; (ii) machine flexibility does not really influence heuristic behavior as good solutions 
are obtained even with low flexibility. 
The performance of the ATCOEE rule suggests to test it in other application area. Indeed the 
OEE term can take into account many type of constraints met in various industrial contexts. 
In order to improve the results, the proposed heuristic is complemented by a simulated annealing 
procedure (SA). Results show the worth of a complex neighborhood structure in terms of the 
quality of a solution and the convergence speed of the SA algorithm. 
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