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Existence and Consistency of Wasserstein Barycenters

Thibaut Le Gouic1 & Jean-Michel Loubes2

École Centrale de Marseille, Institut de Mathématiques de Marseille1

Université de Toulouse, Institut de Mathématiques de Toulouse2

Abstract

Based on the Fréchet mean, we define a notion of barycenter corresponding to a
usual notion of statistical mean. We prove the existence of Wasserstein barycenters
of random probabilities defined on a geodesic space (E, d). We also prove the
consistency of this barycenter in a general setting, that includes taking barycenters
of empirical versions of the probability measures or of a growing set of probability
measures.
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Introduction

Giving a sense to the notion of the mean of a data sample is one of the major activ-
ities of statisticians. When dealing with complex variable data which do not possess an
Euclidean structure, the mere issue of defining the mean becomes a difficult task. This
problem arises naturally for a wide range of statistical research fields such as functional
data analysis for instance in [17], [23], [7] and references therein, image analysis in [27] or
[5], shape analysis in [19] or [18] with many applications ranging from biology in [12] to
pattern recognition [24] just to name a few.

When dealing with data that are probability measures, the issue of finding a central
probability measure that will convey the information of the whole data is a difficult task.
This has been tackled in [1] by considering a notion of barycenter with respect to the
Wasserstein distance. This notion coincides with the notion of Fréchet mean. That is,
the Fréchet mean of the points (xi)1≤i≤n of a geodesic space (E, d) given weights (λi)1≤i≤n

is defined as a minimizer of

x 7→

n
∑

i=1

λid
2(x, xi).
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This definition provides a natural extension of the barycenter as it coincides on R
d with

the barycenter
∑n

i=1 λixi of the points (xi)1≤i≤n, with weights (λi)1≤i≤n. This function to
be minimized can be rewritten as

x 7→ Ed2(X, x)

if the distribution of the random variable X is the discrete measure

µ =

n
∑

i=1

λiδxi
,

where δ denotes the Dirac measure. We will call any of these minimizer a barycenter of µ,
so that the Fréchet mean of (xi)1≤i≤n with weights (λi)1≤i≤n is the barycenter of µ. There
is then a natural extension of a barycenter for a probability measure, that is: a point x is
said so be a barycenter of a measure µ (not necessarily finitely supported) if it minimizes

x 7→ Ed2(X, x)

when the distribution of the random variable X is µ. The first question to arise is whether
this barycenter exists.

When (E, d) is assumed to be a locally compact geodesic space, Hopf-Rinow theorem
states that balls are compact and thus, the existence of this barycenter is straightforward.
But it is not obvious in more general cases.

In this paper, we consider barycenters in the Wasserstein space of a locally compact
geodesic space. Since the Wasserstein space of a locally compact space is, in general,
not locally compact, its existence is not as straightforward. However, in this setting, the
Wasserstein space is a geodesic space of probability measures. The first goal of this paper
is to prove existence of barycenters in this setting.

Given p ≥ 1, and denoting W the Wasserstein metric, previous work in this direction
consider the barycenter of the probability measures (µi)1≤i≤n with weights (λi)1≤i≤n, i.e.
a minimizer of the following criterion

ν 7→
n

∑

i=1

λiW
p
p (ν, µi),

which is thus also the barycenter of the atomic probability P on the Wasserstein space,
defined by

P =
n

∑

i=1

λiδµi
,

An important result proved in [1], is the existence and uniqueness of this minimizer when
the underlying space (E, d) is the Euclidean space R

d and p = 2. Uniqueness requires
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the extra assumption that at least one of the µi’s vanishes on small sets. This vanishing
property means that the considered measures give probability 0 to sets with Hausdorff
dimension less than d−1. In particular, any measure absolutely continuous with respect to
the Lebesgue measure vanishes on small sets. This work of [1] has been extended in [20] to
compact Riemannian manifolds, with the condition to vanish on small sets being replaced
by absolute continuity with respect to the volume measure. Since the Wasserstein space
of a compact space is also compact, the existence of the barycenter in this setting is
straightforward, but their work provides, among other results, an interesting extension
of the work of [1], by showing a dual problem called the multimarginal problem, for
any P of the form

∑n
i=1 λiδµi

. The same dual problem has been used in a previous work
to show existence of barycenter whenever there exists a Borel (not necessarily unique)
barycenter application on (En, dn) that associate the barycenter of

∑n
i=1 λiδµi

to every n-
uplets (x1, ..., xn). This assumption is actually always verified on locally compact geodesic
spaces. This is the result of Lemma 7. It is a first step toward the proof of existence of
barycenter for any P.

This paper studies, in the setting of locally compact geodesic spaces, the existence
of the barycenter and state consistency properties. In a previous work [11] or [21], the
authors studied some asymptotic results giving conditions under which a sequence of
barycenters of discrete measures converging to a limit measure can be understood as a
barycenter of the limit probability measure. This result enables to define the barycenter
of empirical measures and study its asymptotic behavior. In the following, we propose an
improved version of this limit theorem that enables to prove existence of barycenters of
probabilities in a our more general framework.

This paper falls into the following parts. Section 1 presents general definitions and
states a general theorem that ensures the existence of a barycenter of probability measures
in the Wasserstein space. In Section 2, a consistency result is proven. Section 3 is devoted
to some statistical applications. The technical lemmas are presented in Section 5 while
the detailed proofs are postponed to Section 4.

1 Barycenter of a probability in Wasserstein space

Given two points x, y in a metric space (E, d), their mid-point is the point z ∈ E such
that

d(x, z) = d(z, y) =
1

2
d(x, y).

Definition (Geodesic space) A space (E, d) is called a geodesic space if

• (E, d) is a complete metric space and

• every two points x, y ∈ E have a mid-point z ∈ E.
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Note that in this case, the mid-point of x and y is the 2-barycenter of x and y with weights
(1
2
, 1
2
).

Remark 1 Such spaces are sometimes called complete intrinsic metric length spaces (see
for instance [13]).

Given a continuous path γ : [0, T ] → E, its length is defined as

Λ(γ) = sup

{

n
∑

i=0

d (γ(ti+1), γ(ti)) ; 0 = t0 ≤ t1 ≤ ... ≤ tn = T

}

.

Thus, a continuous path is said to be a geodesic, if for any interval [a, b] ⊂ [0, T ], the
length of γ restricted to [a, b] is d (γ(a), γ(b)):

Λ(γ|[a,b]) = d (γ(a), γ(b)) .

It is known (see theorem 2.4.16 p.42 and lemma 2.4.8 p.41 in [13]) that a (separable)
complete metric space is geodesic if and only if for every pair (x, y) there exists a geodesic
joining x and y.

Definition (Barycenter) Set p ≥ 1 and let (E, d) be a geodesic space and µ a proba-
bility measure on (E, d) such that

∫

dp(x, x0)dµ(x) < ∞ (1)

for some (and thus any) x0 ∈ E. A point x0 ∈ E is called a p-barycenter of µ if

∫

dp(x, x0)dµ(x) = inf

{
∫

dp(x, y)dµ(x); y ∈ E

}

. (2)

The set of all probability measures satisfying (1) is denoted Wp(E).

Barycenters do not always exists. On can find a geodesic space (E, d) and a probability
measure µ ∈ Wp(E) for which there exists no barycenter. However, the Hopf-Rinow-Cohn-
Vossen theorem (see theorem 2.5.28 p. 52 in [13]) states that, on locally compact geodesic
spaces, every closed ball is compact. Consequently, the infimum in (2) can be taken on a
compact ball, and thus existence of a barycenter is ensured. We thus have the following
proposition.

Proposition 1 Set p ≥ 1 and let (E, d) be a locally compact geodesic space and µ ∈
Wp(E). Then, there exists a barycenter of µ.

Metric spaces of nonpositive curvature (NPC spaces) provide another setting for which
barycenters exist. We recall the definition of such spaces following [26].
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Definition (NPC Spaces) A complete metric space (E, d) is called a global NPC space
if for each pair of points x0, x1 ∈ E, there exists y ∈ E such that for all z ∈ E,

d2(z, y) ≤
1

2
d2(z, x0) +

1

2
d2(z, x1)−

1

4
d2(x0, x1).

Such spaces are geodesic spaces and every probability measure on such spaces that
satisfies

∫

d2(x, x0)dµ(x) < ∞ for some x0 ∈ E has a unique 2-barycenter (see proposition
4.3 in [26]).

The goal of this paper is to study barycenters in Wasserstein spaces. We first recall
the definition of the Wasserstein space of a metric space (E, d).

Definition (Wasserstein space) Set p ≥ 1 and let (E, d) be a metric space. Given two
measures µ, ν in Wp(E), we denote by Γ(µ, ν) the set of all probability measures π over
the product set E × E with first, resp. second, marginal µ, resp. ν. The transportation
cost with cost function dp between two measures µ, ν in Wp(E), is defined as

Tp(µ, ν) = inf
π∈Γ(µ,ν)

∫

dp(x, y)dπ.

The transportation cost allows to endow the set Wp(E) with a metric Wp defined by

Wp(µ, ν) = Tp(µ, ν)
1/p.

This metric is known as the p-Wasserstein distance and the metric space (Wp(E),Wp) is
called the Wassertein space of (E, d).

It is well known (see theorem 6.9 of [28] for instance, or proposition 7.1.5 in [4]) that
Wp metrizes the topology of weak convergence and convergence of moments of order p

(i.e.
∫

dp(x, x0)dµn →
∫

dp(x, x0)dµ(x)). If (E, d) is a separable complete metric space,
so is (Wp(E),Wp) (see theorem 6.19 in [28]).

Also, if (E, d) is a locally compact geodesic space, then (Wp(E),Wp) is a geodesic
space. This result can be found in [22] (see lemma 2.4 and proposition 2.6) for the
case (E, d) compact, but the arguments are valid when (E, d) is locally compact as well.
However, (Wp(E),Wp) is not locally compact unless (E, d) is compact (see remark 7.1.9
in [4]). Thus, existence results on locally compact spaces can not be applied to prove
existence of barycenter on (W(E),Wp).

Likewise, Wasserstein spaces are not NPC spaces in general (see theorem 7.3.2 in [4]).
Indeed, two probability measures µ0, µ1 can have more than one mid-point in (W(E),Wp):
each mid-point is a barycenter of 1

2
(δµ0

+ δµ1
) ∈ W(W(E)). However NPC spaces assign a

unique barycenter to every probability measure. Therefore Wasserstein spaces can not be
NPC spaces and results for such spaces can not be applied to prove existence of barycenter
in Wasserstein spaces.
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We want to prove existence of barycenters in Wasserstein spaces. To that purpose,
we consider a random probability measure µ̃ in Wp(E), following a distribution P. This
probability P is chosen in the space Wp(Wp(E)) endowed with the metric Wp. Note that
we use the same notation for the Wasserstein distance over Wp(E) andWp(Wp(E)). Thus,
if µ̃ ∈ Wp(E) is a random measure with distribution P, then for all ν ∈ Wp(E), we can
write

W p
p (δν ,P) = E(W p

p (ν, µ̃)) =

∫

W p
p (ν, µ)dP(µ). (3)

For a probability P ∈ Wp(Wp(E)), consider a minimizer over ν ∈ Wp(E) of

ν 7→ E
[

W p
p (ν, µ̃)

]

= W p
p (δν ,P),

where µ̃ is a random probability of Wp(E) with distribution P. If exists, this probability
measure is a barycenter of P.

We can now state existence result.

Theorem 2 (Existence of a Wasserstein Barycenter) Set p ≥ 1 and let (E, d) be
a separable locally compact geodesic space. Hence, for P ∈ Wp(Wp(E)), there exists a
barycenter µ̄P defined as

µ̄P ∈ arg min
ν∈Wp(E)

E
[

W p
p (ν, µ̃)

]

, (4)

for µ̃ a random measure with distribution P.

Using the expression (3), we can see that Theorem 2 can be reformulated as stating the
existence of the metric projection of P onto the subset of Wp(Wp(E)) of Dirac measures.

Proof The proof of Theorem 2 relies on the existence of barycenters of finitely supported
measures in Wp(E) for which the core ideas were developped in [1]. Those ideas are used
for the first step of this proof. The proof is split in three steps.

• First, consider a set of probability measures (µj), j = 1, . . . , J of Wp(E) and as-
sume that P is a discrete measure defined, for positive weights λ1, . . . , λJ such that
∑J

j=1 λj = 1, as

P =

J
∑

j=1

λjδµj
.

In this case

W p
p (δν ,P) = EW p

p (ν, µ̃) =

J
∑

j=1

λjW
p
p (ν, µj).

Within this framework, Theorem 2 reduces to an already solved problem, in the
case p = 2 in [1] or [11] and for general p in [21]. It is recalled in this paper as
Theorem 8.
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• To prove the theorem in the general case, we show that if there is a sequence of
probability measures (Pj)j≥1 converging to a limit probability measure P and if for
each Pj there exists a barycenter µ̄Pj

, then there exists a barycenter µ̄P of the limit
probability P. Moreover µ̄P is the limit of a subsequence of the barycenters (µ̄Pj

)j≥1.
This result is stated as Theorem 3 in the following section.

• Finally Proposition 13 concludes the proof showing that one can approximate any
probability measure in Wp(Wp(E)) by finitely supported probability measures.

2 Consistency of the barycenter of a sequence of mea-

sures

The following theorem deals with a continuity issue of the barycenters. Consider a
sequence (Pj)j≥1 ⊂ Wp(E) converging to some P in Wp(Wp(E)). If these measures all
admit a barycenter, it is natural to ask whether the sequence of barycenters also converges
to a barycenter of P. Theorem 3 provides a positive answer.

Theorem 3 Set p ≥ 1 and let (E, d) be a separable locally compact geodesic space. Let
(Pj)j≥1 ⊂ Wp(Wp(E)) be a sequence of probability measures on Wp(E) and set µj a
barycenter of Pj, for all j ∈ N. Suppose that for some P ∈ Wp(Wp(E)), we have that

Wp(P,Pj)
j→+∞
−→ 0. Then, the sequence (µj)j≥1 is precompact in Wp(E) and any limit is a

barycenter of P.

Sketch of proof The proof of Theorem 3 can be split into three steps.

• The first step shows that the sequence of barycenters (µj)j≥1 is tight. It is a conse-
quence of the fact that balls on (E, d) are compact together with Markov’s inequality
applied to these balls.

• The second step uses Skorokhod representation theorem and lower semicontinuity
of ν 7→ Wp(µ, ν) for any µ, to show that any weak limit of the sequence (µj)j≥1 is a
barycenter of P.

• The final step proves that the convergence of the (µj)j≥1 actually holds in Wp(E).

Applying this result to a constant sequence gives the following corollary.

Corollary 4 The set of all barycenters of a given measure P ∈ Wp(Wp(E)) is compact.

An interesting and immediate corollary follows from the assumption that P has a
unique barycenter.
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Corollary 5 Suppose P ∈ Wp(Wp(E)) has a unique barycenter. Then for any sequence
(Pj)j≥1 ⊂ Wp(Wp(E)) converging to P, any sequence (µj)j≥1 of their barycenters converges
to the barycenter of P.

On E = R
d and p = 2, there exists a simple condition under which the barycenter is

unique.

Proposition 6 Let P ∈ W2(W2(R
d)) such that there exists a set A ⊂ P2(R

d) of measures
such that for all µ ∈ A,

B ∈ B(Rd), dim(B) ≤ d− 1 =⇒ µ(B) = 0, (5)

and P(A) > 0, then, P admits a unique barycenter.
Therefore, for any sequence (Pj)j≥1 converging to P in W2W2(R

d)), the barycenters of
Pj converge to the barycenter of P.

Proof It is a consequence of the fact that if ν satisfies (5), then µ 7→ W2(µ, ν) is strictly
convex and thus, so is µ 7→ EW 2

2 (µ, µ̃).

3 Statistical applications

Two statistical frameworks

When confronted to the statistical analysis of a collection of probability measures in
Wp(E), µ1, . . . , µJ , it is natural to define a notion of variability as

VJ(µ1, . . . , µJ) = inf
ν∈Wp(E)

1

J

J
∑

j=1

W p
p (ν, µj).

This quantity plays the role of a variance which measures the spread, with respect to the
Wasserstein distance, of the measures around a point which is the Wasserstein barycenter.
In this work, we extend this definition to match the notion of variance by defining

V(µ) = inf
ν∈Wp(E)

E
(

W p
p (ν, µ̃)

)

,

where µ̃ is a random probability measure in W(E). We provide some condition that
ensures that this quantity is well defined and is achieved for a measure µ̄P, which plays the
role of the mean of the random measure µ̃. Moreover, statistical inference in this setting
has been tackled in two different frameworks whether the number of probabilities goes
to infinity or whether the probabilities are not observed directly but through empirical
samples. Theorem 3 handles both of these settings.
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The first point of view concerns the case where the distribution P ∈ Wp(Wp(E)) is
approximated by a growing discrete distribution PJ supported on J elements, with J

growing to infinity. Consider a collection of measures µj ∈ Wp(E) for j ≥ 1, and weights
λJ
j ≥ 0, and define the sequence of measures PJ , J ≥ 1 as follows

PJ =
J

∑

i=1

λJ
i δµj

.

Assume that PJ converges to some measure P with respect to Wasserstein distance. Hence
Theorem 3 states that the barycenter (or any barycenter if not unique) of PJ converges
to the barycenter of P (provided P has a unique barycenter).

The second asymptotic point of view deals with the case where the measures µj are
unknown but approximated by a sequence of measures µn

j converging with respect to
the Wasserstein distance to measures µj when n grows to infinity. Compared to the
first framework, the number of measures here is fixed but only an estimation of the
measures is known. This covers the interesting case where we observe i.i.d sample Xi,j

with i = 1, . . . , n with distribution µj ∈ Wp(E). Here µn
j = 1

n

∑n
i=1 δXi,j

is the empirical
measure. Given positive weights (λi)1≤i≤J (or a sequence of weights converging to them)
the issue is whether the barycenter of the observed measure

∑J
j=1 λjδµn

j
converges to the

barycenter of the limit
∑J

j=1 λjδµj
in the case where this barycenter is unique. This

problem has been answered positively in [11], up to extracting a subsequence, since the
barycenter is not unique. Within this framework, set

Pn =
J

∑

j=1

λjδµn
j

with positive weights λj and measures (µn
j )1≤j≤J,n≥1 ⊂ Wp(E)J converging to some limit

measures (µj)1≤j≤J ∈ Wp(E)J . Then Theorem 3 states that the barycenter (or any if not

unique) converges to the barycenter of
∑J

j=1 λjδµn
j
(if unique).

Implications of the results

The existence and consistency of Wasserstein barycenters has several implications in
statistics.

First, the variance of a collection of measures is helpful to understand the separation
between collections of probability measures. Goodness of fit testing procedures have been
developed to assess similarity between two samples as in [14] or [15]. The test statistics
relies on the computation of the variance of the sample. Its calculation uses its expression
that involves the computation of the Wasserstein distance of the distribution with respect
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to the mean of the probability, which is obtained by proving the existence of the mean
distribution.

Then, one of the major application is given by deformation models or registration issues
of distributions. In these problems, one assume that an unknown template distribution
µ is warped from different observations by a random deformation process. The goal is
here to estimate the template using the observations. More precisely, the probability
measured µj are warped from the template by a random center deformation operator T
with realizations Tj, such that

µj = Tj#µ = µ ◦ T−1
j .

Then the barycenter of the µj’s is a proper estimate for the unobserved template. In a
previous work [11], a similar result has been proved under a more restrictive assumption on
the µj’s: this result was proven in the case when E = R

d and the (µj)j≥1 are admissible
deformations in the sense that they can be written as the pushforward of a common
probability measure µ by the gradient of a convex function. This setting has also been
considered in [2]. In [9] this problem is also tackled in the particular case where the
(µj)j≥1 have compact support, are absolutely continuous with respect to the Lebesgue
measure and are indexed on a compact set Θ of Rd. They state more precisely that given
a probability measure on Θ, one can induce a probability measure P onWp(R

d), and if the
(µj)j≥1 are chosen randomly under P⊗∞, the (unique) barycenter of 1

J

∑

j=1 δµj
converges

to the barycenter of P, P-almost surely. In our case, we handle the general case where
the family of deformations is a random function which induces a random distribution µj

with distribution P given by the law of the deformation, which enables to consider general
random deformation models. Natural applications in biology arise when dealing with gene
expressions that suffer from a huge variability due to the different ways of processing the
data. The first task preliminary to any analysis is a normalization procedure to extract a
mean feature which corresponds to the mean distribution or the Wasserstein barycenter
as proved in [12] or [16]. In all these cases, our result provides the existence of the target
mean distribution while the consistency results allow the barycenters to be approximated
by taking the barycenter of noisy data sample.

In a more general way, finding a way to combine complex information from several
sources is a problem that is receiving a growing interest, in particular when the data can
be modeled as random distributions or samples of distributions. It is the case in Big data
when we want to exploit massive data sets that could have been collected by different
units or that exceed the size to make feasible their analysis on a single machine. Hence
inference on such data sets can not be conducted using all the data, and the barycenter
of the distributions is a natural candidate to resume the information conveyed by all the
data. In this framework the barycenter distribution plays the role of a consensus dis-
tribution that could represent a consensus-based global estimation or confidence region.
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This point of view is developed in [3] where the mean of the distribution is chosen as a
representative distribution. Similar cases are considered in information fusion, where the
goal is similar since it amounts to finding a mean measure that aggregates the information
provided by different input measures. Hence the Wasserstein barycenter is a natural way
to aggregate this information as pointed out in [10]. In multi-target tracking, the main
issue is the estimation of both the number and locations of multiple moving targets such
as airplanes based on sensor measurements. In [6] the Wasserstein barycenter provides
an alternative to the MOSPA (Mean Optimal Sub-Pattern Alignment) distance.

Finally, when considering Bayesian inference, one is faced with the problem of ap-
proximating a posterior measure. Such approximation can be done by sampling posterior
from the data. For large data sets, computation of such samples becomes intractable.
Thus, one can split the data into small subsets and combine the results of these local
computations. Taking the mean of the Bayesian posterior measures provides a natural
way to combine these local computations as pointed out in [25].

4 Proofs

Lemma 7 (Borel barycenter application) Set p ≥ 1 and let (E, d) be a separable
locally compact geodesic space. Then, given any J ∈ N

∗ and weights (λj)1≤j≤J , there
exists a Borel application T : EJ → E that associate (xj)1≤j≤J to a minimum of x 7→
∑J

j=1 λjd
p(x, xj). Such applications will be called Borel barycenter application.

Proof of Lemma 7 Since (E, d) is locally compact, applying theorem A.5 in [29] with
X = EJ , Y = E and

A =

{

(x1, ..., xJ , x) ∈ X × Y ;

J
∑

j=1

λjd
p(x, xj) ≤

J
∑

j=1

λjd
p(z, xj)∀z ∈ E

}

,

shows the existence of a Borel section f from πX(A) to X × Y of the projection πX :
X×Y → X . Then T = πY ◦ f is a Borel barycenter application - where πY : X×Y → Y

denotes the projection.

Theorem 8 (Barycenter and multi-marginal problem) Let (E, d) be a complete sep-
arable geodesic space, p ≥ 1 and J ∈ N

∗. Given (µi)1≤i≤J ∈ Pp(E)J and weights (λi)1≤i≤J ,
there exists a measure γ ∈ Γ(µ1, ..., µJ) minimizing

γ̂ 7→

∫

inf
x∈E

∑

1≤i≤J

λid(xi, x)
pdγ̂(x1, ..., xJ).

Moreover, denote T : EJ → E a Borel barycenter application (as in Lemma 7) then
the measure ν = T#γ is a barycenter of (µi)1≤i≤J and if this application is unique, any
barycenter ν is of the form ν = T#γ.
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Proof of Theorem 8 This proof is adapted from proposition 4.2 of [1].
Existence of the solution of the multi-marginal problem is a direct consequence of

lemma 12.
Denote by γ a solution of the multi-marginal problem and set ν = T#γ. Then, by

definition of the Wasserstein distance,

W p
p (µi, ν) ≤

∫

dp(xi, T (x))dγ(x).

and consequently,

∑

1≤i≤J

λiW
p
p (µi, ν) ≤

∫

∑

1≤i≤J

λid
p(xi, T (x))dγ(x). (6)

Also, for ν̂ ∈ Pp(E), denote πi ∈ Γ(µi, ν̂) the optimal transport plan between ν̂ and
µi. Using disintegration theorem, for any 1 ≤ i ≤ J , there exists a (conditional) measure
µ
y
i defined for ν̂−almost any y, which satisfies πi(x, y) = µ

y
i (x)⊗ ν̂(y). Set then,

θ(x, y) = µ
y
1(x1)⊗ ...⊗ µ

y
J(xJ)⊗ ν̂(y),

and denote γ̂ the law of the J first marginals of θ. Then, by construction of θ,

∑

1≤i≤J

λiW
p
p (µi, ν̂) =

∑

1≤i≤J

λi

∫

dp(xi, y)dθ(x, y)

=

∫

∑

1≤i≤J

λid
p(xi, y)dθ(x, y)

≥

∫

inf
z∈E

∑

1≤i≤J

λid
p(xi, z)dθ(x, y) (7)

=

∫

∑

1≤i≤J

λid
p(xi, T (x))dθ(x, y)

=

∫

∑

1≤i≤J

λid
p(xi, T (x))dγ̂(x)

≥

∫

∑

1≤i≤J

λid
p(xi, T (x))dγ(x)

≥
∑

1≤i≤J

λiW
p
p (µi, ν),

where the last inequality is an application of (6).
Since ν̂ is arbitrary, we have just shown that T#γ is a barycenter.
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Also, taking ν̂ a barycenter, (7) becomes an equality, so that for θ−almost any (x, y) ∈
EJ × E,

∑

1≤i≤J

λid
p(xi, y) = inf

z∈E

∑

1≤i≤J

λid
p(xi, z) =

∑

1≤i≤J

λid
p(xi, T (x)),

and thus, if the barycenter application T is unique, T (x) = y, θ−almost surely and so
T#γ̂ = ν̂. Also, optimality of ν̂, and (6) show that γ̂ is a solution of the multi-marginal
problem.

Proof of Theorem 3 Denotes µj a barycenter of Pj . The proof is in three steps.

1. Proving the tightness of the sequence of the barycenters (µj)j≥1.

2. Proving that any limit µ of (µj)j≥1 (in the sense of the weak convergence of measures)
is a barycenter.

3. Proving that there exists ν ∈ Wp(E) such that Wp(ν, µj) → Wp(ν, µ). The conclu-
sion of the proof will be derived from Lemma 14.

Let µ̃ and µ̃j random measures with distribution respectively P and Pj.

1. First prove that the moments of order p of the random measures considered as
random variables µj can be bounded from above by a constant M < ∞.

Let µ̃j be a random measure drawn according to a distribution Pj . Then, for any
x ∈ E

Wp(µj, δx) = Wp(δµj
, δδx)

≤ Wp(δµj
,Pj) +Wp(Pj, δδx)

=
(

EW p
p (µj, µ̃j)

)1/p
+
(

EW p
p (µ̃j, δx)

)1/p

≤ 2
(

EW p
p (µ̃j, δx)

)1/p
since µj is a minimizer of ν 7→ EW p

p (ν, µ̃j)

= 2Wp(Pj, δδx)

≤ 2 (Wp(Pj,P) +Wp(P, δδx)) ≤ M < ∞ since Wp(P,Pj) → 0.

Denote B(x, r) the ball of E centered in x with radius r. Then Markov’s inequality
entails that

µj(B(x, r)c) ≤
Eµj

dp(X, x)

rp
=

W p
p (µj, δx)

rp
≤

Mp

rp
.

The compactness of the balls of E entails that the sequence (µj)j≥1 is tight. So
it can be extracted a sequence which converges towards a distribution that will be
denoted µ. For ease of notations, the subsequence will be denoted as the initial
sequence.

13



2. Let ν ∈ Wp(E) and µ̃ a random measure with distribution P. We get

EW p
p (ν, µ̃) = W p

p (δν ,P)

= lim
j→∞

W p
p (δν ,Pj) since Wp(Pj,P) → 0

= lim
j→∞

EW p
p (ν, µ̃j)

≥ lim
j→∞

EW p
p (µj, µ̃j) since µj is a barycenter (8)

≥ E lim inf
j→∞

W p
p (µj, µ̃j) using Fatou’s Lemma for any coupling of the µ̃j’s

≥ EW p
p (µ, µ̃) since Wp is lower semi-continuous.

For the last inequality, we used that since Pj → P, Skorokhod’s representation
theorem enables to build µ̃j → µ̃ a.s.. This proves that µ is a barycenter of P.

3. For ν = µ, the inequality (8) is in fact an equality which implies that

Wp(δµj
,Pj) → Wp(δµ,P).

Hence

Wp(δµj
,P)−Wp(δµ,P) ≤ Wp(δµj

,Pj) +Wp(Pj,P)−Wp(δµ,P) → 0.

This implies that

EW p
p (µ, µ̃) = Wp(δµ,P)

= lim
j→∞

Wp(δµj
,P)

= lim
j→∞

EW p
p (µj, µ̃)

≥ E lim inf
j→∞

W p
p (µj, µ̃) using Fatou’s Lemma

≥ EW p
p (µ, µ̃) using again semi-lower continuity of Wp for weak convergence.

So P-a.s, (since lim infWp(µj, µ̃) ≥ Wp(µ, µ̃))

lim infWp(µj, µ̃) = Wp(µ, µ̃).

So all along a subsequence and for a ν ∈ W(E), Wp(µj, ν) → Wp(µ, ν). So using
Lemma 14, we get that

Wp(µj , µ) → 0,

which concludes the proof.
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5 Technical Lemmas

The following five results are well known. They are recalled here for the purpose of
clarity of the proofs.

Lemma 9 (Consistency in L1) Let (Xn)n≥1 be a sequence of real valued random vari-
ables such that

Xn → X a.s.

E|Xn| → E|X|.

Then, Xn → X in L1.

Lemma 10 (Uniform integrability) A family of real valued random variables H is
uniformly integrable (in the sense that supX∈H

∫

{|X|>a}
|X|dP → 0 as a → +∞) if and

only if the two following conditions hold
i) supX∈H E|X| < ∞ (bounded in L1)
ii) ∀ε > 0, ∃α > 0 such that ∀A ∈ A,

(

P(A) < α =⇒ supX∈H

∫

A
|X|dP < ε

)

(equicon-
tinuity).

Lemma 11 (Consistency in L1 and uniform integrability ) Let Xn → X in prob-
ability, then the sequence (Xn)n≥1 is uniformly integrable if and only if Xn → X in L1.

Lemma 12 (Tightness of fixed marginals set of measures) Let (E, d) be a Polish
space (i.e. a complete separable metric space). Let C1, ..., CJ be compacts sets of Wp(E).
Then, the set Γ(C1, ..., CJ) defined as the set of probability measures on EJ with marginals
respectively in C1, ..., CJ , is compact.

Proposition 13 (Approximation by finitely supported measures) For all P there
is a sequence of finitely supported probabilities Pj such that

Wp(Pj,P) −→ 0.

Here is a lemma used for the proof of Theorem 3.

Lemma 14 Let (µn)n≥1 be a sequence of measures on a Polish space (E, d) which con-
verges weakly towards µ. If there exists a measure ν such that

Wp(µn, ν) → Wp(µ, ν),

then
Wp(µn, µ) → 0. (9)
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Proof Note first that if ν = δx for a given x ∈ E, then (9) is true, due to the fact that
Wasserstein convergence is equivalent to the weak convergence plus convergence of the
order p moments (see [28]).

First using the Gluing Lemma (see for instance in [28] or [8]), build three sequences
(Xn)n≥1, (Yn)n≥1, (Zn)n≥1 with distribution respectively µn, ν and µ such that

(Xn, Yn) ∼ π1
n, (Yn, Zn) ∼ π2

n,

where π1
n and π2

n are the optimal transport maps between respectively µn and ν and
between ν and µ. Let Πn be the distribution of (Xn, Yn, Zn). Since the three marginals
weakly converge, the sequence (Πn)n≥1 is tight. Thus, we can extract a subsequence such
that

Πn → Π weakly,

where Π has marginal probabilities µ, ν and µ.
Then Skorokhod’s representation Theorem enables to construct a space (Ω,A,P) on

which there exist X, Y, Z with joint distribution Π and copies of (Xn, Yn, Zn) with law Πn

such that
d(Xn, X) + d(Yn, Y ) + d(Zn, Z) → 0 P-a.s..

If we show that (dp(Xn, X))n≥1 is uniformly integrable then using Lemma (11), we get

Edp(Xn, X) → 0,

which implies the result since Wp(µn, µ) ≤ Edp(Xn, X).
Uniform integrability remains to be proven. Note that Lemma (10) entails that it is

equivalent to prove the two following assumptions

i) supn≥1Ed
p(Xn, X) < ∞ (bounded in L1)

ii) ∀ε > 0, ∃α > 0 such that ∀A ∈ A,
(

P(A) < α =⇒
∫

A
dp(Xn, X)dP < ε

)

(equicon-
tinuity).

Assertion i) is a consequence of - since Edp(Xn, X) ≤ Edp(Xn, Zn),

Edp(Xn, X) ≤ Cp [Ed
p(Xn, Yn) + Edp(Yn, x) + Edp(x, Zn)]

= Cp

(

W p
p (µn, ν) +W p

p (ν, δx) +W p
p (δx, µ)

)

≤ M < ∞ since we assumed that W p
p (µn, ν) → W p

p (µ, ν).

To prove Assertion ii), set A ∈ A. We have that

Edp(Xn, X)1A ≤ Cp [Ed
p(Xn, Yn)1A + Edp(Yn, x)1A + Edp(x, Zn)1A] . (10)

Note that dp(Xn, Yn), dp(Yn, x) and dp(x, Zn) converge towards respectively dp(X, Y ),
dp(Y, x) and dp(x, Z) a.s. Their L1 norm converge also, for the first term by assumption

16



and since Yn and Zn are identically distributed, for all n ≥ 1. Hence using Lemma 9
they converge in L1 and thus are equicontinuous sequences. Hence this implies that for
all ε > 0, there exists α > 0 such that the three terms

Edp(Xn, Yn)1A + Edp(Yn, x)1A + Edp(x, Zn)1A < 3ε

for any A such that P(A) < α.
Hence inequality (10) implies that (dp(Xn, X))n≥1 is equicontinuous. Since it is also

bounded in L1, this sequence is uniformly integrable, which proves the result.
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[12] B. M. Bolstad, R. A. Irizarry, M. Åstrand, and T. P. Speed. A Comparison of Nor-
malization Methods for High Density Oligonucleotide Array Data Based on Variance
and Bias. Bioinformatics, 19(2):185–193, 2003.

[13] Dmitri Burago, Yuri Burago, and Ivanov Sergei. A Course in Metric Geometry,
volume 33. AMS, 2001.

[14] Claudia Czado and Axel Munk. Assessing the similarity of distributions—finite sam-
ple performance of the empirical Mallows distance. J. Statist. Comput. Simulation,
60(4):319–346, 1998.

[15] E. Del Barrio, H. Lescornel, and J.-M. Loubes. A statistical analysis of a deformation
model with Wasserstein barycenters : estimation procedure and goodness of fit test.
ArXiv e-prints, August 2015.

[16] Santiago Gallon, Jean-Michel Loubes, and Elie Maza. Statistical properties of the
quantile normalization method for density curve alignment. Mathematical Bio-
sciences, 242(2):129–142, 2013.

[17] Fabrice Gamboa, Jean-Michel Loubes, and Elie Maza. Semi-parametric estimation
of shifts. Electron. J. Stat., 1:616–640, 2007.

[18] Ulf Grenander. General pattern theory-A mathematical study of regular structures.
Clarendon Press, 1993.

[19] D. G. Kendall, D. Barden, T. K. Carne, and H. Le. Shape and shape theory. Wiley
Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester, 1999.

[20] Y.-H. Kim and B. Pass. Wasserstein Barycenters over Riemannian manfolds. ArXiv
e-prints, December 2014.

[21] Thibaut Le Gouic. Localisation de masse et espaces de Wasserstein. PhD thesis,
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