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Université de Toulouse, Institut de Mathématiques de Toulouse2

Abstract

In this paper, based on the Fréchet mean, we define a notion of barycenter

corresponding to a usual notion of statistical mean. We prove the existence of
Wasserstein barycenters of random distributions defined on a geodesic space (E, d).
We also prove the consistency of this barycenter in a general setting, that includes
taking barycenters of empirical versions of the distributions or of a growing set of
distributions.
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Introduction

Giving a sense to the notion of the mean of a data sample is one of the major activ-
ities of statisticians. When dealing with complex variable data which do not possess an
Euclidean structure, the mere issue of defining the mean becomes a difficult task. This
problem arises naturally for a wide range of statistical research fields such as functional
data analysis for instance in [12], [17], [5] and references therein, image analysis in [19] or
[3], shape analysis in [14] or [13] with many applications ranging from biology in [10] to
pattern recognition [18] just to name a few.

When dealing with distributions, the issue of finding a central distribution that will
convey the information of the distributions is a difficult task. This has been tackled in [1]
by considering a notion of barycenter with respect to the Wasserstein distance. This
notion coincides with the notion of Fréchet mean. That is, the Fréchet mean of the points
(xi)1≤i≤n of a geodesic space (E, d) given weights (λi)1≤i≤n is defined as a minimizer of

x 7→
n

∑

i=1

λid
2(x, xi).
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This definition provides a natural extension of the barycenter as it coincides on R
d with

the barycenter
∑n

i=1 λixi of the points (xi)1≤i≤n, with weights (λi)1≤i≤n. This function to
minimize can be rewritten as

x 7→ Ed2(X, x)

if the distribution of the random variable X is the discrete measure

µ =
n

∑

i=1

λiδxi
,

where δ denotes the Dirac measure. We will call any of these minimizer a barycenter of
µ, so that the Fréchet mean of (xi)1≤i≤n with weights (λi)1≤i≤n is the barycenter of µ.
There is then a natural extension of barycenter of measure that is: a point x is said so be
a barycenter of a measure µ (not necessarily finitely supported) is it minimizes

x 7→ Ed2(X, x)

when the distribution of the random variable X is µ.
When (E, d) is assumed to be a geodesic locally compact space, the existence of this

barycenter is a straightforward consequence of balls of (E, d) being compact. But it is
not obvious in more general cases.

In this paper, we consider barycenters in the Wasserstein space of a locally compact
geodesic space. Since the Wasserstein space of a locally compact space is, in general, not
locally compact, its existence is not as straightforward. We refer to [20] and references
therein for definitions on the Wasserstein distance. In this work, the barycenter of the
measures (µi)1≤i≤n with weights (λi)1≤i≤n, is thus defined as a minimizer of the following
criterion

ν 7→

n
∑

i=1

λiW
p
p (ν, µi),

which is thus also the barycenter of P defined by

P =

n
∑

i=1

λiδµi
,

An important result proved in [1], is the existence and uniqueness of this minimizer under
some assumptions. In their paper, the author proves existence and uniqueness of the
barycenter when the underlying space (E, d) is the Euclidean space R

d, and under the
assumption that at least one of the µi’s vanishes on small sets. This vanishing property
means that the considered measures give probability 0 to sets with Hausdorff dimension
less than d−1. Any measure absolutely continuous with respect to the Lebesgue measure
vanishes on small sets. This work of [1] has been extended in [15] to compact Riemannian
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manifolds, with the condition to vanish on small sets being replaced by absolute continuity
with respect to the volume measure. Since the Wasserstein space of a compact space is
also compact, the existence of the barycenter in this setting is straightforward, but their
work provides, among other results, an interesting extension of the work of [1], by showing
a dual problem called the multidimensional problem, for any P of the form

∑n
i=1 λiδµi

.

The same dual problem has been used in a previous work to show existence of barycenter
whenever there exists a measurable (not necessarily unique) barycenter application on
(En, dn) that associate the barycenter of

∑n
i=1 λiδµi

to every n-uplets (x1, ..., xn). It is a
first step toward the proof of existence of barycenter for any P.

This paper studies, in this setting, the existence of the barycenter and state consistency
properties. In a previous work [9] or [16], the authors studied some asymptotic results
giving conditions under which a sequence of barycenters of discrete measures converging
to a limit measure can be understood as a barycenter of the limit distribution. This result
enables to define the barycenter of empirical measures and study its asymptotic behavior.
In the following, we propose an improved version of this limit theorem that enables to
prove existence of barycenters of distributions in a our more general framework.

This paper falls into the following parts. Section 1 presents general definitions and
states a general theorem that ensures the existence of a barycenter of distributions. In
Section 2, a consistency result is proven. Section 3 is devoted to some statistical appli-
cations. The technical lemmas are presented in Section 5 while the detailed proofs are
postponed to Section 4.

1 A definition of a mean for probability in Wasser-

stein space

Let (E, d) be a locally compact geodesic space and for p ≥ 1 let Wp(E) be its Wasser-
stein space defined as the set of Borel probability measures µ on E with finite p order
moments, such that for all y ∈ E,

∫

E

dp(x, y)µ(dx) < +∞.

Given two measures µ, ν in Wp(E), we denote by Γ(µ, ν) the set of all probability mea-
sures π over the product set E × E with first, resp. second, marginal µ, resp. ν. The
transportation cost with dp cost function between two measures µ, ν in Wp(E), is defined
as

Tp(µ, ν) = inf
π∈Γ(µ,ν)

∫

dp(x, y)dπ.
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The transportation cost allows to endow the set of probability measures Wp(E) with a
metric by setting

Wp(µ, ν) = Tp(µ, ν)
1/p.

This metric is known as the p-Wasserstein distance. With this metric, the set (Wp(E),Wp)
is a geodesic space but not locally compact unless (E, d) is compact.

We consider a random probability µ̃ in Wp(E), following a distribution P. This prob-
ability P is chosen in the space Wp(Wp(E)) endowed with the metric Wp. Note that we
use the same notations for the Wasserstein distances over Wp(E) and Wp(Wp(E)). Thus,
if µ̃ ∈ Wp(E) is a random measure with distribution P, then for all ν ∈ Wp(E), we can
write

W p
p (δν ,P) = E(W p

p (ν, µ̃)) =

∫

W p
p (ν, µ)dP(µ). (1)

For a probability P ∈ Wp(Wp(E)), consider a minimizer over ν ∈ Wp(E) of

ν 7→ E
[

W p
p (ν, µ̃)

]

= W p
p (δν ,P),

where µ̃ is a random probability of Wp(E) with distribution P. If exists, this measure will
be called the mean measure of P or its barycenter. In order to prove its existence, we will
need the following definition.

Definition (Measurable barycenter) Let p ≥ 1 and (E, d) be a geodesic space. The
space (E, d) is said to admit a measurable barycenter application if given any J ∈ N

∗ and
weights (λj)1≤j≤J , there exists a Borel application T : EJ → E that associate (xj)1≤j≤J

to a minimum of x 7→
∑J

j=1 λjd
p(x, xj).

It is not clear whether all locally compact geodesic spaces admits a measurable barycen-
ter application, so it will be supposed in the following theorem which proves existence of
Wasserstein barycenters.

Theorem 1 (Existence of a Wasserstein Barycenter) Let p ≥ 1. Assume that (E, d)
is a geodesic space locally compact that admits a measurable barycenter application. Hence,
for P ∈ Wp(Wp(E)), there exists a mean µ̄P defined as

µ̄P ∈ arg min
ν∈Wp(E)

E
[

W p
p (ν, µ̃)

]

, (2)

for µ̃ a random measure with distribution P.

Using the expression (1), we can see that Theorem 1 implies the existence of the metric
projection of P onto the subset of Wp(Wp(E)) made of Dirac measures.

Proof The proof of Theorem 1 relies on the existence of barycenters of finitely supported
measures in Wp(E). It is split in three steps.
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• First, consider a set of probabilities (µj), j = 1, . . . , J of Wp(E) and assume that P

is a discrete measure defined, for positive weights λ1, . . . , λJ such that
∑J

j=1 λj = 1,
as

P =
J

∑

j=1

λjδµj
.

In this case

W p
p (δν ,P) = EW p

p (ν, µ̃) =
J

∑

j=1

λjW
p
p (ν, µj).

Within this framework, Theorem 1 reduces to an already solved problem, in the case
p = 2 in [1] or [9] and for general p in [16]. It is recalled in this paper as Theorem 6.

• To prove the theorem in the general case, we will show that if there is a sequence of
probabilities (Pj)j≥1 converging to a limit distribution P and if for each Pj, its mean
µ̄Pj

is well defined (i.e. exists), then the limit distribution has a mean that can be
seen as the limit of a subsequence of the means (µ̄Pj

)j≥1. This result is stated as
Theorem 2 in the following section.

• Finally Proposition 11 concludes the proof enabling to approximate any probability
on Wp(Wp(E)) by a discrete probability.

2 Consistency of the barycenter of a sequence of mea-

sures

The following theorem deals with a continuity issue of the barycenters of measures.
Consider a sequence of measures (Pj)j≥1 ⊂ Wp(E) converging inWp(Wp(E)) to P. If these
measures all admit a barycenter, it is natural to ask whether the sequence of barycenters
also converges to a barycenter of P. Theorem 2 provides a positive answer.

Theorem 2 Let (Pj)j≥1 ⊂ Wp(Wp(E)) a sequence of probability measures on Wp(E) and
set µj a barycenter of Pj, for all j ∈ N. Suppose that for some P ∈ Wp(Wp(E)), we have

that Wp(P,Pj)
j→+∞
−→ 0. Then, the sequence (µj)j≥1 is precompact in Wp(E) and any limit

is a barycenter of P.

Sketch of proof The proof of Theorem 2 can be split into three steps.

• The first step shows that the sequence of barycenters (µj)j≥1 is tight. It is a conse-
quence of the fact that balls on (E, d) are compact together with Markov’s inequality
applied to these balls.
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• The second step uses Skorokhod representation theorem and lower semicontinuity
of ν 7→ Wp(µ, ν) for any µ, to show that any weak limit of the sequence (µj)j≥1 is a
barycenter of P.

• The final step proves that the convergence of the (µj)j≥1 actually holds in Wp(E).

Applying this result to a constant sequence gives the following corollary.

Corollary 3 The set of all barycenters of a given measure P ∈ Wp(Wp(E)) is compact.

An interesting and immediate corollary follows from the assumption that P has a
unique barycenter.

Corollary 4 Suppose P ∈ Wp(Wp(E)) has a unique barycenter. Then for any sequence
(Pj)j≥1 ⊂ Wp(Wp(E)) converging to P, any sequence (µj)j≥1 of their barycenters converges
to the barycenter of P.

On E = R
d and p = 2, there exists a simple condition under which the barycenter is

unique.

Proposition 5 Let P ∈ P2(P2(R
d)) such that there exists a set A ⊂ P2(R

d) of measures
such that for all µ ∈ A,

B ∈ B(Rd), dim(B) ≤ d− 1 =⇒ µ(B) = 0, (3)

and P(A) > 0, then, P admits a unique barycenter.

Proof It is a consequence of the fact that if ν satisfies (3), then µ 7→ W2(µ, ν) is strictly
convex and thus, so is µ 7→ EW 2

2 (µ, µ̃).

3 Statistical applications

The existence of a mean of a probability measure (or its barycenter) plays an important
role in two statistical problems concerning two different empirical points of view. Two
asymptotic behaviors can be taken into account, whether the number of distributions goes
to infinity or whether the distributions are not observed directly but through empirical
samples. We describe here how Theorem 2 handles both of these settings.

The first point of view concerns the case where the distribution P ∈ Wp(Wp(E)) is
approximated by a growing discrete distribution PJ supported on J elements, with J
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growing to infinity. Consider a collection of measures µj ∈ Wp(E) for j ≥ 1, and weights
λJ
j ≥ 0, and define the sequence of measures PJ , J ≥ 1 as follows

PJ =

J
∑

i=1

λJ
i δµj

.

Assume that PJ converges to some measure P with respect to Wasserstein distance. Hence
Theorem 2 states that the barycenter (or any barycenter if not unique) of PJ converges
to the barycenter of P (provided P has a unique barycenter).
In a previous work [9], a similar result has been proved under a more restrictive assump-
tion on the µj’s: this result was proven in the case where the (µj)j≥1 are admissible
deformations in the sense that they can be written as the gradient of a convex functions.
Thus, this result enables to tackle the framework of the estimation of a template distri-
bution µ observed in a deformation setting. This setting has also been considered in [2].
More precisely, the distributions µj are warped from the template by a random center
deformation operator T with realizations Tj , such that

µj = Tj#µ = µ ◦ T−1
j .

Then the barycenter of the µj’s is a proper estimate for the unobserved template.
In [7] this problem is also tackled in the particular case where the (µj)j≥1 have compact
support, are absolutely continuous with respect to the Lebesgue measure and are indexed
on a compact set Θ of Rd. They state more precisely that given a probability measure
on Θ, one can induce a probability measure P on Wp(R

d), and if the (µj)j≥1 are chosen
randomly under P⊗∞, the (unique) barycenter of 1

J

∑

j=1 δµj
converges to the barycenter

of P, P-almost surely.

The second asymptotic point of view deals with the case where the measures µj are
unknown but approximated by a sequence of measures µn

j converging with respect to
the Wasserstein distance to measures µj when n grows to infinity. Compared to the
first framework, the number of measures here is fixed but only an estimation of the
measures is known. This covers the interesting case where we observe i.i.d sample Xi,j

with i = 1, . . . , n with distribution µj ∈ Wp(E). Here µn
j = 1

n

∑n
i=1 δXi,j

is the empirical
measure. Given positive weights (λi)1≤i≤J (or a sequence of weights converging to them)
the issue is whether the barycenter of the observed measure

∑J
j=1 λjδµn

j
converges to the

barycenter of the limit
∑J

j=1 λjδµj
in the case where this barycenter is unique. This

problem has been answered positively in [9], up to extracting a subsequence, since the
barycenter is not unique. Within this framework, set

Pn =

J
∑

j=1

λjδµn
j
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with positive weights λj and measures (µn
j )1≤j≤J,n≥1 ⊂ Wp(E)J converging to some limit

measures (µj)1≤j≤J ∈ Wp(E)J . Then Theorem 2 states that the barycenter (or any if not

unique) converges to the barycenter of
∑J

j=1 λjδµn
j
(if unique).

The existence of Wasserstein barycenters has several implication in statistics. In defor-
mation models, as pointed out in [2] and [9], the barycenter provides a good estimate for
the template to be estimated. In biology gene expressions suffer from a huge variability
and the first task preliminary to any analysis is a normalization procedure to extract a
mean feature. This procedure requires the existence of a Wasserstein barycenter as proved
in [10] or [11]. In information fusion, the goal is to find a mean measure that aggregates
the information provided by different input measures. Hence the Wasserstein barycenter
is a natural way to aggregate this information as pointed out in [8]. In multi-target track-
ing, the main issue is the estimation of both the number and locations of multiple moving
targets such as airplanes based on sensor measurements. In [4] the Wasserstein barycenter
provides an alternative to the MOSPA (Mean Optimal Sub-Pattern Alignment) distance.

4 Proofs

Theorem 6 (Barycenter and multi-marginal problem) Let (E, d) be a complete sep-
arable geodesic space, p ≥ 1 and J ∈ N

∗. Given (µi)1≤i≤J ∈ Pp(E)J and weights (λi)1≤i≤J ,
there exists a measure γ ∈ Γ(µ1, ..., µJ) minimizing

γ̂ 7→

∫

inf
x∈E

∑

1≤i≤J

λid(xi, x)
pdγ̂(x1, ..., xJ).

Moreover, if (E, d) admits a measurable barycenter application T : EJ → E then the
measure ν = T#γ is a barycenter of (µi)1≤i≤J and if this application is unique, any
barycenter ν is of the form ν = T#γ.

Proof of Theorem 6 This proof is adapted from proposition 4.2 of [1].
Existence of the solution of the multi-marginal problem is a direct consequence of

lemma 10.
Denote by γ a solution of the multi-marginal problem and set ν = T#γ. Then, by

definition of the Wasserstein distance,

W p
p (µi, ν) ≤

∫

dp(xi, T (x))dγ(x).

and consequently,

∑

1≤i≤J

λiW
p
p (µi, ν) ≤

∫

∑

1≤i≤J

λid
p(xi, T (x))dγ(x). (4)
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Also, for ν̂ ∈ Pp(E), denote πi ∈ Γ(µi, ν̂) the optimal transport plan between ν̂ and
µi. Using disintegration theorem, for any 1 ≤ i ≤ J , there exists a (conditional) measure
µ
y
i defined for ν̂−almost any y, which satisfies πi(x, y) = µ

y
i (x)⊗ ν̂(y). Set then,

θ(x, y) = µ
y
1(x1)⊗ ...⊗ µ

y
J(xJ)⊗ ν̂(y),

and denote γ̂ the law of the J first marginals of θ. Then, by construction of θ,

∑

1≤i≤J

λiW
p
p (µi, ν̂) =

∑

1≤i≤J

λi

∫

dp(xi, y)dθ(x, y)

=

∫

∑

1≤i≤J

λid
p(xi, y)dθ(x, y)

≥

∫

inf
z∈E

∑

1≤i≤J

λid
p(xi, z)dθ(x, y) (5)

=

∫

∑

1≤i≤J

λid
p(xi, T (x))dθ(x, y)

=

∫

∑

1≤i≤J

λid
p(xi, T (x))dγ̂(x)

≥

∫

∑

1≤i≤J

λid
p(xi, T (x))dγ(x)

≥
∑

1≤i≤J

λiW
p
p (µi, ν),

where the last inequality is an application of (4).
Since ν̂ is arbitrary, we have just shown that T#γ is a barycenter.
Also, taking ν̂ a barycenter, (5) becomes an equality, so that for θ−almost any (x, y) ∈

EJ × E,
∑

1≤i≤J

λid
p(xi, y) = inf

z∈E

∑

1≤i≤J

λid
p(xi, z) =

∑

1≤i≤J

λid
p(xi, T (x)),

and thus, if the barycenter application T is unique, T (x) = y, θ−almost surely and so
T#γ̂ = ν̂. Also, optimality of ν̂, and (4) show that γ̂ is a solution of the multi-marginal
problem.

Proof of Theorem 2 Denotes µj a barycenter of Pj . The proof is in three steps.

1. Proving the tightness of the sequence of the barycenters (µj)j≥1.

2. Proving that any limit µ of (µj)j≥1 (in the sense of the weak convergence of measures)
is a barycenter.
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3. Proving that there exists ν ∈ Wp(E) such that Wp(ν, µj) → Wp(ν, µ). The conclu-
sion of the proof will be derived from Lemma 12.

Let µ̃ and µ̃j random measures with distribution respectively P and Pj.

1. First prove that the moments of order p of the random measures considered as
random variables µj can be bounded from above by a constant M < ∞.

Let µ̃j be a random measure drawn according to a distribution Pj . Then, for any
x ∈ E

Wp(µj, δx) = Wp(δµj
, δδx)

≤ Wp(δµj
,Pj) +Wp(Pj, δδx)

=
(

EW p
p (µj, µ̃j)

)1/p
+
(

EW p
p (µ̃j, δx)

)1/p

≤ 2
(

EW p
p (µ̃j, δx)

)1/p
since µj is a minimizer of ν 7→ EW p

p (ν, µ̃j)

= 2Wp(Pj, δδx)

≤ 2 (Wp(Pj,P) +Wp(P, δδx)) ≤ M < ∞ since Wp(P,Pj) → 0.

Denote B(x, r) the ball of E centered in x with radius r. Then Markov’s inequality
entails that

µj(B(x, r)c) ≤
Eµj

dp(X, x)

rp
=

W p
p (µj, δx)

rp
≤

Mp

rp
.

The compactness of the balls of E entails that the sequence (µj)j≥1 is tight. So
it can be extracted a sequence which converges towards a distribution that will be
denoted µ. For ease of notations, the subsequence will be denoted as the initial
sequence.

2. Let ν ∈ Wp(E) and µ̃ a random measure with distribution P. We get

EW p
p (ν, µ̃) = W p

p (δν ,P)

= lim
j→∞

W p
p (δν ,Pj) since Wp(Pj,P) → 0

= lim
j→∞

EW p
p (ν, µ̃j)

≥ lim
j→∞

EW p
p (µj, µ̃j) since µj is a barycenter (6)

≥ E lim inf
j→∞

W p
p (µj, µ̃j) using Fatou’s Lemma for any coupling of the µ̃j’s

≥ EW p
p (µ, µ̃) since Wp is lower semi-continuous.

For the last inequality, we used that since Pj → P, Skorokhod’s representation
theorem enables to build µ̃j → µ̃ a.s.. This proves that µ is a barycenter of P.
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3. For ν = µ, the inequality (6) is in fact an equality which implies that

Wp(δµj
,Pj) → Wp(δµ,P).

Hence

Wp(δµj
,P)−Wp(δµ,P) ≤ Wp(δµj

,Pj) +Wp(Pj,P)−Wp(δµ,P) → 0.

This implies that

EW p
p (µ, µ̃) = Wp(δµ,P)

= lim
j→∞

Wp(δµj
,P)

= lim
j→∞

EW p
p (µj, µ̃)

≥ E lim inf
j→∞

W p
p (µj, µ̃) using Fatou’s Lemma

≥ EW p
p (µ, µ̃) using again semi-lower continuity of Wp for weak convergence.

So P-a.s, (since lim infWp(µj, µ̃) ≥ Wp(µ, µ̃))

lim infWp(µj, µ̃) = Wp(µ, µ̃).

So all along a subsequence and for a ν ∈ W(E), Wp(µj, ν) → Wp(µ, ν). So using
Lemma 12, we get that

Wp(µj , µ) → 0,

which concludes the proof.

5 Technical Lemmas

The following five results are well known. They are recalled here for the purpose of
clarity of the proofs.

Lemma 7 (Consistency in L1) Let (Xn)n≥1 be a sequence of real valued random vari-
ables such that

Xn → X a.s.

E|Xn| → E|X|.

Then, Xn → X in L1.
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Lemma 8 (Uniform integrability) A family of real valued random variables H is uni-
formly integrable (in the sense that supX∈H

∫

{|X|>a}
|X|dP → 0 as a → +∞) if and only

if the two following conditions hold
i) supX∈H E|X| < ∞ (bounded in L1)
ii) ∀ε > 0, ∃α > 0 such that ∀A ∈ A,

(

P(A) < α =⇒ supX∈H

∫

A
|X|dP < ε

)

(equicon-
tinuity).

Lemma 9 (Consistency in L1 and uniform integrability ) Let Xn → X in proba-
bility, then the sequence (Xn)n≥1 is uniformly integrable if and only if Xn → X in L1.

Lemma 10 (Tightness of fixed marginals set of measures) Let (E, d) be a Polish
space (i.e. a complete separable metric space). Let C1, ..., CJ be compacts sets of Wp(E).
Then, the set Γ(C1, ..., CJ) defined as the set of probability measures on EJ with marginals
respectively in C1, ..., CJ , is compact.

Proposition 11 (Approximation by finitely supported measures) For all P there
is a sequence of finitely supported distributions Pj such that

Wp(Pj,P) −→ 0.

Here is a lemma used for the proof of Theorem 2.

Lemma 12 Let (µn)n≥1 be a sequence of measures on a Polish space (E, d) which con-
verges weakly towards µ. If there exists a measure ν such that

Wp(µn, ν) → Wp(µ, ν),

then
Wp(µn, µ) → 0. (7)

Proof Note first that if ν = δx for a given x ∈ E, then (7) is true, due to the fact that
Wasserstein convergence is equivalent to the weak convergence plus convergence of the
order p moments (see [20]).

First using the Gluing Lemma (see for instance in [20] or [6]), build three sequences
(Xn)n≥1, (Yn)n≥1, (Zn)n≥1 with distribution respectively µn, ν and µ such that

(Xn, Yn) ∼ π1
n, (Yn, Zn) ∼ π2

n,

where π1
n and π2

n are the optimal transport maps between respectively µn and ν and
between ν and µ. Let Πn be the distribution of (Xn, Yn, Zn). Since the three marginals
weakly converge, the sequence (Πn)n≥1 is tight. Thus, we can extract a subsequence such
that

Πn → Π weakly,
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where Π has marginal distributions µ, ν and µ.
Then Skorokhod’s representation Theorem enables to construct a space (Ω,A,P) on

which there exist X, Y, Z with joint distribution Π and copies of (Xn, Yn, Zn) with law Πn

such that
d(Xn, X) + d(Yn, Y ) + d(Zn, Z) → 0 P-a.s..

If we show that (dp(Xn, X))n≥1 is uniformly integrable then using Lemma (9), we get

Edp(Xn, X) → 0,

which implies the result since Wp(µn, µ) ≤ Edp(Xn, X).
Uniform integrability remains to be proven. Note that Lemma (8) entails that it is

equivalent to prove the two following assumptions

i) supn≥1Ed
p(Xn, X) < ∞ (bounded in L1)

ii) ∀ε > 0, ∃α > 0 such that ∀A ∈ A,
(

P(A) < α =⇒
∫

A
dp(Xn, X)dP < ε

)

(equicon-
tinuity).

Assertion i) is a consequence of - since Edp(Xn, X) ≤ Edp(Xn, Zn),

Edp(Xn, X) ≤ Cp [Ed
p(Xn, Yn) + Edp(Yn, x) + Edp(x, Zn)]

= Cp

(

W p
p (µn, ν) +W p

p (ν, δx) +W p
p (δx, µ)

)

≤ M < ∞ since we assumed that W p
p (µn, ν) → W p

p (µ, ν).

To prove Assertion ii), set A ∈ A. We have that

Edp(Xn, X)1A ≤ Cp [Ed
p(Xn, Yn)1A + Edp(Yn, x)1A + Edp(x, Zn)1A] . (8)

Note that dp(Xn, Yn), dp(Yn, x) and dp(x, Zn) converge towards respectively dp(X, Y ),
dp(Y, x) and dp(x, Z) a.s. Their L1 norm converge also, for the first term by assumption
and since Yn and Zn are identically distributed, for all n ≥ 1. Hence using Lemma 7
they converge in L1 and thus are equicontinuous sequences. Hence this implies that for
all ε > 0, there exists α > 0 such that the three terms

Edp(Xn, Yn)1A + Edp(Yn, x)1A + Edp(x, Zn)1A < 3ε

for any A such that P(A) < α.
Hence inequality (8) implies that (dp(Xn, X))n≥1 is equicontinuous. Since it is also

bounded in L1, this sequence is uniformly integrable, which proves the result.
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