
HAL Id: hal-01163259
https://hal.science/hal-01163259

Preprint submitted on 12 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Irreducible Motion Planning by Exploiting Linear
Linkage Structures

Andreas Orthey, Olivier Roussel, Olivier Stasse, Michel Taïx

To cite this version:
Andreas Orthey, Olivier Roussel, Olivier Stasse, Michel Taïx. Irreducible Motion Planning by Ex-
ploiting Linear Linkage Structures. 2015. �hal-01163259�

https://hal.science/hal-01163259
https://hal.archives-ouvertes.fr


TRANSACTIONS ON ROBOTICS, VOL. 0, NO. 0, DATE 0 1

Irreducible Motion Planning by Exploiting Linear
Linkage Structures

Andreas Orthey1, Olivier Roussel1, Olivier Stasse1, Michel Taı̈x1

Abstract—Irreducibility is a theoretical framework for
completeness-preserving dimensionality reduction in motion
planning. While classical motion planning searches the full
space of continuous trajectories, irreducible motion planning
searches the space of minimal swept volume trajectories, called
the irreducible trajectory space. We prove that planning in
the irreducible trajectory space preserves completeness. We
then apply this theoretical result to linear linkage structures,
which can be found in several mechanical systems, among them
humanoid robots. Our main result establishes that we can reduce
the dimensionality of linear linkages in the case where the
first link moves on curvature-constrained curves. We further
develop a curvature projection method, which can be shown to be
curvature-complete, a weaker version of general completeness. As
an application, we consider the simplification of humanoid motion
planning by considering the arms and legs as linear linkages.

Index Terms—Motion Planning, Irreducible Trajectories, Lin-
ear Linkages, Swept Volume, Humanoid Robotics

I. INTRODUCTION

Motion planning is concerned with finding arbitrary motions
for arbitrary mechanical systems in arbitrary environments.
One important special case is the problem of finding a feasible
motion for a humanoid robot in arbitrary environments. An
understanding of this case would allow humanoid robots to
autonomously accomplish a variety of tasks ranging from
elderly care over nuclear waste removal to space exploration.

In this paper, we will investigate a specific property of
mechanical systems which we call irreducibility. Irreducibility
classifies configuration space trajectories into two categories:
reducible and irreducible trajectories. An irreducible trajectory
is a trajectory with a minimal swept volume in the environ-
ment. We will proof here the important fact that planning
with only irreducible trajectories preserves completeness. It
follows that motion planning can be conducted entirely inside
the irreducible trajectory space.

However, it is not obvious how one would analytically
define this irreducible trajectory space. Here, we therefore
concentrate on a specific mechanical structure, the linear
linkage, and investigate how irreducibility can be defined on
it. We note that linear linkages are prevalent in a variety of
mechanical systems, which are all consequently susceptible to
our reduction concept. Four examples are shown in Fig. 1, a
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Fig. 1: Examples of free linear linkages in mechanical systems. On the left
are different mechanical systems, and on the right is the abstracted idealized
linkage structure. Top: a snake has one linear linkage with the head as a root
link. Top Middle: a train has one linkage with the locomotive as the root
link. Bottom Middle: an octopus has eight arms, each is one linear linkage
with the head as a common root link. Bottom: humanoid robot HRP-2 has
two linear linkages for its arms (with the chest as root link), and two linear
linkages for its legs (with the hip as root link).
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snake and a train with each one linear linkage, an octopus
with eight linear linkages and a humanoid robot with four
linear linkages.

This work is based on previous published results in [1]. In
particular, Sec. III and parts of the experimental results have
been already published. Our additional contributions are
• Introduced the irreducibility property for linear linkages
• Introduced the concept of curvature completeness
• Proved that linear linkages are curvature complete for a

specific functional space
• Developed a linear-time irreducibility projection algo-

rithm for linear linkages in 3d.
• Conducted simulated experiments for the humanoid robot

HRP-2
In terms of prerequisites, we will assume a rudimentary

knowledge of differential geometry in our proofs, as can be
found for example in [2].

After summarizing related work in Sec. II, we provide
definitions and proofs of the main theorems of irreducible
motion planning in Sec. III. Our main result is summarized
in Corollary 2, which provides a proof of completeness for
irreducible trajectories.

After those preliminaries, we concentrate on linear linkage
structures in Sec. IV. We provide a definition of linear linkages
and we proof conditions under which we can ignore certain
parts of the linkage. This brings us to the concept of a
curvature complete algorithm, for which we design in Sec.
V a linear-time algorithm in the number of links. In Sec. VI,
we finally conduct a set of experiments for a swimming snake
robot in simulation and for the real humanoid robot platform
HRP-2.

II. RELATED WORK

Motion planning for humanoid robots is a well studied
field [3], which has demonstrated its potential in the DARPA
Robotics Challenge (DRC) in 2015. Humanoid robots are able
to solve difficult tasks, like manipulation planning in kitchen
environments [4], contact planning in constrained environ-
ments [5], or ladder climbing tasks [6]. Techniques for solving
those problems range from optimal control planning [7] over
motion database approaches [8] to fast contact planning by
identifying convex surfaces [9].

The mechanism and locomotion system for snake robots
has long been studied [10]. However, path planning for snake
robots has been investigated in relatively few papers. Some of
them are classical approaches using numerical potential field
[11], genetic algorithms [12] or Generalized Voronoi Graph
[13]. The idea of a simplified model is studied by [14], who
define a frame that is consistent with the overall shape of the
robot in all configurations. In [15] the authors plan a trajectory
only for a portion of the snake robot.

Ultimately, all those approaches try to exploit structure to
reduce the computational complexity of the problem. In this
paper, we concentrate on dimensionality reduction techniques,
which have been extensively studied in the motion planning
literature. Dalibard et al. [16] have used a principal component
analysis (PCA) to bias random sampling. In the context

of manipulation motion planning, the powerful eigengrasps
[17] [18] have been introduced to identify a low-dimensional
representation of grasping movements. Reduction techniques
have been especially used in cable motion planning. Mahoney
et al. [19] perform a PCA for a high-dimensional cable robot
by sampling deformations. Kabul et al. [20] plan the motion of
a cable by first planning a motion for the head. Those works
showed remarkable results, and demonstrate the effectiveness
of reduction techniques. Our work is complementary, in that
we are undertaking a formal treatment of conditions under
which dimensionality reduction can be performed.

In particular, we show in our work a connection between
the curvature and the dimensionality of the problem. Curvature
constrained curves have been investigated in the framework
of computational geometry [2]. For example, Bereg et al. [21]
introduce the term reducibility in the context of sweeping of
disks along a planar curve. Our work generalizes this concept
by giving completeness guarantees of curves which are non-
reducible or as we call it irreducible.

Ahn et al. [22] developed algorithms to compute the reach-
able regions for curvature constraint motions inside convex
polygons. Our work builds upon their theoretical contribution
to proof when a system is irreducible.

Guha et al. [23] discuss curvature and torsion constraint on
space curves in the context of data point approximation. This
work hints at a generalization of our ideas in Sec. IV-F, which
we left as a conjecture.

Finally, we use the result described in [24], who showed
that a dynamical humanoid robot is small-space controllable,
i.e. we can minimize the oscillations of the upper body — and
thereby the swept volume — by minimizing its step-size and
its step-period. Taking this towards the extreme, the Center-
Of-Mass trajectory can be planned as if the robot was sliding
on the floor. This sliding motion can be seen as an irreducible
motion and thereby provides a first necessary condition for
feasibility.

III. IRREDUCIBLE TRAJECTORIES

We restate relevant motion planning definitions, following
the classical formulation by [25, Chapter 4]

Definition 1 (Motion Planning Problem). Let A =
{R, C, qI , qG,E} be a motion planning problem, with R the
robotic system, C the configuration space, qI the initial con-
figuration, qG the goal configuration, and E the environment.

Definition 2 (Configuration Space Trajectory). Let A be given.
Then we denote by F(qI , qG) = C1([0, 1], C) the set of contin-
uously differentiable functions from [0, 1] to the configuration
space C, with the property that if τ ∈ F(qI , qG) ⇒ τ(0) =
qI , τ(1) = qG.

Definition 3 (Swept Volume). The workspace volume swept
by the trajectory τ ∈ F(qI , qG) will be denoted by SV(τ).

Definition 4 (Feasible Trajectory). A trajectory τ ∈ F(qI , qG)
is called feasible in an environment E, if SV(τ) ∩E = ∅.

Definition 5 (Feasible Configuration Space Trajectory). Let
S ⊂ F(qI , qG) be a set of Configuration space trajectories.

http://www.theroboticschallenge.org/
http://www.theroboticschallenge.org/
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Fig. 2: Explanatory example of irreducible trajectories for a 2-link, 2-dof
robot, which can move along the y-axis, and which has one rotational joint
between its two links, such that its configuration space is C = R× [−π

2
, π
2
].

Left. Three configuration space trajectories τ1, τ2, τ3 with τ1(0) = τ2(0) =
τ3(0) = qI , τ1(1) = τ2(1) = τ3(1) = qG. Right. The workspace volume
of the starting configurations qI , qG, and the swept volume of the three tra-
jectories, whereby we have that SV(τ1) ⊂ SV(τ2) and SV(τ1) ⊂ SV(τ3),
i.e. τ2 and τ3 are reducible by τ1, and τ1 is in fact irreducible. Adapted from
[1].

Let A be a specific motion planning problem. If there exist
τ ∈ S such that τ solves A, then S is said to be feasible w.r.t.
A.

We denote by ⊂ the proper subset. Let A =
{R, C, qI , qG,E} be given, and let F = F(qI , qG).

Definition 6. A trajectory τ ′ ∈ F is called reducible, if there
exist τ ∈ F such that SV(τ) ⊂ SV(τ ′). Otherwise τ ′ is called
irreducible.

Fig. 2 provides a visualization of the irreducible definition
for trajectories. We show three configuration space trajectories
τ1, τ2, τ3, and its swept volumes in workspace. Applying the
definition, we have that τ2 and τ3 are reducible by τ1. We will
now show why irreducibility is important for motion planning.

Theorem 1. Let τ, τ ′ ∈ F be such that SV(τ) ⊂ SV(τ ′), i.e.
τ ′ is reduced by τ .

If τ is infeasible ⇒ τ ′ is infeasible
If τ ′ is feasible ⇒ τ is feasible

Proof in Appendix.

Definition 7 (Irreducible Trajectories). Let the set of all
irreducible configuration space trajectories be defined as

I = {τ ∈ F|τ is irreducible} (1)

Lemma 1. Let τ ∈ F \ I. Then there exist τ ′ ∈ I, with
SV(τ ′) ⊂ SV(τ).

Proof in Appendix.

Theorem 2. If I is infeasible then F is infeasible

Proof in Appendix.

Fig. 3: A free linear linkage with L0 being the root link, and L1, L2, · · · are
called the sublinks. The black arrow gives the movement direction of L0. In
this paper, we will give conditions under which only the root link L0 has to
be planned for, while the sublinks can be ignored while preserving a curvature
completeness property.

Corollary 1. Motion planning is complete in I

Proof in Appendix.
Going back to the example in Fig. 2, we can now make

the statement, that trajectories τ2 and τ3 can be ignored for
motion planning, while still being complete. This means we
now have a formed a geometric argument, which allows us to
reduce the dimensionality of a motion planning problem while
preserving completeness.

IV. IRREDUCIBILITY FOR LINEAR LINKAGES

We will now use the theoretical concept of an irreducible
trajectory to study linear linkages. A linear linkage is a
mechanical system consisting of N + 1 links, which are
connected in a chain, as depicted in Fig. 3. We will call the
first link in the chain the root link, denoted by L0, and the
other N links as sublinks. If the root link is moveable we call
the linear linkage free, otherwise non-free. We will exclusively
work with free linear linkages with a finite number of sublinks,
if not otherwise stated. We will study in this section conditions
for movements of L0, such that we can ignore the sublinks.

This whole section is dedicated to the task of finding
conditions on the movement of the root link L0, such that
all sublinks can be ignored for motion planning. Our main
idea is that if the root link moves on curvature-constrained
curves in R2, we can always reduce the sublinks, and thereby
preserving a weak form of completeness. We will give an
informal treatment of this idea, then proceed to proof the
case of curvature-constraint motion planning in R2 and finally
discuss the R3 case, which we leave as a conjecture.

A. Swept Volume of a Train

Let us observe that a train is a linear linkage with the
locomotive as a root link, and its N railroad cars as sublinks. If
the train moves between two stations on given railroad tracks,
then we can state the following: the swept volume of the train
with N railroad cars is equal to the swept volume of the train
with zero railroad cars. The reason is that we constrain the
movement of the locomotive to be bounded by a minimal
curve radius. Given a minimal curve radius, we are allowed to
construct arbitrary railroad tracks for a train, to move from one
city to the next. More abstractly, we can translate this to: we
are allowed to construct space curves f from a functional space
F , under the constraint that every function f has a bounded
curvature.

To come back from our train example to arbitrary mechan-
ical systems, let us call the locomotive a root link, and each
railroad car a sublink. Intuitively, if the root link is big enough,
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Fig. 4: N = 2 linear linkage system

i.e. the locomotive is bigger than the railroad cars, and if
the root link moves on space curves bounded by a certain
curvature, then we can state that there exists a configuration
of the sublinks, such that the swept volume of the sublinks
is a subset of the swept volume of the root link. The big
implication here is: if we find a physically feasible railroad
track for a locomotive, then we can add a finite number of
railroad cars, while still being feasible. A train in this sense is
redundant, i.e. there are links which can be ignored for motion
planning. Our goal now is to formalize those ideas rigorously.
We will start by defining a functional space for the root link
L0, then proof that there always exist configurations for the
sublinks L1, · · · , LN , such that they are inside of the swept
volume of L0.

B. Curvature Functional Space

Let us consider a N = 1 linear linkage with links L0, L1

in the plane R2, connected by a rotational joint at the center
of L0, with distance l0 to L1. A N = 2 linear linkage is vi-
sualized in Fig. 4. The rotational joint has an allowed rotation
of θ ∈ [−θL, θL]. Let us denote by s = (s0, s1) ∈ R2 the
position of L0, and by s′ its orientation. Let us define a cone
KθL(s) = {(x0, x1) ∈ R2|‖x1 − s1‖2 ≤ (x0 − s0) tan θL}
with apex s, orientation s′, and aperture θL. Then given L0 at
(s, s′), we can define the set ∂P0 of all possible positions of
L1 as a circle intersecting KθL(s) and the corresponding disk
segment P0 as a disk intersecting KθL(s).

P0 = {x ∈ R2|‖x− s‖ ≤ l0} ∩ KθL(s)

∂P0 = {x ∈ R2|‖x− s‖ = l0} ∩ KθL(s)
(2)

whereby P0 and ∂P0 are visualized in Fig. 5.
We will now construct a functional space Fκ0 by hand, and

then prove that all functions from Fκ0
starting at (s, s′) will

necessarily have to leave P0 by crossing ∂P0.
Let us define the functional space

Fκ0
= C2([0, 1],R2) (3)

with given τ(0) = s, τ ′(0) = s′, τ(1) /∈ P0 and for all
τ ∈ Fκ0

we define a maximum curvature by

κ0 =
2 sin(θL)

l0
(4)

P0

∂P0

KθL(s)s s′

s′′

(0, R0)

x0

x1

R0

xM

s

P0 ∩ LD(s) \BR(0, R)

θL

Fig. 5: ∂P0 is the space of all possible positions of link L1, constrained
by link L0. We establish in this section that for a specifically constructed
functional space Fκ0 any function which starts at s and has first derivative
equal to s′ will leave the area P by crossing ∂P0.

The curvature κ0 has been constructed in the following way:
first, let us observe that for any point τ(t) on τ the curvature
is defined by κ0 = 1

R0
whereby R0 is the radius of the

osculating circle at τ(t) [2]. We will now consider trajectories
parametrized by arc-length, such that τ ′(t) · τ ′′(t) = 0. The
center of the osculating circle has to lie therefore in the
direction of vector τ ′′(t). We are searching for the minimal
ball, which ensures that all functions will necessarily leave P0

through ∂P0. This ball touches the most extreme point of ∂P0,
which we call xM :

xM = (l0 cos(θL), l0 sin(θL))T (5)

See also Fig. 5 for clarification. The ball can be found by
solving the equation

‖xM − (0, R0)T ‖2 = R2
0 (6)

The solution is given by

R0 =
l0

2 sin(θL)
(7)

Please note that l0 ≤ 2R0, which will be important in the
upcoming proof.

C. Reducibility theorems of Fκ0

We are now going to proof some elementary properties
of this functional space Fκ0

, which will ultimately show
that under certain conditions, we can ignore the sublinks
for motion planning. The reader is encouraged to visualize
the theorems by thinking about the train example and the
maximum curvature under which the swept volume of the cars
will be inside the swept volume of the locomotive. Our first
theorem builds upon the pocket lemma introduced by [26]. It
also uses a slightly modified version of a result by [22, Lemma
6]

Theorem 3. For all τ ∈ Fκ0 there exists t0 ∈ [0, 1] such that
τ(t0) ∈ ∂P0 and τ(t) ∈ P0 for all t ≤ t0.

Explanation: every trajectory from our constructed func-
tional space Fκ0

will leave the region P0 by crossing ∂P0.
Visualized in Fig. 6.
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Fig. 6: Cone spanned by the length l0, the limit angle θL and the position
of s. Every function from Fκ0 will necessarily leave P0 by crossing ∂P0 at
τ(t0) to reach a point τ(1) outside P0.

Proof: Let us decompose the problem into two parts.
First, we consider the left side of s, which we define as
LD(s) = {(x0, x1) ∈ R2|x0 ≥ 0, x1 ≥ 0}. Our proof will
first establish that all circles with center (0, R) and radius
R ≥ R0 will intersect ∂P0. Second, we use a lemma from [22]
to establish that all trajectories from Fκ0 will necessarily leave
P0 by crossing ∂P0, and that there is no trajectory crossing
the ball BR(0, R) for given curvature κ = 1

R .
• We will proof that every circle with center (0, R) and

radius R ≥ R0 will intersect ∂P0. By construction we
have that the circle R0 intersects ∂P0 at the point spec-
ified by angle θL. We define the angle depending on R

by θ(R) = asin

(
l0
2R

)
. We want to establish that indeed

θL ≥ θ(R) ≥ 0, i.e. a ball with radius R ≥ R0 will
always intersect ∂P0 at a point below xM and above 0.
Since asin is monotone increasing on [0, 1], l0, R ≥ 0 and
l0 ≤ 2R, we have that θ(R) ≥ 0. To establish θL ≥ θ(R)

we note that given asin

(
l0

2R0

)
≥ asin

(
l0
2R

)
we can

write
l0

2R0
≥ l0

2R
, since asin is monotone increasing. It

follows that R ≥ R0 as required.
• Let us now construct a polygonal chain for one R ≥ R0

in the following way: we start on the boundary of P0 at
point s and follow direction s′ until we reach ∂P0. At
∂P0 we move upwards on ∂P0 until we meet the ball
with radius R, which intersects ∂P0. This construct is a
polygonal chain and specifically called a forward chain
by [22]. This chain follows the boundary of P0∩LD(s).
Ergo, we can apply Lemma 6 of [22], which states that if
such a forward chain intersects the circle of unit radius,
then the reachable region of all trajectories in Fκ0 is given
by P0∩LD(s)\BR(0, R) (the unit radius can be obtained
by scaling the space). See Fig. 5 for visualization. One
interpretation of the pocket lemma from [26] let us now
state the following: no trajectory can escape the region
P0 ∩LD(s) \BR(0, R) except through ∂P0 or the lower
boundary. Since the same arguments apply for the lower
part, i.e. with RD(s) = {x ∈ R2|x0 ≥ 0, x1 ≤ 0} instead
of LD(s), we can reason that any function from Fκ0

starting in s can only escape the region P0 \ (BR(0, R)∪
BR(0,−R)) ⊂ P0 through the arc segment ∂P0. Since
τ(1) /∈ P0, the result follows.

This assures that for a moving particle, it will always cross

Fig. 7: A succession of cones, spanning the space between s and ∂Cs, which
necessarily has to be traversed by any function from FκN .

the arc segment ∂P0. Now we consider the sweeping of disks
Dδ = {x ∈ R2|‖x‖ ≤ δ} with radius δ along a trajectory
τ ∈ Fκ0

. Let us define L0 = Dδ0(s0), L1 = Dδ1(s1), and
s1 = (l0 cos(θ), l0 sin(θ)).

Theorem 4. Let L0 = Dδ0(s). Then there exists θ ∈ [−θL, θL]
such that for all τ ∈ Fκ0

there exists t0 ∈ [0, 1] such that
L1 ⊂ (τ(t0)⊕ L0) if δ1 ≤ δ0.

Proof:
Due to Theorem 3 we have that a point starting from s0

following a trajectory from τ ∈ Fκ0
will necessarily cross

∂P0. Let τ(t) ∈ ∂P0 be the crossing point. Let us choose
s1 = τ(t) as the position of link L1. θ can be recovered

by θ = acos

(
(s1 − s0)T s′

‖s′‖l0

)
. Now at s1 we have that the

volume of (τ(s1)⊕ L0) is smaller than (τ(s1)⊕ L1) exactly
when δ1 ≤ δ0.

D. Generalization to N sublinks

Let us define a linear linkage in canonical form in the
following way: Let L0, · · · , LN ∈ D2 be disk links of radius
δ0, · · · , δN connected by lines of equal length l0, · · · , lN−1
with l0 = · · · = lN−1, δi > 0, li > δi+δi+1, δi ≤ δ0 for all i ∈
[0, N ] and joints limits {{−θL0 , θL0 }, · · · , {−θLN−1, θLN−1}}
with θL0 = · · · = θLN−1. We will refer to this canonical linear
linkage structure as RNL .

Let us define by PN the interior of the space spanned by
all possible sublink configurations, as depicted in Fig. 7. Let
us define analog a functional space FκN as

FκN = C1([0, 1],R2) (8)

with τ(0) = s, τ ′(0) = s′, τ(1) /∈ PN , and for all τ ∈ FκN
we have a maximum curvature given by

κN =
2 sin(θL)

Nl0
, N > 1 (9)

E. Irreducibility of Linear Linkage

For N = 1, we proved that there exist θ1 such that L1 ∈ τ .
For N > 1, the tangent t of τ might differ from the normal
n of the line (L0L1). We denote the angle between t and n
as θDi . See Fig. 8 for clarification. To ensure that we can
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always find a feasible configuration, such that all links are on
τ , we therefore need to ensure that θi = θDi + θt ≤ θL for
all i ∈ [0, N ].

Fig. 8: Linear Linkage along a curve τ . The angle between the tangent to
the osculating circle t and the normal n of the line (L0L1) is given by θDi .
The angle θt denotes the maximum angle given a maximal constant curvature
κN .

For our proofs, we assume two premises to be true.
P1 If l0 = li for all i ∈ [1, N ], then θD1

= θDi for all
i ∈ [1, N ]

P2 Maximum angle between t and n can be found for
τ = τκN with τκN being the constant maximum curvature
trajectory with curvature κN everywhere.

We now want to determine the angles θt,θD1 depending on
the radius R0 of the osculating circle.

By geometrical arguments of circle-circle intersection 1, we
can write

n(R0, l0) =

(
l0

2R0

√
4R2

0 − l20
l20

2R0

)

t(R0, l0) =

(
−l20
2R0

+R0
l0

2R0

√
4R2

0 − l20

) (10)

θt = arctan

(
l0√

4R2
0 − l20

)

θD1 = arccos

(
n · t
‖n‖‖t‖

)
= arccos

(
4R2

0 − l20
4R2

0

) (11)

We now choose a certain R0, and prove that θt(R0) +
θD1

(R0) ≤ θL. Let

R0 =
Nl0

2 sin θL
(12)

such that FκN is defined by κN = 1
R0

.

Lemma 2. Given premises P1, P2 and a trajectory τ ∈ FκN ,
then for t ∈ [0, 1] and δ0 = 0, δi = 0, there exist joint
configurations θ1, · · · , θN for the linear linkageRNL , such that
every Li is located on τ . Furthermore, the maximum distance
between τ and the lines (L0L1) · · · (LN−1LN ) is given by

dκN = R0 −
√
R2

0 −
l20
4

1Circle-Circle Intersection – Wolfram Mathworld

Proof: θt,θD1
evaluates to

θt = arctan

(
sin θL√

N2 − sin2 θL

)

θD1 = arccos

(
N2 − sin2 θL

N2

) (13)

for N > 1.
Due to premise P2, we know that θt + θD1

(R0) ≥ θt +
θD1(R) for R ≥ R0, and so we can concentrate on the
maximum curvature case R0. Due to premise P1, we now
only have to prove that θt + θD1

≤ θL. By induction on N ,
we get for N = 2

θt(2) = arctan

(
sin θL√

4− sin2 θL

)
≤ arctan

(
sin θL

2

)
≤ sin θL

2
≤ θL

2

θD1
(2) = arccos

(
1− sin2 θL

4

)
= 2 arctan

(
2 sin θL

8− sin2 θL

)
≤ 4 sin θL

8− sin2 θL
≤ 4 sin θL

8
=

sin θL

2
≤ θL

2
(14)

whereby we relied on the fact that for x > 0 we have
arctan(x) ≤ x since arctan′(x) = 1

1+x2 ≤ 1, for x > 0
we have sin(x) ≤ x since sin′(x) = cos(x) ≤ 1, and that

arccos(x) = 2 arctan

(√
1− x2
1 + x

)
.

We now observe that

θt(N) = arctan

(
sin θL√

N2 − sin2 θL

)
≥ arctan

(
sin θL

N

)

≥ arctan

 sin θL√
(N + 1)2 − sin2 θL

 = θt(N + 1)

θD1(N) = arccos

(
N2 − sin2 θL

N2

)
≥ arccos

(
1− sin2 θL

N2

)
≥ arccos

(
1− sin2 θL

(N + 1)2

)
= θD1(N + 1)

(15)
which shows that θt(N)+θD1

(N) ≥ θt(N+1)+θD1
(N+1).

Therefore we have θL ≥ θt(2) + θD1
(2) ≥ · · · ≥ θt(N) +

θD1
(N) for N > 1 as required.

Now given the constant maximum curvature we have that
the points L0, (0, R0) and L1 are creating an isosceles triangle.
See Fig. 8 for visualization. The maximum distance of the line
(L0L1) and the circle can be obtained by the height of the

triangle, such that dκN = R0 −
√
R2

0 −
l20
4

.

Theorem 5. Let τ = τI ◦ τκN ◦ τE with τ ∈ FκN and τI , τG
be the linear extensions of τ . If the root link L0 moves along

τ , then for δi ≤ δ0 and
l20

2R0
≤ δ0, we have that there exists

sublink configurations θ1, · · · , θN such that the volume of the
linear linkage RNL is a subset of τ ⊕ L0

http://mathworld.wolfram.com/Circle-CircleIntersection.html
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Proof: By Lemma 2, the maximum distance of the linear
linkage to τ is given by dκN . If δ0 ≥ dκN , then any point on
the linear linkage curve will be inside τ ⊕ L0. By Theorem
2 we can choose θ1, · · · , θN , such that the center of every
Li is located on τ . Then there exists an instance t such that
Li = τ(t). Li is a subset of τ ⊕ L0 exactly if δ0 ≥ δi.

We have showed that if the root link of a linear linkage
moves on a κN -curvature constrained trajectory, then there
exists a sublink configuration at every instance, such that all
sublinks are inside of the swept volume of the root link.

F. 3-Dimensional Conjecture

In 3 dimensions, a space curve is defined by its curvature
and torsion [2]. We will conjecture that our results apply also
to 3 dimensions. Let us define the following functional space

Fκ,T = C2([0, 1],R3) (16)

with τ ∈ Fκ,T ⇒ τ(0) = s, τ ′(0) = s′, τ ′′(0) = s′′ and
that τ(1) is outside a cone P0 spanned by s, and the length of
the link l0, as depicted in Fig. 6. The curvature κ and torsion
T of τ is constrained to be

κ =
2 sin(θL)

l0
, T ∈ R (17)

Conjecture 1. Theorem 5 holds for Fκ,T in 3-dimensions.

We will use this conjecture in our planning algorithm, to
verify it experimentally and let the proof for future work.

Finally, we want to point out that completeness is not
maintained for Fκ,T
Theorem 6. The motion planning problem A for RNL is not
complete in Fκ,T

Proof: Since we constraint the functional space to not
allow functions with curvatures > κ, we can trivially construct
a counterexample in the following way: let us consider a disk
D2 = {x ∈ R2|‖x‖ ≤ δ} with radius δ, starting at a point
s and having direction s′. We construct an environment E
by sweeping the disk along a constant κ′ curvature curve φ,
connecting (s, s′) to (s, s′), whereby κ′ > κ. Let us now look
at the motion planning problem of planning for D2 from (s, s′)
to a point (p, p′), with (p, p′) ∈ E. Visualized in Fig. 9. Since
the environment is not intersecting the boundary of the cone
P0, which is constructed by s, s′, κ′, it follows from Theorem
4 that no function can reach (p, p′).

Fig. 9: Visualization of a simple completeness counterexample, in which an
environment E has to be solved, which follows a κ′ > κ curvature curve.

We established so far that if we can find a feasible trajectory
for link L0 under a curvature constraint, then we can find a
trajectory for the whole linear linkage, which is feasible. We
showed that this is not complete, however we can define a
weaker version of completeness, which we call κ-curvature
completeness

Definition 8. A motion planning algorithm is κ-curvature
complete if it finds a trajectory in the functional space
Fκ0
⊂ F , if one exists, or correctly reports that no such exist.

We observe that this is a weaker version, such that com-
pleteness would imply κ-curvature completeness, but not the
other way round. This is depicted schematically in Fig. 10.

The next section will be devoted to develop a κ-curvature
complete algorithm.

Fig. 10: The κ-curvature completeness property and its relation to probabilis-
tic completeness and completeness.

V. IRREDUCIBLE CURVATURE COMPLETE ALGORITHM

In Theorem 5, we established that a linear linkage RNL with
links L0 → · · · → LN has a feasible solution if we can find a
feasible solution for L0 which respects a certain curvature κ.
Here, we describe an algorithm to compute this solution. We
will use spherical joints for the sublinks, such that we have
joint configurations θ1, · · · , θN , γ1, · · · , γN .

Now, given a trajectory τ ∈ FκN for L0, we compute
feasible joint configurations for the sublinks L1, · · · , LN . A
rotational joint can be seen as a special case with γ1 · · · , γN =
0.

Let A = {RNL , C, qI , qG,E} be a motion planning problem
for RNL . Let τ ∈ FκN be the trajectory of the root link L0.
If τ ⊕ L0 is a feasible solution, then by Theorem 5 we are
guaranteed to find a feasible configuration such that τ ⊕ (L0∪
· · · ∪LN ) is a feasible solution. We will describe now how to
find the configurations given a trajectory τ ∈ FκN .

For all t0 ∈ [0, 1] we compute θ1 by the following proce-
dure: start at τ(t0) and move along τ in backward direction.
See Fig. 12. Since we are guaranteed by Theorem 3 that we
will meet ∂P0, we can denote the intersection point as tn < t0
with ‖τ(tn)− τ(t0)‖ = l0. Then we have

θ = acos

(
−τ ′(t0)T (τ(tn)− τ(t0))

‖τ ′(t0)‖‖τ(tn)− τ(t0)‖

)
(18)

from tq we recursively compute all θ values.
As a technical detail, we note that this requires that even

at qI , we can follow the trajectory backwards. Therefore, we
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need to extend the trajectory by moving along the sublinks at
qI to obtain an extended trajectory τ = τI ◦ τ .

The resulting algorithm is described in Fig. 11. It takes the
input trajectory τ and produces a resulting configuration vector
at each instance t ∈ [0, 1] along τ , such that the resulting swept
volume of all links is inside the swept volume of the root link,
i.e. (τ ⊕ L0 ∪ · · · ∪ LN ) ⊆ (τ ⊕ L0). The complexity scales
with O(N). The algorithm has been implemented in python
and is available as a standalone module

https://github.com/orthez/irreducible-curvature-projection/

Algorithm 1: Irreducible Curvature Projection
Data: t0, τ, τ ′, τ ′′, δ0:N , l1:N ,∆t
Result: θ1:N , γ1:N
e1 ← τ ′(t0);
e2 ← τ ′′(t0);
e3 ← τ ′(t0)× τ ′′(t0);
tcur ← t0;

R←

e1 · ex e2 · ex e3 · ex
e1 · ey e2 · ey e3 · ey
e1 · ez e2 · ez e3 · ez

;

for i← 1 to N do
tn ← t0;
while ‖τ(tn)− τ(tcur)‖ ≤ li do

tn ← tn −∆t

τn ← τ(tn);
pI ← τ(tn)− τ(tcur);
pW ← RT pI ;
xL ← (−1, 0, 0)T ;
pxy ← pW − (pTWez)ez;
pzx ← pW − (pTWey)ey;
θi ← acos(

pxyxL
‖pxy‖‖xL‖ );

γi ← acos( pzxxL
‖pzx‖‖xL‖ );

if pTWez < 0 then
γi ← −γi;

if pTWey > 0 then
θi ← −θi;

R← R ·RY (γi) ·RZ(θi);
e1 ← Rex;
e2 ← Rey;
e3 ← Rez;
tcur ← tn;

Fig. 11: Irreducible Curvature Projection Algorithm. ex, ey , ez represent the
x, y, z basis vectors, respectively.

Fig. 12: Given a trajectory τ ∈ FκN , we can analytically compute the joint
configurations, such that sublinks of the linear linkage are reduced, i.e. they
are inside of the swept volume of τ ⊕ L0..

A. Irreducibility Assurance Controller

The analytical computation of the irreducible configuration
at instance t enables us to design a control algorithm, which
pushes the robot body towards an irreducible trajectory.

Let us denote by φ : F × [0, 1] → RN × RN the compu-
tation of joint angles for our spherical joint from the current
trajectory τ ∈ F of body L0 at instance t0 ∈ [0, 1]. The output
are joint angles θ, γ specifying the position of the spherical
joints at instance t0. Let us denote by ϕ : [0, 1]→ RN × RN
the measured joint angles at instance t0 ∈ [0, 1].

A proportional gain controller can be constructed as u(t) =
Kpe(t) with e(t) = ‖φ(t) − ϕ(t)‖. This gives a hint at the
possibilities of this geometrical inspired approach. In general,
using the controller will minimize the swept volume, which
could be useful in different areas. We note that minimal swept
volume loosely relates to minimal air resistance. For example,
an octopus robot could use this to let the arms trail behind its
body while moving, such that water resistance is minimized. A
road train — a tractor unit pulling two or more trailers — could
minimize its air resistance to minimize gas consumption.

VI. EXPERIMENTS

We performed two experiments to verify our theoretical
results. First, a swimming snake in a 2d and a 3d environment.
Planning is conducted for the head of the snake under a
curvature constraint. After finding a feasible head trajectory
we can use the Irreducible Curvature Projection Algorithm
to project the remaining sublinks into the swept volume of
the head. Second, we planned a constrained motion for the
humanoid robot HRP-2, where we plan a motion for a reduced
mechanical model with 7 dimensions. After planning a motion,
we then use our projection algorithm to find the position of
the remaining links.

A. Swimming Snake

For the snake simulation, we have choosen a bounded
curvature, and estimated the number of links, such that we
obtain the longest possible irreducible snake. Our values were
κ = 1m−1, δ0 = 0.23m, δi = 0.138m, l0 = 0.33m and
θL = π

2 giving rise to

N =

⌊
2 sin(θL)

κl0

⌋
= 6 (19)

Planning with our curvature-constrained functional space is
equivalent to planning a path for the non-holonomic snake’s
head subject to differential constraints describing forward non-
slipping motions and for which we will assume constant speed.
Note that this is equivalent to the model of Dubin’s car. This
can be solved in both 2d and 3d using kinodynamic planning
[25].

In 2d, the configuration space of the snake’s head is SE(2)
with q = (x, y, θ)

T and the differential model is given by

ẋ = cos θ

ẏ = sin θ

θ̇ = u

(20)

https://github.com/orthez/irreducible-curvature-projection/
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Fig. 13: Planning for the head of a swimming snake in 2D (left, middle),
and in 3d (right). The swept volume of the head is shown in magenta. The
position of the sublinks is an output of the curvature projection algorithm.

Fig. 14: We use a reduced mechanical model for motion planning, which
preserves curvature completeness for the linear arm linkages with respect to
the chest (left,middle). After planning for the reduced model, we can project
the remaining links into the swept volume, and thereby solving very narrow
environments (right, adapted from [27]).

where the control space is defined by the steering angle u.
In 3d, the configuration space is SE(3) and the differential
model is similar to a driftless airplane given by

q̇ = q

(
3∑
i=1

uiXi +X4

)
(21)

where

X1 =

[
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
X2 =

[
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
X3 =

[
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
X4 =

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
X5 =

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
X6 =

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
is a basis for se(3), the Lie algebra of SE(3).

The controls u1, u2 and u3 are then the roll, pitch and
yaw steering angles, respectively. We have performed one
experiment in 2d in a rocky environment, and averaged the
results for the classical and the irreducible case over 100
experiments, as reported in Tab. III. While having the same
success rate, the planning time is reduced by one order of
magnitude. We further planned a single motion in 3d, where
the snake has to swim through holes in a formation of rocks.
Fig. 13 shows the results of our projection algorithm with the
swept volume of the head in magenta.

B. Humanoid Robot

Next, we conduct motion planning for the humanoid robot
HRP-2, by abstracting away the two arms as linear linkages.
Also, we consider the right leg as a linear linkage connected
to the left leg. We additionally approximate the head by a
sphere, so that yaw rotations leave the head invariant. This
leaves us with an effective configuration space of R7, which
is shown in Table I. Motion planning can now be conducted
with a reduced mechanical model, as shown in Fig. 14.

TABLE I: Variable Joints of Humanoid Robot HRP-2, and the corresponding
range. If the value is set to φ, then the joints are ignored for motion planning,
and are determined by the irreducible projection algorithm in a post-processing
stage.

Joint Fixed Value Anatomical Name Range
HEAD0 0.0
HEAD1 - Neck [−0.52, 0.79]
CHEST0 0.0
CHEST1 - Waist [−0.09, 1.05]
RARM φ Right Arm
LARM φ Left Arm
LLEG0 0.0
LLEG1 0.0
LLEG2 - Hip [−2.18, 0.73]
LLEG3 - Knee [−0.03, 2.62]
LLEG4 - Ankle [−1.31, 0.73]
LLEG5 0.0
RLEG φ Right Leg

LSOLE X - Left Foot [−0.5, 0.5]
LSOLE Y - Left Foot [−3.0, 3.0]
LSOLE θ - Left Foot [0, 2π]

TABLE II: Values for the approximated linear linkage structure of the arms
of HRP-2. Our curvature algorithm determines the exact values based on the
movement of the chest.

Joint 0 1 2 3 4 5 6

Left
Arm

−π
2

[π
4
, 3π

4
] −π

2
[−π

4
, π
4
] 0.0 [−π

4
, π
4
] 0.1

Right
Arm

−π
2

[−3π
4
, −π

4
] −π

2
[−π

4
, π
4
] 0.0 [−π

4
, π
4
] 0.1

1) Curvature constraint for chest HRP-2: Each arm of
HRP-2 is a linear linkage, which we will approximate by four
spheres as depicted in Fig. 15. We positioned the spheres at
the moveable joints of the robot. The resulting linear linkage
has N = 4 links with length L0 = 0.25m and sphere radius
of δ = 0.08m. We choose a common joint interval [−π4 ,

π
4 ]

for the free joints. We can compute the resulting maximum
curvature as

κ =
2 sin(π4 )

3L0
= 1.8856m−1 (22)

Meaning, if we can find a trajectory of the chest (without
considering the arms), which has a bounded κ curvature, then
we are guaranteed to find joint angles for the arm, such that
the swept volume of the arms and the chest is a subset of the
swept volume of the chest. The resulting joint limits for the
arms of HRP-2 are shown in Table II.

Fig. 15: Approximation of the arm as a linear linkage in canonical form
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2) Implementation Details: For our simulations, we use the
humanoid path planner (HPP) framework [28]. It is a general
motion planning framework based on random sampling tech-
niques [25], tailored for planning on humanoid robots like
HRP-2. We will make use of a planning algorithm based on
sliding motions. A sliding motion is dynamically stable, as we
discussed in Sec. II, and is particulary suitable for constrained
environment as it locally minimizes the swept volume by
minimizing oscillations. From a motion planning point of view,
a sliding motion is easier to deal with computationally: while
planning discrete contact steps gives rise to a combinatorial
explosion, a continuous sliding motion can be optimized by
taking derivative informations into account.

To plan a single motion, we use the rapidly-exploring tree
(RRT) [29] algorithm. We replace the basic configuration
shooter, which samples a random configuration from the
configuration space by an irreducible configuration shooter,
to only sample inside the subspace generated by ignoring the
arms and the right leg. After planning, we compute the reduced
configurations by using the irreducible curvature projection
algorithm.

The irreducible configuration shooter has been released as
an open-source submodule for the HPP framework, which can
be found here

https://github.com/orthez/hpp-motion-prior/

3) Experimental Results: To test our theoretical results, we
have chosen a motion planning problem, where the robot HRP-
2 has to move through a wall, as shown in Fig. 16. Those
results have been taken from [1]. Due to the wall constraint,
a solver has to find a narrow passage in the configuration
space to solve the problem. In the classical 35-dof setting, this
problems has not been solved, since in practice the probability
to find a feasible configuration vanishes towards zero. We
consider here the 7-dof setting without waypoints, by using
the irreducible subspace.

The results of 10 runs are reported in Table III. Since the
passage is narrow, RRT can take a long time to converge,
for our experiment, it took between 44 minutes up to 43
hours. This shows that sampling-based methods are becoming
inefficient in narrow environments, which is closely related to
the ε-goodness criteria [30], which states that the convergence
rate of sampling-based methods is inversly proportional to the
volume of the free configuration space.

We have successfully applied the irreducibility concept on
the HRP-2 humanoid walk through the wall. This experiment,
however, uses a different planning algorithm which exploits
environmental structure, and follows the resulting trajectory
by using a hierarchical task-space controller. We submitted
those results in [27].

Since this paper is concerned with a feasibility study, the
resulting motion will be non-optimal, assumes infinitesimal
small footsteps and might appear unnatural to a human ob-
server. However, having a first feasible trajectory is a prereq-
uisite for fast convergence of local planning algorithms like
CHOMP [31] or AICO [32].

TABLE III: Simulation results for the snake and for the humanoid robot. The
”snake 2d Rocks” and ”Snake 3d Rock Formation” refers to the environment
shown in Fig. 13. HRP-2 Wall refers to the experiment in Fig. 16. Results
taken from [1].

Planning Problem C
Dimension

#Success/
#Experiments

σ(s) µ(s)

Snake 2d Rocks
(Classical)

R3+N 100/100 54.15s 94.36s

Snake 2d Rocks
(Irreducible)

R3 100/100 1.34s 1.04s

HRP-2 Wall
(Classical)

R35 Not solveable (> 3days)

HRP-2 Wall
(Irreducible) [1]

R7 10/10 12h14m 9h34m

Fig. 16: Wall Motion Planning Problem. Left initial configuration Middle
one irreducible configuration on the final trajectory found by an RRT on the
irreducible subspace Right goal configuration. Adapted from [1].

VII. DISCUSSION

The theoretical framework presented is able to simplify
motion planning problems by exploiting the linear linkage
structure, which can be found in a diverse number of me-
chanical systems, including snakes, octopuses and humanoid
robots.

Our conceptual idea is a completeness-preserving dimen-
sionality reduction technique. To apply this concept in prac-
tice, we introduced a new concept called κ-curvature com-
pleteness. This κ-curvature completeness is in general a proper
subset of completeness, and therefore we can always find cer-
tain situations in which we cannot find a solution, even if one
exists. We believe, however, that for some mechanical systems
κ-curvature completeness and completeness are equivalent, for
example for systems which resemble Dubin’s car with trailers
and positive velocity.

Motion planning can now be simplified by first planning
under a certain curvature constraint in the reduced dimension-
ality space. If a motion plan has been found, we can execute
it. If no plan has be found, we can increase the dimensionality.

In the larger scheme, we think about irreducibility as one
component of motion prior information: developing efficient
motion planning algorithms requires us to make use of the
underlying structure of the problem. Here, we showed that
certain mechanical systems allow us to exploit their linear
linkage structure.

Finally, it seems that linear linkages are quite common in
nature. Irreducibility could be a way to motivate why the
octopus aligns its limbs behind its head during swimming.
Besides minimizing water resistance, it could also thereby
simplify motion planning. We think there is a variety of
interesting phenomena which could be studied by exploiting

https://github.com/orthez/hpp-motion-prior/
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our concept of an irreducible trajectory in motion research.

VIII. CONCLUSION

We described the concept of irreducibility, which allows us
to conduct completeness-preserving dimensionality reduction
for motion planning. The main result in Theorem 2 states
that finding no feasible trajectory in the space of irreducible
trajectories implies that there is no feasible trajectory in the
space of all configuration space trajectories, i.e. that motion
planning is complete w.r.t. irreducible trajectories.

We have described how irreducibility can be applied to
linear linkages by using the concept of κ-curvature com-
pleteness. Based on those results, we developed a linear-time
algorithm to project configurations into the swept volume of
the root links of a linear linkage. Finally, we conducted a set
of experiments for the humanoid robot HRP-2, by considering
the arms as linear linkages.

Future research will focus on the automatic discovery of
the irreducible trajectory space, on the correctness of the
conjectures in Sec. IV-F, and on applying our principle to
more general linkage structures.

APPENDIX

PROOFS

Proof of Theorem 1: Let s = SV(τ) and s′ = SV(τ ′). s
is feasible if s ∩E = ∅. We proceed by direct proof:
(1) Let s be infeasible, then ∃v ∈ s, such that v ∩ E = v.
Since s ⊂ s′, we have that v ∈ s′. Since v exists, we can
conclude that at least s′ ∩ E > v, which makes s′ infeasible.
(2) τ ′ being feasible means s′∩E = ∅. Since s ⊂ s′, it follows
from elementary set theory that s ∩E = ∅, which proofs that
τ is feasible.

Proof of Lemma 1: Let µ be the lebesque measure on the
workspace W . First, let us see that if SV(τ1) ⊂ SV(τ0), then
µ(SV(τ1)) < µ(SV(τ0)).

Now, by definition, if τ0 /∈ I, then ∃τ1 ∈ F , such
that SV(τ1) ⊂ SV(τ0). Then either τ1 ∈ I, and we
are done. Or τ1 /∈ I, and by definition, ∃τ2 ∈ F , such
that SV(τ2) ⊂ SV(τ1). Let us assume that there is no
trajectory τi ∈ I, such that we obtain an infinite sequence
Π = {τ0, τ1, τ2, · · · } of reducible trajectories τi ∈ F ,
such that ∀τi ∈ Π : SV(τi+1) ⊂ SV(τi). Since we have
∀τi ∈ Π : µ(SV(τi+1)) < µ(SV(τi)) and µ(SV(τ)) > 0, the
sequence is strictly monotonically decreasing and bounded,
and will therefore converge to its maximum lower bound,
which we call C, i.e. limn→∞ µ(SV(τi)) = C. Consequently,
since the maximum lower bound is obtained, there cannot
exists another trajectory τ ′, such that µ(SV(τ ′)) < C. By
definition, the sequence is converged in I, and therefore we
conclude that every element τ ∈ F \I is reducible by τ ′ ∈ I.

Proof of Theorem 2:
Let us assume that ∃τ ∈ F , with τ being feasible, and that

∀τ ′ ∈ I : τ ′ is not feasible. Since τ is feasible, it follows that
τ /∈ I. Then by definition there has to be a τ ′′ ∈ F such that
SV(τ ′′) ⊂ SV(τ). Then τ ′′ is feasible by Theorem 1. Further,
either we have that τ ′′ ∈ I. Then we have a contradiction.

Or we have τ ′′ /∈ I, which means that we can still find
another τ ′′′ ∈ F reducing τ ′′. By Lemma 1, we know that
such a sequence can be reduced by a τ̃ ∈ I . So we reach a
contradiction, too.

Proof of Corollary 1: By definition, motion planning is
complete, if we can find a solution (a trajectory), if one exist.
By Theorem 2, we know that if we cannot find a solution in
I, then there is no solution in F . Conversely, if there is a
solution in F , then by Theorem 1, there exists a solution in
I.
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