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Abstract

This paper presents a novel spectral algorithm with additive clustering, designed to identify over-
lapping communities in networks. The algorithm is based on geometric properties of the spectrum
of the expected adjacency matrix in a random graph model that we call stochastic blockmodel with
overlap (SBMO). An adaptive version of the algorithm, that does not require the knowledge of the
number of hidden communities, is proved to be consistent under the SBMO when the degrees in the
graph are (slightly more than) logarithmic. The algorithm is shown to perform well on simulated
data and on real-world graphs with known overlapping communities.

1 Introduction

Many datasets (e.g., social networks, gene regulation networks) take the form of graphs whose structure
depends on some underlying communities. The commonly accepted definition of a community is that
nodes tend to be more densely connected within a community than with the rest of the graph. Communi-
ties are often hidden in practice and recovering the community structure directly from the graph is a key
step in the analysis of these datasets. Spectral algorithms are popular methods for detecting communities
[Von Luxburg, 2007], that consist in two phases. First, a spectral embedding is built, where the n nodes
of the graph are projected onto some low dimensional space generated by well-chosen eigenvectors of
some matrix related to the graph (e.g., the adjacency matrix or a Laplacian matrix). Then, a clustering
algorithm (e.g., k-means or k-median) is applied to the n embedded vectors to obtain a partition of the
nodes into communities.

It turns out that the structure of many real datasets is better explained by overlapping communities.
This is particularly true in social networks, in which the neighborhood of any given node is made of
several social circles, that naturally overlap [Mc Auley and Leskovec, 2012]. Similarly, in co-authorship
networks, authors often belong to several scientific communities and in protein-protein interaction net-
works, a given protein may belong to several protein complexes [Palla et al., 2005]. The communities
do not form a partition of the graph and new algorithms need to be designed. This paper presents a novel
spectral algorithm, called spectral algorithm with additive clustering (SAAC). The algorithm consists in a
spectral embedding based on the adjacency matrix of the graph, coupled with an additive clustering phase
designed to find overlapping communities. The proposed algorithm does not require the knowledge of
the number of communities present in the network, and can thus be qualified as adaptive.

*Thomas Bonald and Marc Lelarge are members of the LINCS, Paris, France. See www.lincs.fr.
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SAAC belongs to the family of model-based community detection methods, that are motivated by a
random graph model depending on some underlying set of communities. In the non-overlapping case,
spectral methods have been shown to perform well under the stochastic block model (SBM), introduced
by Holland and Leinhardt [Holland and Leinhardt, 1983]. Our algorithm is inspired by the simplest
possible extension of the SBM to overlapping communities, we refer to as the stochastic blockmodel
with overlaps (SBMO). In the SBMO, each node is associated to a binary membership vector, indicating
all the communities to which the node belongs. We show that exploiting an additive structure in the
SBMO leads to an efficient method for the identification of overlapping communities. To support this
claim, we provide consistency guarantees when the graph is drawn under the SBMO, and we show
that SAAC exhibit state-of-the-art performance on real datasets for which ground-truth communities are
known.

The paper is structured as follows. In Section 2, we cast the problem of detecting overlapping
communities into that of estimating a membership matrix in the SBMO model, introduced therein. In
Section 3, we compare the SBMO with alternative random graph models proposed in the literature, and
review the algorithms inspired by these models. In Section 4, we exhibit some properties of the spectrum
of the adjacency matrix under SBMO, that motivate the new SAAC algorithm, introduced in Section 5,
where we also formulate theoretical guarantees for an adaptive version of the algorithm. Finally, Section
6 illustrates the performance of SAAC on both real and simulated data.

Notation. We denote by ∣∣x∣∣ the Euclidean norm of a vector x ∈ Rd. For any matrix M ∈ Rn×d, we let
Mi denote its i-th row and M⋅,j its j-th column. For any S ⊂ {1, . . . , d}, ∣S∣ denotes its cardinality and
1S ∈ {0,1}1×d is a row vector such that (1S)1,i = 1{i∈S}. The Frobenius norm of a matrix M ∈ Rn×d is

∣∣M ∣∣
2
F =

n

∑
i=1

∣∣Mi∣∣
2
=

d

∑
j=1

∣∣M⋅,j ∣∣
2
= ∑

1≤i,j≤n

M2
i,j .

The spectral norm of a symmetric matrix M ∈ Rd×d with eigenvalues λ1, . . . , λd is ∣∣M ∣∣ = maxi=1..d ∣λi∣.
For σ ∈SK , we let Pσ ∈ RK×K the permutation matrix associated to σ, defined by (Pσ)k,l = δσ(k),l.

2 The stochastic blockmodel with overlaps (SBMO)

2.1 The model

For any symmetric matrix A ∈ [0,1]n×n, let Â be some random symmetric binary matrix whose entries
(Âi,j)i≤j are independent Bernoulli random variables with respective parameters (Ai,j)i≤j . Then Â is the
adjacency matrix of an undirected random graph with expected adjacency matrix A. In all the paper, we
restrict the hat notation to variables that depend on this random graph. For example, the empirical degree
of node i observed on the random graph and the expected degree of node i are respectively denoted by

d̂i =
n

∑
j=1

Âi,j and di =
n

∑
j=1

Ai,j .

Similarly, we write D̂ = Diag(d̂i), D = Diag(di), and

d̂max ∶= max
i

n

∑
j=1

Âi,j , dmax = max
i

n

∑
j=1

Ai,j .
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The stochastic block model (SBM) with n nodes and K communities depends on some mapping
k ∶ {1, . . . , n} → {1, . . . ,K} that associates nodes to communities and on some symmetric community
connectivity matrix B ∈ [0,1]K×K . In this model, two nodes i and j are connected with probability

Ai,j = Bk(i),k(j) = Bk(j),k(i).

Introducing a membership matrix Z ∈ {0,1}n×K such that Zi,k = 1{k(i)=k}, the expected adjacency
matrix can be written

A = ZBZT .

The stochastic blockmodel with overlap (SBMO) is a slight extension of this model, in which Z is
only assumed to be in {0,1}n×K and Zi ≠ 0 for all i. Compared to the SBM, the rows of the member-
ship matrix Z are no longer constrained to have only one non-zero entry. Since these n rows give the
communities of the respective n nodes of the graph, this means that each node can now belong to several
communities.

2.2 Performance metrics

Given some adjacency matrix Â drawn under the SBMO, our goal is to recover the underlying commu-
nities, that is to build an estimate Ẑ of the membership matrix Z, up to some permutation of its columns
(corresponding to a permutation of the community labels). We denote by K̂ the estimate of the number
of communities (K is in general unknown), so that Ẑ ∈ {0,1}n×K̂ .

We introduce two performance metrics for this problem. The first is related to the number of nodes
that are “well classified”, in the sense that there is no error in the estimate of their membership vec-
tor. The objective is to minimize the number of misclassified nodes of an estimate Ẑ of Z, defined by
MisC(Ẑ,Z) = n if K̂ ≠K and

MisC(Ẑ,Z) = min
σ∈SK

∣{i ∈ {1, . . . , n} ∶ ∃k ∈ {1, . . . ,K}, Ẑi,σ(k) ≠ Zi,k}∣

otherwise. The second performance metric is the fraction of wrong predictions in the membership
matrix (again, up to a permutation of the community labels). We define the estimation error of Ẑ as
Error(Ẑ,Z) = 1 if K̂ ≠K and otherwise by

Error(Ẑ,Z) =
1

nK
inf
σ∈SK

∣∣ẐPσ −Z ∣∣
2
F ≤

MisC(Ẑ,Z)

n
.

2.3 Identifiability

The communities of a SBMO can only be recovered if the model is identifiable in that the equality
Z ′B′Z ′T = ZBZT , for some integer K ′ and matrices Z ′ ∈ {0,1}n×K

′
, B′ ∈ [0,1]K

′×K′
, implies

MisC(Z ′, Z) = 0 (and thus K ′ = K): two SBMO with the same expected adjacency matrices have the
same communities, up to a permutation of the community labels. In this section, we derive sufficient
conditions for identifiability.

Example 1. Consider the following SBMO with n nodes and 3 overlapping communities:

B =
⎛
⎜
⎝

a 0 0
0 b 0
0 0 c

⎞
⎟
⎠
, Z =

⎛
⎜
⎝

1 1 0
0 1 1
1 0 1

⎞
⎟
⎠
, (1)
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where a, b, c > 0 and 1 (resp. 0) is a vector of length n/3 with all coordinates equal to 1 (resp. 0). This
SBMO is not identifiable since ZBZT = Z ′B′Z ′T with

B′
=
⎛
⎜
⎝

a + b b a
b b + c c
a c a + c

⎞
⎟
⎠
, Z ′

=
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
.

Observe that this is a SBM with 3 non-overlapping communities.

In view of the above example, some additional assumptions are required to ensure identifiability. A
first approach is to restrict the analysis to SBM. The following result is proved in Appendix A.

Proposition 2. The SBMO is identifiable under the following assumptions:

(SBM1) for all ` ≠ k, the rows B` and Bk are different;

(SBM2) for all i = 1, . . . , n, ∑K`=1Zi,` = 1.

Assumption (SBM1) is the usual condition for identifiability of a SBM; the absence of overlap is
enforced by assumption (SBM2). Note that the SBM of Example 1 clearly satisfies both assumptions
and thus is identifiable: this is the only SBM with expected adjacency matrix A = ZBZT . One may
wonder whether the SBMO is identifiable if we impose an overlap, that is the existence of some node i
such that ∑K`=1Zi,` ≥ 2. The answer is negative, as shown by the following example.

Example 1 (continued). Without loss of generality, we assume that c ≤ min(a, b). Consider the fol-
lowing SBMO with n nodes and 4 overlapping communities:

B′′
=

⎛
⎜
⎜
⎜
⎝

a + b − c b − c a − c 0
b − c b 0 0
a − c 0 a 0

0 0 0 c

⎞
⎟
⎟
⎟
⎠

, Z ′′
=
⎛
⎜
⎝

1 0 0 1
0 1 0 1
0 0 1 1

⎞
⎟
⎠
.

We have ZBZT = Z ′′B′′Z ′′T .

Thus some additional assumptions are required to make the SBMO identifiable. It is in fact sufficient
that the community connectivity matrix is invertible and that each community contains at least one pure
node (that is, belonging to this community only). The following result is proved in Appendix A.

Theorem 3. The SBMO is identifiable under the following assumptions:

(SBMO1) B is invertible;

(SBMO2) for each k = 1, . . . ,K, there exists i such that Zi,k = ∑K`=1Zi,` = 1,

Observe that the two SBMO of Example 1, with membership matrices Z and Z ′′, violate (SBMO2).
Only the SBM is identifiable. In particular, if we generate a SBMO with 3 overlapping communities
based on the matrices B and Z, our algorithm will return at best 3 non-overlapping communities corre-
sponding to the SBM with membership matrix Z ′. To recover the model (1), some additional information
is required on the community structure. For instance, one may impose K = 3 and that each node belongs
to exactly two communities. Note that this last condition alone is not sufficient, in view of the third
model of Example 1.

Our choice for SBMO1-2 is motivated by applications to social networks: homophily will make the
matrixB diagonally dominant, hence invertible. In the rest of the paper, we assume that the identifiability
conditions (SBMO1) and (SBMO2) are satisfied.
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2.4 Subcommunity detection

Any SBMO with K overlapping communities may be viewed as a SBM with up to 2K non-overlapping
communities, corresponding to groups of nodes sharing exactly the same communities in the SBMO and
that we refer to as subcommunities.

Let K ′ be the number of subcommunities in the SBMO:

K ′
= ∣T ∣ , where T = {z ∈ {0,1}1×K ∶ ∃i ∈ {1, . . . , n} ∶ Zi = z}.

The corresponding SBM has K ′ communities indexed by z ∈ T , with community connectivity matrix
B′ given by B′

y,z = yBz
T . The SBM of Example 1 can be derived from the first SBMO in this way for

instance. More interestingly, it is easy to check that if the initial SBMO satisfies (SBMO1)-(SBMO2)
then the corresponding SBM satisfies (SBM1)-(SBM2).

Figure 1: Three overlapping communities of a SBMO (left) and the subcommunities of the associated
SBM (right).

This suggests that community detection in the SBMO reduces to community detection in the corre-
sponding SBM, for which many efficient algorithms are known. However, the notion of performance
for a SBM is different from the that for the underlying SBMO: the knowledge of the subcommunities
is not sufficient to recover the initial overlapping communities, that is to obtain an estimate Ẑ such that
MisC(Ẑ,Z) is small. It is indeed necessary to map these subcommunities to elements of {0,1}K , which
is not an easy task: first, the number of communitiesK is unknown; second, assumingK is known, there
are up to 2K ! such mappings so that a simple approach by enumeration is not feasible in general. More-
over, the performance of clustering algorithms degrades rapidly with the number of communities so that
it is preferable to work directly on the K overlapping communities rather than on the K ′ subcommuni-
ties, with K ′ possibly as large as 2K .

Our algorithm detects directly the K overlapping communities using the specific geometry of the
eigenvectors of the expected adjacency matrix, A. We provide conditions under which these geometric
properties hold for the observed adjacency matrix, Â, which guarantees the consistency of our algorithm:
the K communities are recovered with probability tending to 1 in the limit of a large number of nodes n.
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2.5 Scaling

To study the performance of our algorithm when the number of nodes n grows, we introduce a degree
parameter αn so that the expected adjacency matrix of a graph with n nodes is in fact given by

A =
αn
n
ZBZT ,

with B ∈ [0,1]K×K independent of n and Z ∈ {0,1}n×K . Although Z depends on n, we do not make it
explicit in the notation. Observe that the expected degree of each node grows like αn, since

di = αn (
1

n
ZiBZ

T1) ,

where 1 is the vector of one’s of dimension n.
We assume that the set of subcommunities T does not depend on n and that for all z ∈ T , there exists

a positive constant (independent of n) βz such that:

∣ {i ∶ Zi = z} ∣

n
→ βz. (2)

This implies the existence of positive constants Lz and of a matrix O ∈ RK×K , such that

∀z ∈ T ,
1

n
zBZT1→ Lz, and

1

n
ZTZ → O. (3)

One has di ∼ αnLz for any i such that Zi = z. In the sequel, we assume that the graph is sparse in the
sense that αn →∞ with αn/n→ 0. Observe also that Ok,k is the (limit) proportion of nodes that belong
to community k while Ok,l is the (limit) proportion of nodes that belong to communities k and l, for any
k ≠ l. Hence we refer to O as the overlap matrix.

In the following, we will slightly abuse notation by writing O = 1
nZ

TZ and di = αnLz if Zi = z,
although these equalities in fact hold only in the limit.

3 Related work

Models. Several random graph models have been proposed in the literature to model networks with
overlapping communities. In these models, each node i is characterized by some community member-
ship vector Zi that is not always a binary vector, as in the SBMO. In the Mixed-Membership Stochastic
Blockmodel (MMSB) [Airoldi et al., 2008], introduced as the first model with overlaps, membership
vectors are probability vectors drawn from a Dirichlet distribution. In this model, conditionally to Zi and
Zj , the probability that nodes i and j are connected is ZiBZTj for some community connectivity matrix
B, just like in SBMO. However, the fact that Zi and Zj are probability vectors makes the model less
interpretable. In particular, the probability that two nodes nodes are connected does not necessarily in-
crease with the number of communities that they have in common, as pointed out by Yang and Leskovec
[Yang and Leskovec, 2012], which contradicts a tendency empirically observed in social networks.

A first model that relies on binary membership vectors is the Overlapping Stochastic Block Model
(OSBM) [Latouche et al., 2011], in which two nodes i, j are connected with probability σ(ZiWZTj +

ZiV +ZjU +w), where W ∈ RK×K
+ , U,V ∈ RK+ , w ∈ R, and σ is the sigmoid function. Now the proba-

bility of connectivity of two nodes increases with the number of communities shared, but the particular
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form of the probability of connection makes the model hard to analyze. Given a community connectivity
matrix B, another natural way to build a random graph model based on binary membership vectors is
to assume that two nodes i and j are connected if any pair of communities k, l to which these nodes
respectively belong can explain the connection. In other words, i and j are connected with probability
1−∏Kk,l=1(1−Bk,l)

Zi,kZj,l . Denoting byQ the matrix with entriesQk,l = − log(1−Bk,l), this probability
can be written 1 − exp (−ZiQZ

T
j ) ≃ ZiQZ

T
j , where the approximation is valid for sparse networks. In

this case, the model is very close to the SBMO, with connectivity matrix Q. The Community-Affiliation
Graph Model (AGM) [Yang and Leskovec, 2012] is a particular case of this model in which B is di-
agonal. The SBMO with a diagonal connectivity matrix can be viewed as a particular instance of an
Additive Clustering model [Shepard and Arabie, 1979] and is also related to the ‘colored edges’ model
[Ball et al., 2011], in which Âi,j is drawn from a Poisson distribution with mean θiθTj , where θi ∈ R1,K

is the (non-binary) membership vector of node i. Letting θi =
√
Bi,iZi and approximating the Poisson

distribution by a Bernoulli distribution, we recover the SBMO.
The Overlapping Continuous Community Assignment Model (OCCAM), proposed by Zhang et al.

[Zhang et al., 2014] relies on overlapping communities but also on individual degree parameters, which
generalizes the degree-corrected stochastic blockmodel [Karrer and Newman, 2011]. In the OCCAM, a
degree parameter θi is associated to each node i. Letting Θ = Diag(θi) ∈ Rn×n, the expected adjacency
matrix is A = ΘZBZTΘ, with a membership matrix Z ∈ Rn×K . Identifiability of the model is proved
assuming that B is positive definite, each row Zi satisfies ∣∣Zi∣∣ = 1, and the degree parameters satisfy
n−1∑ni=1 θi = 1. The SBMO can be viewed as a particular instance of the OCCAM, for which we provide
new identifiability conditions, that allow for binary membership vectors.

Algorithms. Several algorithmic methods have been proposed to identify overlapping community
structure in networks [Xie et al., 2013]. Among the model-based methods, that rely on the assumption
that the observed network is drawn under a random graph model, some are approximations of the max-
imum likelihood or maximum a posteriori estimate of the membership vectors under one of the random
graph models discussed above. For example, under the MMSB or the OSBM the membership vectors are
assumed to be drawn from a probability (prior) distribution, and variational EM algorithms are proposed
to approximate the posterior distributions [Airoldi et al., 2008, Latouche et al., 2011]. However, there
is no proof of consistency of the proposed algorithms. In the MMSB, a different approach that uses
tensor power iteration is proposed in [Anandkumar et al., 2014] to compute an estimator derived using
the moments method, for which the first consistency results are provided.

The first occurrence of a spectral algorithm to find overlapping communities goes back to [Zhang
et al., 2007]. The proposed method is an adaptation of spectral clustering with the normalized Laplacian
(see e.g., [Newman, 2013]) with a fuzzy clustering algorithm in place of k-means, and its justification is
rather heuristic. Another spectral algorithm has been proposed by [Zhang et al., 2014], as an estimation
procedure for the (non-binary) membership matrix under the OCCAM. The spectral embedding is a
row-normalized version of Û Λ̂1/2 ∈ Rn×K , with Λ̂ the diagonal matrix containing K leading eigenvalues
of Â and Û the matrix of associated eigenvectors. The centroids obtained by a k-median clustering
algorithm are then used to estimate Z. This algorithm is proved to be consistent under the OCCAM,
when moreover degree parameters and membership vectors are drawn according to some distributions.
Similar assumptions have appeared before in the proof of consistency of some community detection
algorithms in the SBM or DC-SBM [Zhao et al., 2012]. Our consistency results are established for fixed
parameters of the model.

7



4 Spectral analysis of the adjacency matrix in the SBMO

In this section, we describe the spectral structure of the adjacency matrix in the SBMO.

4.1 Expected adjacency matrix

Let Z be the set of membership matrices that contains at least one pure node per community:

Z = {Z ∈ {0,1}n×K , ∀k = 1, . . . ,K, ∃i ∈ {1, . . . , n}, Zi,k = ∑
`

Zi,` = 1}.

From the identifiability conditions (SBMO1) and (SBMO2), A = ZBZT is of rank K (refer to the proof
of Theorem 3) and Z belongs to Z . Let U ∈ Rn×K be a matrix whose columns u1, . . . , uK ∈ Rn are
normalized orthogonal eigenvectors associated to the K non-zero eigenvalues of A. The structure of U
is described in the following proposition. Its first statement follows from the fact that the eigenvectors
u1, . . . , uK form a basis of Im(A) and that Im(A) ⊆ Im(Z). Its second statement is established in the
proof of Theorem 3.

Proposition 4. 1. There exists X ∈ RK×K such that U = ZX .

2. If U = Z ′X ′ for some Z ′ ∈ Z , X ′ ∈ RK×K , then there exists σ ∈SK such that Z = Z ′Pσ.

This decomposition reveals in particular an additive structure in U : each row Ui is the sum of rows
corresponding to pure nodes associated to the communities to which node i belongs. Fixing for each k a
pure node ik in community k, one has indeed

∀i, Ui =
K

∑
k=1

Uik1(Zi,k=1) (4)

Proposition 5, proved in Appendix A, relates the eigenvectors of A to those of a K ×K matrix featuring
the overlap matrix O introduced in Section 2.5. Note that for any x ∈ RK , we have xTOx = ∣Zx∣2/n so
that O has the same rank as Z, equal to K. Hence O is invertible and positive definite, thus the matrix
O1/2 (resp. its inverse) is well defined.

Proposition 5. Let µ ≠ 0 and M0 = O
1/2BO1/2. The following statements are equivalent:

1. u = Zx is an eigenvector of A associated to αnµ.

2. O1/2x is an eigenvector of M0 associated to µ;

In particular, the non-zero eigenvalues of A are of the same order as αn.

4.2 Observed adjacency matrix

In practice, we observe the adjacency matrix Â, which is as a noisy version of A. Our hope is that the
K leading eigenvectors of Â are not too far from the K leading eigenvectors of A, so that in view of
Proposition 4, the solution in Z ′ the following optimization problem provides a good estimate of Z:

min
Z′∈Z,X′∈RK×K

∣∣Û −Z ′X ′
∣∣F ,

where Û is the matrix of the K normalized eigenvectors of Â associated to the K largest eigenvalues.
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This hope is supported by the following result on the perturbation of the largest eigenvectors of the
adjacency matrix of any random graph, proved in Appendix D. In practice, the number of communities
K is unknown and this result also provides an adaptive procedure to select the eigenvectors to use in the
spectral embedding. We denote by λmin(A) the smallest absolute value of a non-zero eigenvalue of A.

Lemma 6. Let δ ∈]0,1[ and η ∈]0,1/2[. Let Û be a matrix formed by orthogonal eigenvectors of Â with
an associated eigenvalue λ that satisfy

∣λ∣ ≥
√

2 (1 + η) d̂max log(4n/δ).

Let K̂ be the number of such eigenvectors. Let U be matrix of K̂ largest eigenvectors of A. If

dmax ≥
4(2η + 3)(2 + η)

3η2
log (

4n

δ
) and

λmin(A)2

dmax
>

√

2(1 +
η

2 + η
)(1 +

√
1 + η) log (

4n

δ
) ,

then with probability larger than 1 − δ, K̂ = rank(A) and there exists a matrix P̂ ∈ On(R) such that

∣∣Û −UP̂ ∣∣
2

F
≤ 32(1 +

η

η + 2
)(

dmax

λmin(A)2
) log (

4n

δ
) .

Under SBMO, we have λmin(A) = Θ(αn) by Proposition 5. As dmax = Θ(αn), we needαn/ log(n) →
+∞ to use Lemma 6 to prove that Û is a good estimate of U . We give in the next section sufficient con-
ditions on the degree parameter αn to obtain asymptotically exact recovery of the communities.

5 The SAAC algorithm

The spectral structure of the adjacency matrix suggests that Ẑ defined below is a good estimate of the
membership matrix Z in the SBMO:

(P) ∶ (Ẑ, X̂) ∈ argmin
Z′∈Z,X′∈RK×K

∣∣Û −Z ′X ′
∣∣
2
F , (5)

where Û ∈ Rn×K is the matrix of the K normalized leading eigenvectors of Â. In practice, solving (P)

is very hard, and the algorithm introduced in Section 5.1 solves a relaxation of (P) in which Z ′ is only
constrained to have binary entries, that is amenable to alternate minimization. In Section 5.2, we prove
that an adaptive version of the estimate Ẑ given by (5) is consistent.

5.1 Description of the algorithm

The spectral algorithm with additive clustering (SAAC) consists in first computing a matrix Û ∈ Rn×K
whose columns are normalized eigenvectors of Â associated to the K largest eigenvalues (in absolute
value), and then computing the solution of the following optimization problem:

(P)
′
∶ (Ẑ, X̂) ∈ argmin

Z′∈{0,1}n×K ∶∀i,Z′i≠0
X′∈RK×K

∣∣Û −Z ′X ′
∣∣
2
F .

(P)′ is reminiscent of the (NP-hard) k-means problem, in which the same objective function is min-
imized under the additional constraint that ∣∣Zi∣∣ = 1 for all i. The name of the algorithm highlights
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the fact that, rather than finding a clustering of the rows of Û , the goal is to find Ẑ, containing pure
nodes î1, . . . , îk, that reveals the underlying additive structure of Û : for all i, Ûi is not too far from
∑k Ûîk1(Ẑi,k=1), in view of (4).

In practice, just like k-means, we propose to solve (P)′ by an alternate minimization over Z ′ and
X ′. The proposed implementation of the adaptive version of the algorithm, inspired by Theorem 8, is
presented as Algorithm 1. An upper bound m on the maximum overlap Omax = max{∣∣z∣∣, z ∈ T } is
provided to limit the combinatorial complexity of the algorithm. If K if known, the selection phase can
be removed, and one use directly the matrix Û ∈ Rn×K of K leading eigenvectors. While heuristics do
exist for selecting the number of clusters in spectral clustering (e.g. [Von Luxburg, 2007, Zelnik-Manor
and Perona, 2004]), this thresholding procedure is supported by theory for networks drawn under SBMO.
It is reminiscent of the USVT algorithm of [Chatterjee, 2015], that can be used to estimate the expected
adjacency matrix in a SBM.

Algorithm 1 Adaptive SAAC

Require: Parameters ε, r, η > 0. Upper bound m on the maximum overlap Omax.
Require: Â, the adjacency matrix of the observed graph.

1: ♯ Selection of the eigenvectors
2: Form Û a matrix whose columns are K̂ eigenvectors of Â associated to eigenvalues λ satisfying

∣λ∣ >
√

2(1 + η)d̂max log(4n1+r)

3: ♯ Initialization
4: Ẑ = 0 ∈ Rn×K̂
5: X̂ ∈ RK̂×K̂ initialized with k-means++ applied to Û , the first centroid being chosen at random

among nodes with degree smaller than the median degree
6: Loss = +∞
7: ♯ Alternating minimization
8: while (Loss − ∣∣Û − ẐX̂ ∣∣2F > ε) do
9: Loss = ∣∣Û − ẐX̂ ∣∣2F

10: Update membership vectors: ∀i, Ẑi,⋅ = arg min
z∈{0,1}1×K̂ ∶1≤∣∣z∣∣1≤m

∣∣Ûi,⋅ − zX̂ ∣∣.

11: Update centroids: X̂ = (ẐT Ẑ)−1ẐT Û .
12: end while

Alternate minimization is guaranteed to converge, in a finite number of steps, towards a local mini-
mum of ∣∣ẐX̂ − Û ∣∣2F . However, the convergence is very sensitive to initialization. We use a k-means++
initialization (see [Arthur and Vassilvitskii, 2007]), which is a randomized procedure that picks as initial
centroids rows from Û that should be far from each other. For the first centroid, we choose at random a
row in Û corresponding to a node whose degree is smaller than the median degree in the network. We
do so because in the SBMO model, pure nodes tend to have smaller degrees and we expect the algorithm
to work well if the initial centroids are chosen not too far from rows in Û corresponding to pure nodes.

Given Ẑ, as long as the matrix ẐT Ẑ is invertible, there is a closed form solution to the minimization
of ∣∣ẐX̂ − Û ∣∣F in X̂ , which is X̂ = (ẐT Ẑ)−1ẐT Û . The fact that ẐT Ẑ is not invertible implies in
particular that Ẑ does not contain a pure node for each community. If this happens, we re-initialize the
centroids, using again the k-means++ procedure.
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5.2 Consistency of an adaptive estimator

We give in Theorem 8 theoretical properties for a slight variant of the estimate Ẑ in (5), that is solution
of the optimization problem (Pε) defined therein, that features the set of membership matrices for which
the proportion of pure nodes in each community is larger than ε:

Zε = {Z ′
∈ {0,1}n×K , ∀k ∈ {1,⋯,K} ,

∣{i ∶ Z ′
i = 1{k}}∣

n
> ε} .

Recall the notation introduced in (2) and (3). We assume that ε is smaller than the smallest proportion of
pure nodes (in the limit), given by mink β1{k} , and let Lmax = maxz Lz .

The estimator analyzed is adaptive, for it relies on an estimate K̂ of the number of communities,
and on Ẑε = Zε(K̂). We establish its consistency for any fixed matrices B and Z satisfying (SBMO1)
and (SBMO2). It is to be noted that while the consistency result for the OCCAM algorithm [Zhang
et al., 2014] applies to moderately dense graphs (αn has to be of order nα for some α > 0), our result
handle relatively sparse graphs, in which αn is of order (log(n))1+c for some c > 0. Our result involves
constants defined below, that are related to the overlap matrixO and to the matrixO1/2BO1/2 introduced
in Proposition 5.

Definition 7. The core matrix is the K ×K symmetric matrix M0 ∶= O
1/2BO1/2. We let

µ0 ∶= min{∣λ∣ ∶ λ ≠ 0 is an eigenvalue of M0},

d0 ∶= min
z∈{−1,0,1,2}1×K

z≠0

∣∣zO−1/2
∣∣ > 0.

Note that d0 is positive as seen by the following argument: if d0 = 0, then there would exist a linear
combination of the rows ofO−1/2 which is zero; this is impossible because the matrixO−1/2 is invertible.

Theorem 8. Let η ∈]0,1/2[ and r > 0. Let Û be a matrix whose columns are orthogonal eigenvectors of
Â associated to an eigenvalue λ̂ satisfying

∣λ̂∣ ≥
√

2 (1 + η) d̂max log(4n1+r).

Let K̂ be the number of such eigenvectors. Let

(Pε) ∶ (Ẑ, X̂) ∈ argmin
Z′∈Zε,X′∈RK̂×K̂

∣∣Z ′X ′
− Û ∣∣

2
F .

Assume that αn
logn →∞ and ε < mink β1{k} . There exists some constant c1 > 0 such that, if

αn ≥ max [
4(2η + 3)(2 + η)

3η2Lmax
;

√

2(1 +
η

2 + η
)

1 +
√

1 + η

µ20
] log (4n1+r)

then, for n large enough, with probability larger than 1 − n−r, K̂ =K and

MisC(Ẑ,Z)

n
≤ c1

K2Lmax

d20µ
2
0

log(4n1+r)

αn
.

In particular, assuming that αn/log(n)→∞ when n goes to infinity, it can be shown (using the
Borel-Cantelli Lemma) that the estimation procedure described in Theorem 8 with a parameter r ≥ 2 is
consistent, in the sense that it satisfies

MisC(Ẑ,Z)

n

a.s.
Ð→
n→∞

0.
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Theoretical guarantees for other estimates. Theorem 8 leads to an upper bound on the estimation
error of Ẑ a solution to (Pε). In some cases, it is also possible to prove directly that the solution of
(P)′ leads to a consistent estimate of Z. This is the case for instance in an identifiable SBMO with two
overlapping communities or with three communities with pairwise overlaps.

If K is known, tighter results can be obtained for non-adaptive procedures in which Û ∈ Rn×K̂ is
replaced by Û ∈ Rn×K . These results are stated in Appendix C, where two non-adaptive estimation
procedures are shown to be consistent under the (looser) condition α ≥ c0 log(n) for some constant c0
stated therein.

5.3 Proof of Theorem 8

Let U ∈ Rn×K be a matrix whose columns are K independent normalized eigenvectors of A associated
to the non-zero eigenvalues. The proof strongly relies on the following decomposition of U , that is a
consequence of Proposition 5.

Lemma 9. There exists a matrix V ∈ OK(R) of eigenvectors of M0 = O
1/2BO1/2 such that U = ZX

with X = n−1/2O−1/2V .

We state below a crucial result characterizing the sensitivity to noise of the decomposition U = ZX
of Lemma 9, in terms of the quantity d0 introduced in Definition 7. The proof of this key result is given
in Appendix B: it builds on fact that d0 provides a lower bound on the norm of some particular linear
combinations of the rows of X: indeed, one has

∀ z ∈ {−1,0,1,2}1×K/{0}, ∣∣zX ∣∣ ≥ d0/
√
n.

Lemma 10. (Robustness to noise) Let Z ′ ∈ Rn×K , X ′ ∈ RK×K and N ⊂ {1, . . . , n}. Assume that

1. ∀i ∈ N , ∣∣Z ′
iX

′ −Ui∣∣ ≤
d0

4K
√
n

2. there exists (i1, . . . , iK), (j1, . . . , jK) ∈ (NK): ∀k ∈ [1,K], Zik = Z
′
jk
= 1{k}

Then there exists a permutation matrix Pσ such that for all i ∈ N , Zi = (Z ′Pσ)i.

Let Û the matrix defined in Theorem 8. We first note that Lemma 6 can be rephrased in terms of
the degree parameter αn. Indeed, from Proposition 5, λmin(A) = αnµ0, with µ0 in Definition 7 and
dmax = αnLmax, with

Lmax = max
i=1...n

(
1

n
ZiBZ

T1n,1) .

From Lemma 6, letting

C0(η) = max [
4(2η + 3)(2 + η)

3η2Lmax
;

√

2(1 +
η

2 + η
)

1 +
√

1 + η

µ20
] ,

if αn ≥ C0(η) log (4n1+r) then with probability larger than 1 − n−r, K̂ = K and there exists a rotation
P̂ ∈ OK(R) such that

∣∣Û −UP̂ ∣∣
2
F ≤ 32(1 +

η

η + 2
)
Lmax

µ20
(

log(4n1+r)

αn
) . (6)
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In the sequel, we assume that K̂ =K and that this inequality holds with a rotation P̂ .
The estimate Ẑ,X̂ is then defined by

(Ẑ, X̂) ∈ argmin
Z′∈Zε(K),X′∈RK×K

∣∣Z ′X ′
− Û ∣∣

2
F .

Introducing X̂1 ∶= X̂P̂
−1, we first show that ẐX̂1 is a good estimate of U provided that Û is:

∣∣ẐX̂1 −U ∣∣F ≤ 2∣∣UP̂ − Û ∣∣F . (7)

This inequality can be obtained in the following way. Let X,Z be defined in Lemma 9. As Z ∈ Zε (for
ε < mink β1{k}), by definition of Ẑ and X̂ ,

∣∣ẐX̂ − Û ∣∣
2
F ≤ ∣∣ZXP̂ − Û ∣∣

2
F = ∣∣UP̂ − Û ∣∣

2
F .

Then, one has

∣∣ẐX̂P̂ −1
−U ∣∣F ≤ ∣∣ẐX̂P̂ −1

− Û P̂ −1
∣∣F + ∣∣Û P̂ −1

−U ∣∣F = ∣∣ẐX̂ − Û ∣∣F + ∣∣Û −UP̂ ∣∣F

≤ 2∣∣Û −UP̂ ∣∣F .

We now introduce the set of nodes

Nn = {i ∶ ∣∣ẐiX̂1 −Ui∣∣ ≤
d0

4K
√
n
}

and show that assumption 1. and 2. in Lemma 10 are satisfied for this set and the pair (Ẑ, X̂1), if

64K2

d20
∣∣Û −UP̂ ∣∣

2
F ≤ ε. (8)

Assumption 1. is satisfied by definition of Nn. We now show that, as required by assumption 2., Nn
contains one pure node in each community relatively to Z and Ẑ.

First, using notably (7), the cardinality of N c
n is upper bounded as

∣N c
n∣

n
=
∑i∈N cn1

n
≤

16K2

d20

n

∑
i=1

∣∣ẐiX̂1 −Ui∣∣
2
=

16K2

d20
∣∣ẐX̂1 −U ∣∣

2
F ≤

64K2

d20
∣∣Û −UP̂ ∣∣

2
F .

Thus, if (8) holds, ∣N c
n∣ ≤ εn. As Ẑ ∈ Zε(K), for all k ≤K the cardinality of the set of nodes i such that

Ẑi = 1{k} is strictly larger than εn, hence this set cannot be included in N c
n. Thus, for all k, there exists

jk ∈ Nn such that Ẑjk = 1{k}. As ε is smaller than mink β1{k} , the minimal proportion of pure nodes
in a community, by a similar argument the set of nodes i such that Zi = 1{k} cannot be included in N c

n

either. Thus for all k, there exists ik ∈ Nn such that Zik = 1{k}.
Hence Lemma 10 can be applied and there exists σ ∈SK such that ∀i ∈ Nn, Ẑi,σ(k) = Zi,k: up to a

permutation of the community labels, all the communities of nodes in Nn are recovered. Using (6), this
implies that whenever αn ≥ C0(η) log (4n1+r), with probability larger than 1 − n−r,

MisC(Ẑ,Z)

n
≤

∣N c
n∣

n
≤

64K2

d20
∣∣Û −UP̂ ∣∣

2
F ≤

2048K2Lmax

d20µ
2
0

(1+
η

η+2
)

log(4n1+r)

αn
,

provided that the final upper bound is smaller that ε (which implies that the condition (8) is satisfies),
which is the case for n large enough.
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6 Experimental results

We mostly use the estimation error to evaluate the quality of an estimate Ẑ of some membership matrix
Z, that we recall is defined by

Error(Ẑ,Z) =
1

nK
min
σ∈SK

∣∣ẐPσ −Z ∣∣
2
F .

This error can be split into two kinds of errors: entries that are ones in ẐPσ∗ (where σ∗ realizes the
minimum above) but zeros in Z, called false positive, and entries that are zeros in ẐPσ∗ but ones in Z,
called false negative. We define the false positive and false negative rates as

FP(Ẑ,Z) =
∣(i, k) ∶ Ẑi,σ∗(k) = 1 and Zi,k = 0∣

∣(i, k) ∶ Zi,k = 1∣
, FN(Ẑ,Z) =

∣(i, k) ∶ Ẑi,σ∗(k) = 0 and Zi,k = 1∣

∣(i, k) ∶ Zi,k = 0∣
.

An extension of the normalized variation of information (NVI) introduced by [Lancichinetti et al.,
2009] is also used as a measure of performance in several papers. This indicator compares the distribution
of two random vectors X = (X1, . . . ,XK) and Y = (Y1, . . . , YK) in {0,1}K associated to Ẑ and Z
respectively, such that the joint distribution of any two marginal is given by

P(Xk = xk, Yl = yl) =
∣i ∶ Ẑi,k = xk and Zi,l = yl∣

n
.

The NVI is defined by

NVI(Ẑ,Z) = 1 − min
σ∈SK

1

2K

K

∑
k=1

[
H(Xk∣Yσ(k))

H(Xk)
+
H(Yσ(k)∣Xk)

H(Yσ(k))
] ,

where H(V ) and H(V ∣W ) denote respectively the entropy of a random variable V and the conditional
entropy of V given W (see e.g. [Cover and Thomas, 2006] for definition). Unlike the other performance
measures that we consider, the NVI should be maximized.

Our analysis shows that for a graph drawn under the SBMO the error of SAAC goes to zero al-
most surely when the number of nodes n grows large, and the degrees are large enough, more precisely
(slightly more than) logarithmic in n. We illustrate this fact on simulated data, and compare SAAC to
other (spectral) algorithms on simulated data and on two kinds of real-world graphs with overlapping
communities : ego networks and co-authorship networks.

6.1 Simulated data

We compare SAAC to (normalized) spectral clustering using the adjacency matrix, referred to as SC and
to the spectral algorithm proposed by [Zhang et al., 2014] to fit the random graph model called OCCAM.
We refer to this algorithm as the OCCAM spectral method.

First, we generate networks from SBMO models with n = 500 nodes, K = 5 communities, αn =

log1.5(n), B = Diag([5,4,3,3,3]) and Z drawn at random in such a way that each community has a
fraction of pure nodes equal to p/K for some parameter p and the size of the maximum overlap Omax

is smaller than 3. The left part of Figure 2 shows the error of each method as a function of p, averaged
over 100 networks. SAAC significantly outperforms OCCAM, especially when there is a large overlap
between communities. As expected, both methods outperform SC, which is designed to handle non-
overlapping communities, except when the amount of overlap gets really small.
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To have a more fair comparison with the OCCAM spectral algorithm, we then draw networks under
a modified version of the model used before, in which the rows of Z are normalized, so that for all i, one
has ∣∣Zi∣∣ = 1: this random graph model is a particular instance of the OCCAM. Results are displayed on
the right part of Figure 2. The OCCAM spectral algorithm, designed to fit this model, performs most of
the time slightly better than the other methods, but the gap between OCCAM and SAAC is very narrow.

SAAC SAAC

Figure 2: Comparison of SC, SAAC and the OCCAM spectral algorithm under instances of SBMO
(left) and OCCAM (right) random graph models.

6.2 Real networks

[Zhang et al., 2014] compare the performance of the OCCAM spectral algorithm to that of other al-
gorithms on both simulated data and real data, namely ego networks [Mc Auley and Leskovec, 2012].
Nodes in an ego network are the set of friends of a given central node in a social network, and edges in-
dicate friendship relationships between these nodes. We first apply SAAC on networks from this dataset,
that naturally contain overlap. To do so, we use the pre-processing of the networks described in [Zhang
et al., 2014], that especially keeps communities if they have at least a fraction of pure nodes equal to 10%
of the network. Additionally, because the focus is on overlapping communities, we keep only networks
for which the fraction of nodes that belong to more than one community is larger than 1%. This leads us
to keep only 6 (out of 10) Facebook networks (labeled 0, 414, 686, 698, 1912 and 3437 in the dataset)
and 26 (out of 133) Google Plus networks from the original dataset.

Table 1 presents the characteristics of the Facebook networks used, and the performance of SC,
SAAC and OCCAM, averaged over the 6 networks used (with the standard deviation added). For each
algorithm, the estimation error is displayed but also the fraction of false positive (FP) and false negative
(FN) entries in Ẑ, and the extended normalized variation of information (NVI). The parameter c corre-
sponds to the average number of communities per node, c = ∑i,k Zi,k/n and Omax is the maximum size
of an overlap. OCCAM and SAAC have comparable performance, but there is no significant improve-
ment over spectral clustering. This can be explained by the fact that the amount of overlap (c) is very
small in this dataset. The same tendency was observed on the Google Plus networks.

We then try SAAC on co-authorship networks built from DBLP in the following way. Nodes corre-
spond to authors and we fix as ground-truth communities some conferences (or group of conferences):
an author belongs to some community if she/he has published at least one paper in the corresponding
conference(s). We then build the network of authors by putting an edge between authors if they have
published a paper together in one of the considered conferences. We present results for some confer-
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n K c Omax FP FN Error NVI
SC 190 3.17 1.09 2.17 0.200 0.139 0.120 0.556

(173) (1.07) (0.06) (0.37) (0.110) (0.107) (0.083) (0.256)
OCCAM 190 3.17 1.09 2.17 0.176 0.113 0.127 0.556

(173) (1.07) (0.06) (0.37) (0.176) (0.084) (0.102) (0.280)
SAAC 190 3.17 1.09 2.17 0.125 0.101 0.102 0.544

(173) (1.07) (0.06) (0.37) (0.067) (0.062) (0.049) (0.217)

Table 1: Spectral algorithms recovering overlapping friend circles in ego-networks from Facebook.

ences with machine learning in their scopes : ICML, NIPS, and two theory-oriented conferences that we
group together, ALT and COLT. We compare the three spectral algorithms in terms of estimation error
and false positive / false negative rates. Results are presented in Table 2, in which the estimated amount
of overlap ĉ = ∑i,k Ẑi,k/n is also reported. In this case, SAAC and OCCAM significantly outperform
SC, although the error is relatively high. The amount of overlap is under-estimated by both algorithms,
but SAAC appears to recover slightly more overlapping nodes. The difficulty of recovering communities
in that case may come from the fact that the networks constructed are very sparse. Indeed, we propose in
Appendix E preliminary experiments that illustrate the difficulty of recovering overlapping communities
in very sparse networks.

C1 = {ICML}, C2 = {ALT,COLT}.

n = 4374, K = 2, dmean = 3.8

c ĉ FP FN Error
SC 1.09 1. 0.39 0.55 0.46

OCCAM 1.09 1.00 0.2 0.34 0.26
SAAC 1.09 1.03 0.21 0.31 0.25

C1 = {NIPS}, C2 = {ICML},C3 = {ALT,COLT}
n = 9272, K = 3, dmean = 4.5

c ĉ FP FN Error
SC 1.22 1. 0.38 0.39 0.39

OCCAM 1.22 1.02 0.25 0.28 0.27
SAAC 1.22 1.04 0.26 0.28 0.27

Table 2: Spectral algorithms recovering overlapping machine learning conferences

7 Conclusion

Most existing algorithms for community detection assume non overlapping communities. Although they
may in principle be used to detect all subcommunities generated by the various overlaps, this is not
sufficient to recover the initial communities due to the combinatorial complexity of the corresponding
mapping. We have proposed a spectral algorithm, SAAC, that works directly on the overlapping commu-
nities, using the specific geometry of the eigenvectors of the adjacency matrix under the SBMO. We have
proved the consistency of this algorithm under the SBMO, provided each community has some positive
fraction of pure nodes and the expected node degree is at least logarithmic, and tested its performance
on both simulated and real data. This work has raised many interesting issues. First, it would be worth
relaxing the assumption that each community has some positive fraction of pure nodes. Next, the ex-
periments on simulated data have shown threshold phenomena in the very sparse regime that should be
further explored (see Appendix E). Finally, the proof of consistency actually assumes that the underlying
(NP-hard) optimization problem is solved exactly while this is not feasible in practice and heuristics
need to be applied, like the proposed alternate optimization procedure. Understanding the impact of
these heuristics on the performance of the algorithm is an interesting future work.
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A Properties of the SBMO

A.1 Identifiability: proof of Theorem 3

First note that A = ZBZT implies rank(A) ≤ rank(B). Now condition (SBMO2) means that the re-
striction of Z to itsK first rows is equal to IK , up to some reordering of the nodes. This gives rank(A) ≥

rank(B), and thus rank(A) = rank(B). If B satisfies (SBMO1), then rank(A) = rank(B) = K: the
parameter K is identifiable.

Now let Z,Z ′ ∈ Z and B,B′ invertible matrices such that A = ZBZT = Z ′B′Z ′T . We show that
there exists some permutation σ ∈SK such that Z = Z ′Pσ and B = PσB

′P Tσ .
Let U be a matrix containing K independent normalized eigenvalues of A associated to non-zero

eigenvalues. The columns of U form a basis of Im(A). As Im(A) ⊂ Im(Z) and Im(A) ⊂ Im(Z ′), there
exist invertible matrices X,X ′ such that U = ZX = Z ′X ′. As for all k = 1, . . . ,K there exists some i
such that Zi,k = δi,k, the k-th row of X is a sum of rows in X ′, namely

Xk = ∑
l∈Sk

X ′
l ,

where Sk ⊂ {1, . . . ,K}. Similarly, each row of X ′ is a sum of rows in X . In particular, for any k ≠ l,
there exist K integers a1, . . . , aK such that:

Xk +Xl =
K

∑
m=1

amXm.

If Sk ∩ Sl ≠ ∅, there exists some m such that am ≥ 2. But this is in contradiction with the fact that X
is invertible. Hence, Sk ∩ Sl = ∅ for all k ≠ l. The only way for the Sk to be pairwise disjoint is that
there exists a permutation σ such that X ′ = PσX . Since ZX = Z ′X ′ and X is invertible, this implies
Z = Z ′Pσ. We deduce that ZBZT = ZPσ−1B

′P Tσ−1Z
T and B = Pσ−1B

′P Tσ−1 , by the injectivity of Z.

A.2 Identifiability for SBM: proof of Proposition 2

We simply prove that two nodes i, j are in the same community if and only if Ai = Aj . This implies the
identifiability of the model: it is indeed sufficient to group nodes whose rows inA are identical. Let i, j be
such thatAi = Aj . If Zi ≠ Zj thenBZTi ≠ BZTj by assumption (SBM1) andAi = ZBZTi ≠ ZBZTj = Aj
by assumption (SBM2), a contradiction. Conversely, Zi = Zj clearly implies Ai = Aj .

A.3 Spectrum of the adjacency matrix

Proof of Proposition 5. As any non zero-eigenvector of A belongs to Im(A) ⊆ Im(Z), if u is an
eigenvector of A associated to αnµ ≠ 0, there exists x ∈ RK such that u = Zx. The following statements
are equivalent:

A(Zx) = αnµ(Zx)
αn
n
ZBZTZx = αnµZx

ZB (
1

n
ZZT)x = µZx

BOx = µx

BO1/2
(O1/2x) = = µO−1/2

(O1/2x)

O1/2BO1/2
(O1/2x) = µ(O1/2x)
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Hence Zx is an eigenvector of A associated to αnµ if and only if O1/2x is an eigenvector of O1/2BO1/2

associated to µ, which concludes the proof.

B Key ingredients in the proof of Theorem 8

B.1 Proof of Lemma 9: Decomposition.
√
nU contains independent eigenvectors of A associated to non-zero eigenvalues. From the first state-

ment in Proposition 5, there exists a matrix V of eigenvectors of M0 such that
√
nU = ZO−1/2V. As U

contains normalized eigenvectors, UTU = IK , which yields V TV = IK and V ∈ OK(R).

B.2 Proof of Lemma 10: Sensitivity to noise

Recall that from Proposition 9, there exists V ∈ OK(R) such that the matrix of leading eigenvectors U
can be written

U = ZX with X =
1

√
n
ZO−1/2V.

Using that ∣∣zX ∣∣ = ∣∣zO−1/2∣∣/
√
n, the following inequality is a consequence of the definition of d0

(Definition 7):

∀ z ∈ {−1,0,1,2}1×K/{0}, ∣∣zX ∣∣ ≥
d0
√
n
. (9)

Let i1, . . . , iK (resp. j1, . . . , jK) be pure nodes in N relatively to Z (resp. Z ′) that belong to com-
munities 1, . . .K: Zik = 1{k} (resp. Z ′

jk
= 1{k}). We first prove that i1, . . . , iK are also pure nodes

relatively to Z ′. For any k = 1, . . . ,K, Z ′
ik

can be written as a sum of pure nodes relatively to Z: there
exists a set Sk ⊂ {1, . . . , n} such that

Z ′
ik = ∑

m∈Sk

Zjm

Let k ≠ l. As ik and il belong to N ,

∣∣(Z ′
ik
+Z ′

il
)X ′

− (Zik +Zil)X ∣∣ ≤ ∣∣Z ′
ik
X ′

−ZikX ∣∣ + ∣∣Z ′
il
X ′

−ZilX ∣∣ ≤
d0

2
√
n

and

∣∣(Z ′
ik
+Z ′

il
)X ′

− ( ∑
m∈Sk

Zjm + ∑
m∈Sl

Zjm)X ∣∣ = ∣∣( ∑
m∈Sk

Z ′
jm + ∑

m∈Sl

Z ′
jm)X ′

− ( ∑
m∈Sk

Zjm + ∑
m∈Sl

Zjm)X ∣∣

≤ ∑
m∈Sk

∣∣Z ′
jmX

′
−ZjmX ∣∣ + ∑

m∈Sl

∣∣Z ′
jmX

′
−ZjmX ∣∣

≤
d0

2
√
n
.

This proves that
∣∣( ∑
m∈Sk

Zjm + ∑
m∈Sl

Zjm)X − (Zik +Zil)X ∣∣ ≤ d0/
√
n.

If Sk ∩ Sl ≠ ∅, there exists z ∈ {0,1,2,−1}/{0} such that ∣∣zX ∣∣ ≤ d0/
√
n, which contradicts (9). Thus

Sk ∩ Sl = ∅. Hence, the support of the Z ′
ik

are all disjoints, thus they must be distinct pure nodes. There
exists a permutation σ ∈SK such that

∀k = 1, . . . ,K, Zik = 1{k} and Z ′
ik
= 1{σ(k)}.
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To conclude the proof, we show that for σ the permutation defined above, it holds that

∀i ∈ N ,∀k ∈ {1,K}, Z ′
i,σ(k) = Zi,k.

Let i ∈ N . There exists a set S ⊂ {1, . . . , n} such that Zi = ∑k∈S 1{k}. It is sufficient to prove that
Z ′
i = ∑k∈S 1{σ(k)}. To do so, we first introduce C = {0,1}1×K/{0} and the following important mapping:

Φ ∶ C Ð→ C

z z→ y ∶ zX ′
∈ Ry,

where RK is partitioned into the following 2K − 1 regions indexed by y ∈ C,

Ry = {x ∈ R1×K
∶ ∣∣x − yX ∣∣ < ∣∣x − y′X ∣∣ for all y′ ∈ C, y′ ≠ z}.

The following lemma gathers useful properties of the mapping Φ. Its proof is given below.

Lemma 11. Φ is a one-to-one mapping satisfying ∣∣zX ′ − yX ∣∣ ≤ d0
2
√
n
⇒ Φ(z) = y.

As i ∈ N , from assumption 1.,

∣∣Z ′
iX

′
−ZiX ∣∣ ≤

d0
2
√
n
.

Moreover, using that Zi = ∑k∈S 1{k} = ∑k∈S Zik and ∑k∈S 1{σ(k)} = ∑k∈S Z ′
ik

, one has

∣∣(∑
k∈S

1σ(k))X
′
−ZiX∣∣ = ∣∣(∑

k∈S

Z ′
ik
)X ′

− (∑
k∈S

Zik)X∣∣

≤ ∑
k∈S

∣∣Z ′
ik
X ′

−ZikX ∣∣ ≤
d0

2
√
n
.

Using Lemma 11, the last two inequalities yield Φ(Z ′
i) = Zi and Φ (∑k∈S 1σ(k)) = Zi respectively.

Using that Φ is one-to-one (again from Lemma 11) concludes the proof:

Z ′
i = ∑

k∈S

1σ(k).

Proof of Lemma 11. Let z, y ∈ C be such that ∣∣zX ′ − yX ∣∣ ≤ d0
2
√
n

. Let y′ ∈ C : y′ ≠ y. Using (9),

∣∣zX ′
− y′X ∣∣ > ∣∣zX − y′X ∣∣ − ∣∣zX ′

− yM ∣∣ ≥
d0
√
n
−

d0
2
√
n
>

d0
2
√
n
≥ ∣∣zX ′

− yX ∣∣.

Hence, zX ′ ∈ Ry and Φ(z) = y, which proves the second part of the result.
We now prove that Φ is one-to-one. Let y ∈ C: there exists a set S ⊆ {1, . . . ,K} such that y =

∑m∈S 1{k} = ∑m∈S Zim . Let z = ∑m∈S Z
′
im

. As the Z ′
im

are disjoint indicators, one has z ∈ C. Moreover,

∣∣zX ′
− yX ∣∣ ≤ ∑

m∈S

∣∣Z ′
imX

′
−ZimX ∣∣ ≤

d0
2
√
n
.

From what we’ve just proved, this implies Φ(z) = y. As C is finite and ∀y ∈ C,∃z ∈ C ∶ Φ(z) = y, Φ is
one-to-one.
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C Results for non-adaptive procedures

We present here tighter upper bounds on the fraction of nodes that are misclassified by some non-adaptive
estimation procedures, based on Û ∈ Rn×K rather than on Û ∈ Rn×K̂ (with K̂ given in Theorem 8). In
this case, it is possible to analyze the solution of (Pε), defined in Section 5.2, as well as the solution of
the following optimization problem:

(PT ) ∶ min
Z′∈{0,1}n,K ∶∀i,Z′i∈T

X′∈RK×K

∣∣Z ′X ′
− Û ∣∣

2
F .

(PT ) relies on the knowledge of T , the set of subcommunities that are present in the network. If one
has this knowledge, note that the above estimate can be computed using alternate minimization, just
like the solution of (P)′. Theorem 12 below gathers the theoretical guarantees obtained for these two
estimators. Compared to Theorem 8, a logarithmic factor is removed in the upper bound on the number
of misclassified nodes: both estimates are consistent provided that

αn ≥ max [
1

Lmax
log(n);

Cr
µ20

] .

Theorem 12. Let Û be a matrix formed by K independent eigenvectors associated to the eigenvalues
of Â that are largest in absolute value. Let (Ẑ, Ĉ) be the solution of (Pε) or of (PT ). There exists a
constant C2 > 0 such that for all r > 0, there exists a constant Cr such that if

αn ≥ max [
1

Lmax
log(n);

Cr
µ20

] ,

then, for n large enough, with probability larger than 1 − n−r,

MisC(Ẑ,Z)

n
≤ C2

C2
rK

2Lmax

d20µ
2
0

1

αn
.

The proof of Theorem 12 is very similar to that of Theorem 8 given in the previous section. The main
difference is that in the non-adaptive case it is possible to use a tighter eigenvectors perturbation result
(specific to SBMO), that we state below as Lemma 13. Compared to Lemma 6, in Lemma 13 an extra
logarithmic factor is removed, but at the price of non-explicit constants, that do not permit to propose an
adaptive version of the result. The proof of both Lemma 6 and Lemma 13 are given in the next section.

Lemma 13. Let Â be drawn under a SBMO model with expected adjacency matrixA. LetK be the rank
of A. Let U (resp. Û ) be a matrix whose columns are K independent eigenvectors associated to the K
eigenvalues of A (resp. Â) with largest absolute values.

For all r > 0, there exists a constant Cr such that under the conditions

λmin(A)
2
/dmax > Cr and dmax ≥ log (n) ,

with probability larger than 1 − n−r, there exists a matrix P̂ ∈ On(R) such that

∣∣Û −UP̂ ∣∣
2

F
≤ 4C2

r (
dmax

λmin(A)2
) .

Also, compared to that of (Pε), the analysis of the solution of (PT ) requires a more complex ar-
gument to prove that the set Nn and (Ẑ, X̂1) defined in the proof of Theorem 8 satisfy assumption 2.
of Lemma 10, i.e. that Nn contains one pure nodes per community in Z and Ẑ. We present below the
argument that can be used in that case.
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Nn contains pure nodes. Under the assumption

64K2

d20
∣∣Û −UP̂ ∣∣

2
F ≤ min

z∈T
βz,

∣N c
n∣/n ≤ βz for each possible membership vector z ∈ T . Thus, for all z ∈ T , the set of nodes i such that

Zi = z cannot be included in N c
n and there exists iz ∈ Nn such that Ziz = z. In particular, Nn contains

pure nodes relatively to Z. Now we need to prove that it also contains pure nodes relatively to Ẑ.
To do so, we introduce the following mapping and prove it is one-to-one:

Ψ ∶ T Ð→ T

z z→ y ∶ zX̂1 ∈ Ry,

where RK is partitioned into K̃ = ∣T ∣ regions, indexed by y ∈ T ,

Ry = {x ∈ RK ∶ ∣∣x − yX ∣∣ < ∣∣x − y′X ∣∣ for all y′ ∈ T ∶ y′ ≠ y}.

For all i ∈ Nn, Ψ(Ẑi) = Zi. Indeed, ẐiX̂1 ∈ R̃Zi for if y′ ∈ T is such that y′ ≠ Zi, using (9) and the fact
that i belongs to Nn yields

∣∣ẐiX̂1 − y
′X ∣∣ > ∣∣ZiX − y′X ∣∣ − ∣∣ẐiX̂1 −ZiX ∣∣ ≥

d0
√
n
−

d0
2
√
n
>

d0
2
√
n
≥ ∣∣ẐiX̂1 −ZiX ∣∣.

It follows that for all y ∈ T , there exists z ∈ T such that y = Ψ(z). Indeed, there exists iy ∈ Nn such
that Ziy = y, thus Ψ(Ẑiy) = y and z = Ẑiy belongs to T by definition of the optimization problem that Ẑ
solves. As T is a finite set, Ψ is one-to-one. Thus, one has

{Ẑiz ∶ z ∈ T } = Ψ−1
({Ziz ∶ z ∈ T }) = Ψ−1

(T ) = T .

In particular, there exists i1, . . . , iK (resp. j1, . . . , jK) such that ∀k ∈ {1, . . . ,K}, Zik = Ẑjk = 1{k}.

D Proof of the eigenvectors perturbation results

Lemma 6 and Lemma 13 rely on two main ingredients, described below: a high-probability bound on
the spectral norm of Â − A (i.e. a concentration result), and results from linear algebra, mostly the
Davis-Kahan theorem.

D.1 Main ingredients

We state here the matrix concentration result that is used to prove Lemma 6, which is of interest in its
own. This result is not specific to the DC-SBM, it holds for any random graph model. It follows from a
Bernstein inequality for sum of independent matrices, and its proof is given in Section D.3.

Theorem 14. Let δ ∈]0,1[. Let ε > 0 be fixed. If

dmax ≥
2

9

1 + ε

ε2
log

2n

δ
,

one has

P
⎛

⎝
∣∣Â −A∣∣ >

√

2(1 + ε)dmax log (
2n

δ
)
⎞

⎠
≤ δ.
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Another concentration result, given below, is used to prove Lemma 13. This result, recently obtained
by [Lei and Rinaldo, 2015] improves the dependency in n in the high-probability upper bound on ∣∣Â−A∣∣,
since a logarithmic term is removed compared to Theorem 14. However, the constants in the upper bound
are non-explicit.

Theorem 15. [Theorem 5.2 of [Lei and Rinaldo, 2015]] In a random graph model, if d is such that
d ≥ nmaxi,j Ai,j and d ≥ c0 log(n), for every r > 0 there exists a constant C = C(r, c0) such that

P (∣∣Â −A∣∣ > C
√
d) ≤ δ.

In the proof of Lemma 6, another concentration result is needed to control the deviations of the
empirical degrees from the mean degrees. The following result follows from Bernstein inequalities (for
independent random variables) and is proved in Appendix D.4.

Lemma 16. Let α ∈]0,1[.

P (d̂max ≤ (1 + α)dmax) ≥ 1 − ne
−dmax

α2

2(1+α/3)

P (d̂max ≥ (1 − α)dmax) ≥ 1 − e
−dmax

α2

2(1+α/3)

We state here two useful results from linear algebra, that relate the eigenvalues and eigenvectors of
two matrices A and B to the difference in spectral norm between the two matrices.

Lemma 17 (Weyl’s inequalities). Let λ1(A) ≥ ⋅ ⋅ ⋅ ≥ λn(A) denote the ordered eigenvalues of a symmet-
ric matrix A of size n. For any two symmetric matrices A et B of size n,

for all i = 1, . . . , n ∣λi(A) − λi(B)∣ ≤ ∣∣A −B∣∣.

Theorem 18 (Davis-Kahan theorem). Let A andB be two symmetric matrices of size n. Let I ⊂ R be an
interval that contains exactly k eigenvalues of A and B. Let XA (resp. XB) be a matrix in Rn×k whose
columns are k independent normalized eigenvectors associated to the eigenvalues of A (resp. B) in I .

Then there exists a rotation P ∈ Ok(R) such that, with δ ∶= inf{∣λ − s∣, λ ∈ sp(B), λ ∉ I, s ∈ I},

∣∣XA −XBP ∣∣F ≤

√
2

δ
∣∣A −B∣∣.

The usual statement of the Davis-Kahan theorem involves principal angles between the column
spaces of XA and XB , but the above formulation can be easily obtained from Proposition B.1 of [Rohe
et al., 2011] and the following explanation therein relating the principal angles to the Frobenius norm of
XA −XBP for some rotation P .

D.2 Proof of Lemma 6 and Lemma 13

Let λk(A) be the eigenvalues of A, and λk(Â) be the eigenvalues of Â, sorted in non-increasing order.
Let s (resp. r) be the number of of eigenvalues of A that are strictly positive (resp. negative), so that
K = s + r (where K is the rank of A). Using Weyl’s inequalities (Lemma 17), one can write

for k = 1, . . . s, λk(Â) ≥ λk(A) − ∣∣Â −A∣∣,

for k = s + 1, . . . , n − r, ∣λk(Â)∣ ≤ ∣∣Â −A∣∣,

for k = n − r + 1, . . . , n, λk(Â) ≤ λk(A) + ∣∣Â −A∣∣.
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Let UK (resp. ÛK) be a matrix whose columns are K orthogonal eigenvectors associated to the
largest eigenvalues (in absolute value) of matrix A (resp. Â). The proof of the two lemmas rely on the
following important statement:

λmin(A) > 2∣∣Â −A∣∣ ⇒ ∣∣ÛK −UK ∣∣
2
F ≤

16

λmin(A)2
∣∣Â −A∣∣

2. (10)

We prove (10). If λmin(A) > 2∣∣Â −A∣∣, letting an = λmin(A)/2, one has

k ∈ {1, s} ⇒ λk(A) ∈ [an,+∞[

k ∈ {s + 1, n − r} ⇒ λk(A) ∈] − an, an[

k ∈ {n − r + 1, n} ⇒ λk(A) ∈] −∞,−an]

In particular, the K eigenvalues of Â with largest absolute values are λk(Â), for k ∈ {1, s} (positive
eigenvalues) and k ∈ {n − r + 1, n} (negative eigenvalues). The matrix ÛK can thus be written (up to a
permutation of the columns) ÛK = [Û+∣Û−], where the s columns of U+ are normalized eigenvectors
associated to positive eigenvalues and the r columns of U− are normalized eigenvectors associated to
negative eigenvalues. Let UK = [U+∣U−] be a matrix of normalized eigenvectors of A decomposed
similarly (up to the same permutation of columns).

As I+ ∶= [an,+∞[ contains exactly s eigenvalues ofA and Â, from Theorem 18, there exists a matrix
P̂ + ∈ Os(R) such that

∣∣Û+
−U+P̂ +

∣∣F ≤
2
√

2

λmin(A)
∣∣Â −A∣∣.

Similarly, as I− ∶=] −∞,−an] contains exactly r eigenvalues of A and Â, from Theorem 18, there exists
a matrix P̂ − ∈ Or(R) such that

∣∣Û−
−U−P̂ −

∣∣F ≤
2
√

2

λmin(A)
∣∣Â −A∣∣.

Let P̂ be the block diagonal matrix of size r + s =K with P̂ + and P̂ − as first and second block. One has

∣∣ÛK −UK P̂ ∣∣
2
F = ∣∣Û+

−U+P̂ +
∣∣
2
F + ∣∣Û−

−U−P̂ −
∣∣
2
F ≤

16

λmin(A)2
∣∣Â −A∣∣

2.

This proves (10).

Proof of Lemma 6. Let η be fixed and let ε = η/(2 + η), so that (1 + ε)/(1 − ε) = 1 + η. Let E ,F ,G be
the three events

E = (∣∣Â −A∣∣ ≤
√

2(1 + ε)dmax log(4n/δ))

F = (d̂max(n) ≤ (1 + ε)dmax(n))

G = (d̂max(n) ≥ (1 − ε)dmax(n))

andH = E ∩F ∩ G. We first show that P(H) ≥ 1 − δ under the assumption

dmax ≥
2(1 + ε/3)

ε2
log (

4n

δ
) . (11)
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From Theorem 14, this condition implies P(Ec) ≤ δ/2. From Lemma 16, one has

P(Fc) ≤ ne
−dmax

ε2

2(1+ε/3) ≤ δ/4,

P(Gc) ≤ e
−dmax

ε2

2(1+ε/3) ≤ ne
−dmax

ε2

2(1+ε/3) ≤ δ/4.

A union bound then yields P(H) ≥ 1 − δ.
From now on, we assume that the eventH holds. We first prove that under the extra assumption

λmin(A) ≥ Cε
√
dmax log(4n/δ) with Cε =

√
2(1 + ε)

⎛

⎝
1 +

√
1 + ε

1 − ε

⎞

⎠
, (12)

the set

Ŝηn =

⎧⎪⎪
⎨
⎪⎪⎩

k ∶ ∣λk(Â)∣ >

√

2
1 + ε

1 − ε
d̂max log(4n/δ)

⎫⎪⎪
⎬
⎪⎪⎭

coincides with {1, s} ∪ {n − r + 1, n}, thus its cardinality is K. The consequences of Weyl’s inequality
yield in this particular case, using that E holds

for k ∉ {s + 1, n − r}, ∣λk(Â)∣ > λmin(A) −
√

2(1 + ε)dmax(n) log(4n/δ) (13)

for k ∈ {s + 1, n − r} ∣λk(Â)∣ <
√

2(1 + ε)dmax log(4n/δ). (14)

For every k ∈ Ŝn, using that G holds, one has

∣λk(Â)∣ >

√

2
1 + ε

1 − ε
d̂max log(4n/δ) ≥

√
2(1 + ε)dmax(n) log(4n/δ).

From (14), this proves that k ∈ {1, n}/{s + 1, n − r}. Conversely, Let k ∈ {1, n}/{s + 1, n − r}. Using
(13),

∣λk(Â)∣ ≥ Cε
√
dmax log(4n/δ) −

√
2(1 + ε)dmax log(4n/δ)

≥ (Cε −
√

2(1 + ε))
√

(d̂max/(1 + ε)) log(4n/δ) =
Cε −

√
2(1 + ε)

√
1 + ε

√

d̂max log(4n/δ)

>

√

2
1 + ε

1 − ε
d̂max log(4n/δ),

where we use that F holds for the second inequality. Hence k ∈ Ŝn. Thus Ŝn = {1, n}/{s + 1, n − r}.
As the set Ŝηn is of cardinality K, the matrix Û in the statement of Lemma 6 coincides with ÛK , the

matrix formed by the K leading vectors of Â. Assumption (12) implies in particular (using additionally
that E holds) that

λmin(A) ≥ 2
√

2(1 + ε)dmax log(4n/δ) ≥ 2∣∣Â −A∣∣.

From (10), one obtains

∣∣Û −U ∣∣ = ∣∣ÛK −UK ∣∣ ≤
16

λmin(A)2
∣∣Â −A∣∣

2
≤

32(1 + ε)

λmin(A)2
dmax log (

4n

δ
) .

The result follow by substituting ε with η in this last equation and in assumptions (11) and (12).
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Proof of Lemma 13. In the SBMO model, there exists a constant c such that

dmax ≤ nmax
i,j

Ai,j ≤ cdmax.

Let r > 0. From Theorem 15, there exists a constant C̃r such that if dmax ≥ log(n), with probability
larger than 1 − n−r,

∣∣Â −A∣∣ ≤ C̃r
√
nmax

i,j
Ai,j ≤ (

√
cC̃r)

√
dmax.

Letting Cr =
√
cC̃r, under the assumption that λmin(A) ≥ 2Cr

√
dmax, one has λmin(A) > 2∣∣Â − A∣∣.

From (10), this yields

∣∣ÛK −UK ∣∣
2
F ≤

16

λmin(A)2
∣∣Â −A∣∣

2
≤

16

λmin(A)2
C2
rdmax.

Lemma 13 follows by rescaling the constant Cr.

D.3 Proof of Theorem 14: a matrix concentration result

Our proof is based on the following result by [Tropp, 2012].

Lemma 19 (Theorem 1.4, [Tropp, 2012]). Let (Xk) be a sequence of independent, random, symmetric
matrices with dimension d. Assume that each random matrix satisfies

E[Xk] = 0 and λmax(Xk) ≤ R almost surely

and let σ2 be such that ∣∣∑nk=1E[X2
k]∣∣ ≤ σ

2. Then, for all t ≥ 0,

P(λmax (
n

∑
k=1

Xk) ≥ t) ≤ d exp(−
t2

2(σ2 +Rt/3)
) .

One has

Â −A = ∑
i≤j

Xi,j ,

where Xi,j is a matrix of size n defined by

Xi,j ∶= (Âi,j −Ai,j) × {
eie

T
j + eje

T
i if i < j

eie
T
i if i = j.

One has ∣∣Xi,j ∣∣ ≤ ∣Âi,j −Ai,j ∣ ≤ 1 and

RRRRRRRRRRR

RRRRRRRRRRR

∑
i≤j

E[X2
i,j]

RRRRRRRRRRR

RRRRRRRRRRR

=

RRRRRRRRRRR

RRRRRRRRRRR

Diagi
⎛

⎝

n

∑
j=1

E[X2
i,j]

⎞

⎠

RRRRRRRRRRR

RRRRRRRRRRR

= max
i

n

∑
j=1

Ai,j(1 −Ai,j) ≤ max
i

n

∑
j=1

Ai,j ≤ dmax.

From Lemma 19,

P (∣∣Â −A∣∣ > αdmax) ≤ 2n exp(−dmax
α2

2(1 + α/3)
)
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Let ε > 0. Choosing α =
√

2(1 + ε) log(2n/δ)/dmax, for

dmax ≥
2

9

1 + ε

ε2
log

2n

δ

(which is equivalent to α/3 ≤ ε), one has

P
⎛

⎝
∣∣Â −A∣∣ >

√

2(1 + ε)dmax log (
2n

δ
)
⎞

⎠
≤ 2n exp(−

2(1 + ε) log(2n/δ)

2(1 + α/3)
) ≤ δ.

D.4 Proof of Lemma 16: a deviation result for the empirical degrees

For all i ∈ {1, n},

d̂i − di =
n

∑
j=1

(Âi,j −Ai,j).

As E[Âi,j] = Ai,j , ∣Ai,j ∣ ≤ 1 and ∑nj=1E[Â2
i,j] = ∑

n
j=1Ai,j = di, Bennett’s inequality ([Boucheron et al.,

2013]) yields, for all t > 0

P (d̂i − di > t) ≤ exp(−dih(
α

di
)) ,

P (d̂i − di < −t) ≤ exp(−dih(
α

di
)) ,

where h is the function defined by h(u) = (u + 1) log(u + 1) − u.
The first two inequalities follow from the fact that v ↦ vh(t/v) is decreasing for all t, hence

P (d̂i − di > αdmax) ≤ exp (−dmaxh (α)) , (15)

P (d̂i − di < −αdmax) ≤ exp (−dmaxh (α)) . (16)

Let i0 be such that di0 = dmax. From (16),

P(d̂i0 ≥ di0 − αdmax) ≥ 1 − e−dmaxh(α)

P(d̂max ≥ (1 − α)dmax) ≥ 1 − e−dmaxh(α),

using that in particular d̂max ≥ d̂i0 . From (15) and a union bound,

P (∀i ∈ {1, n}, d̂i ≤ di + αdmax) ≥ 1 − n exp (−dmaxh (α)) ,

P (∀i ∈ {1, n}, d̂i ≤ (1 + α)dmax) ≥ 1 − n exp (−dmaxh (α)) ,

P (d̂max ≤ (1 + α)dmax) ≥ 1 − n exp (−dmaxh (α)) ,

by definition of d̂max. The statements in Lemma 16 follow from the lower bound

h(u) ≥
u2

2(1 + u/3)
,

that can be found in [Boucheron et al., 2013].
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E The sparse case: uncovering a phase transition

Consider the following simple SBMO with two communities and a diagonal connectivity matrix such
that if 1r ∈ Rr×1 is a vector containing only ones, the expected adjacency matrix is

A =
αn
n
ZBZT , with B = (

a 0
0 a

) and Z =
⎛
⎜
⎝

1sn 0
1(1−2s)n 1(1−2s)n

0 1sn

⎞
⎟
⎠
,

where 0 < s < 1/2 is the fraction of pure nodes in each of the two communities: the smaller s, the larger
the overlap, whereas s = 1/2 corresponds to pure nodes only, i.e. a SBM without overlap. We now
elaborate on this example. The matrix A has rank 2 with eigenvalues αna(2−3s) > αnsa and associated
eigenvectors that are respectively

X =
⎛
⎜
⎝

1sn
2(1−2s)n
1sn

⎞
⎟
⎠

and Y =
⎛
⎜
⎝

−1sn
0(1−2s)n
1sn

⎞
⎟
⎠
.

Each node i of the network has a spectral embedding given by (Xi, Yi), i.e. pure nodes in community
one correspond to P1 = (1,−1), pure nodes in community two correspond to P2 = (1,1) and mixed
nodes correspond to M = (2,0). As expected, we have M = P1 + P2 and if αn is sufficiently large, i.e.
αn >> logn, then Theorems 8 and 12 apply: the eigenvectors of the empirical adjacency matrix Â will
be close to the eigenvectors X and Y and as a consequence, the number of nodes that are misclassified
by SAAC will vanish as n tends to infinity.

Let now consider the very sparse case where αn = 1. In this case our theoretical results are not valid
and indeed we believe that there is a range of parameters where only partial recovery is possible. Note
that if you have only access to the eigenvector X (associated to largest eigenvalue a(2 − 3s)), then it
is possible to distinguish pure nodes from mixed nodes but it is impossible to distinguish pure nodes of
community one from pure nodes of community two. Observe that the second eigenvalue of A, sa can be
very small in which case, this eigenvalue will be ‘hidden’ in the noise of the model. In the sparse regime,
it is known that high-degree nodes induce a lot of noise on the spectrum of the adjacency matrix. We now
give a quantitative conjecture based on recent results obtained on the non-backtracking matrix [Krzakala
et al., 2013, Bordenave et al., 2015, Saade et al., 2015] which can be seen as a way to regularize the
adjacency matrix. We refer to the works cited above for a precise description of the non-backtracking
matrix and its spectral analysis. We should stress that the rigorous results obtained so far for the non-
backtracking matrix do not allow us to cover the present framework. However, it is believed that the
largest eigenvalue of the non-backtracking matrix for our graph will be a(2 − 3s) + on(1) and that the
noise, i.e. the eigenvalue λ corresponding to eigenvectors not correlated with the communities will be of
modulus ∣λ∣ <

√
a(2 − 3s). In particular, if sa >

√
a(2 − 3s), then a second eigenvalue appears on the

real axis at sa + on(1). Moreover the eigenvector associated to these 2 eigenvalues are correlated with
the true communities. To summarize, we claim:

Conjecture 20. If s2a > 2 − 3s then a spectral algorithm based on the non-backtracking matrix will
classify a positive fraction of the pure nodes.
If s2a < 2 − 3s then it is impossible to classify the pure nodes better than by random guessing.

The spectral algorithm will be similar to SAAC except that we replace Û containing the eigenvectors
of Â by the corresponding matrix computed from the eigenvectors of the empirical non-backtracking
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matrix. The rest of the algorithm is unchanged. Figure 3 shows the spectrum of the non-backtracking
matrix for three values of a around the phase transition at 2−3s

s2
which in this particular case is 9 as

s = 1/3. Note that in this example, it is always possible to distinguish the pure nodes form the mixed
nodes. Only the classification of the pure nodes is non-trivial.

Figure 3: Spectrum of the non-backtracking operator with n = 1200, sn = 400 and a = 9,11,13. The
circle has radius

√
a(2 − 3s) in each case.

Figure 4 illustrates the behavior, in the sparse case (αn = 1), of the SAAC algorithm as described in
this paper (i.e. with a spectral embedding based on the adjacency matrix, not on the non-backtracking
matrix). The fraction of correct entries (1-Error(Ẑ,Z)) is displayed as a function of the parameter s.
The number of nodes is fixed to n = 1000 and the curves in different colors correspond to different
values of a. For each value of s, the error is averaged over 200 networks drawn under the corresponding
SBMO. Overall, the algorithm performs best with large values of a (that correspond to larger degrees).
For each value of a, the case s = 1/2 corresponds to a standard SBM without overlap and we see that our
algorithm performs well. As s decreases, we see that below a certain value of s the performance of the
algorithm deteriorates greatly which is in accordance with the phase transition conjectured above.
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Figure 4: Error of SAAC as a function of the fraction of each type of pure nodes in a SBMO model
with two-by-two overlap between K = 2 communities
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