

Combinatorial optimization with multiple resources and energy constraints

Sandra Ulrich Ngueveu, Christian Artigues, Pierre Lopez

▶ To cite this version:

Sandra Ulrich Ngueveu, Christian Artigues, Pierre Lopez. Combinatorial optimization with multiple resources and energy constraints. Gaspard Monge Program for Optimization - Conference on Optimization & Practices in Industry: PGMO-COPI'14, Oct 2014, Paris, France. , 2015. hal-01163069

HAL Id: hal-01163069 https://hal.science/hal-01163069

Submitted on 12 Jun2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sandra Ulrich Ngu	énergétiques multiples (OREM) - PGMO project (2013-2015) - 1st year gueveu, Christian Artigues and Pierre Lopez
	gueveu, Unristian Artigues and Pierre Lopez
T . Δ	
	AAS-CNRS, Toulouse, France
ODEM project context and objectives	Conorio problem . Cohoduling with non reversible on erry
OREM project : context and objectives	Generic problem : Scheduling with non-reversible energy sources
Context ntegration of energy constraints in deterministic scheduling models, such as job-shop schedulin	ing or
rce-constrained project scheduling, yields a combinatorial optimization challenge. It follows that	
ature on this subject is sparse. Pre-existing studies involve multiple energy sources and general non-li ency functions, but generally no scheduling. All our previous work on scheduling under energy constra	-linear $-$ Set of time time periods T

efficiency functions, but generally no scheduling. All our previous work on scheduling under energy constraints considered linear (and even identical) energy efficiency functions, which oversimplifies the problem.

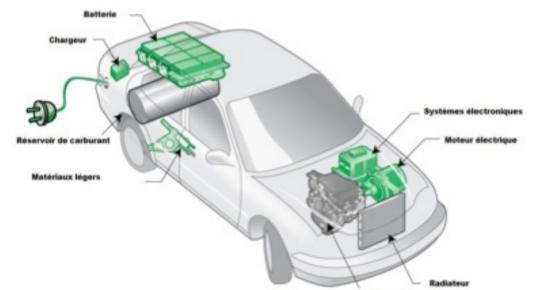
 $-b_i$: constant instantaneous energy demand of activity i-Set of non-reversible energy sources S $-\rho^{s}$: piecewise-linear efficiency function for source s (x-axis = cost, y-axis = demand and $\rho^s(x) = 0, \forall x < 0, \forall s \in \mathcal{S}$). $-a_{it}$: constant term equal to 1 if $t \in [r_i, d_i]$ and 0 otherwise

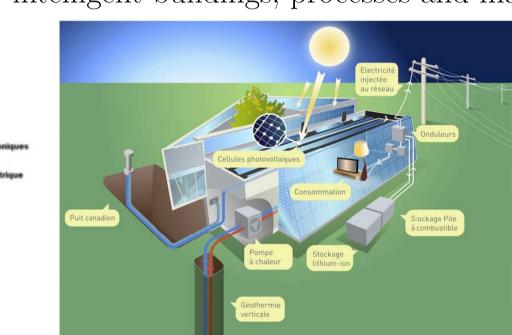
Objectives

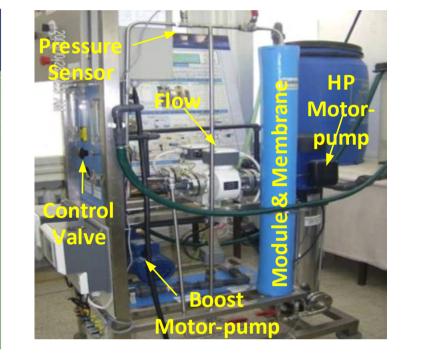
- -Address the (combinatorial) optimization challenge of integrating energy sources constraints (physical, technological and performance characteristics) in deterministic (scheduling) models.
- -Solve explicitly and in an integrated fashion the resulting energy resource allocation problems and energyconsuming activity scheduling problems with non linear energy efficiency functions.

Applications and challenge

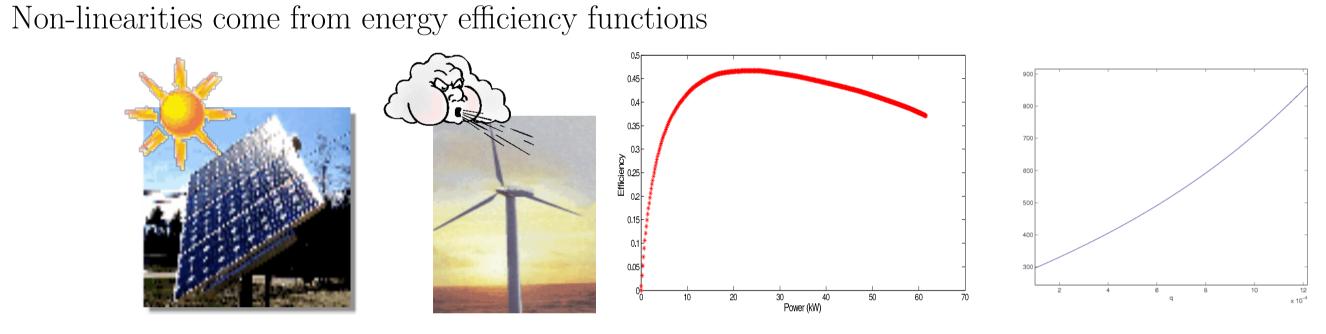
Applications Scheduling for hybrid electric vehicles, intelligent buildings, processes and manufacturing

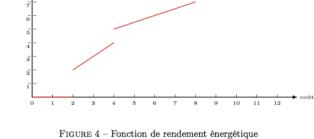






Challenge

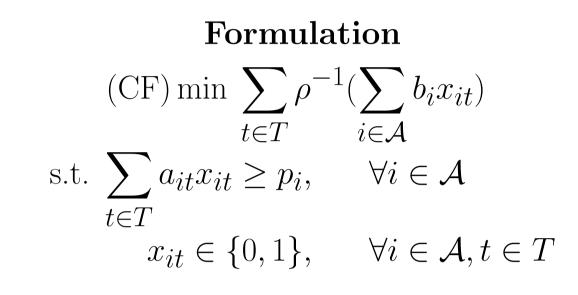




Decision variables

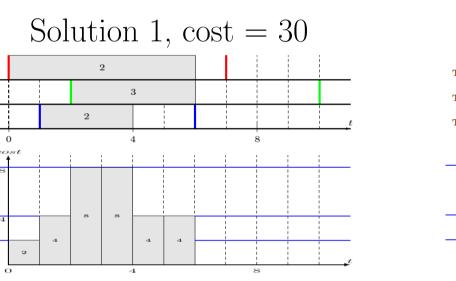
 $-x_{it}$: binary, = 1 iff activity *i* is ongoing at time period *t*

 $-r_i, d_i, p_i$: release date, due date, duration of activity i



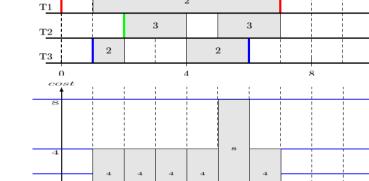
Complexity and equivalence between single and multiple sources

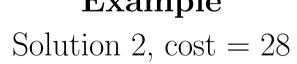
-**Theorem 1** The problem is NP hard by reduction from discrete bin packing -Theorem 2 For any problem with multiple sources, there is an equivalent single source problem



Example

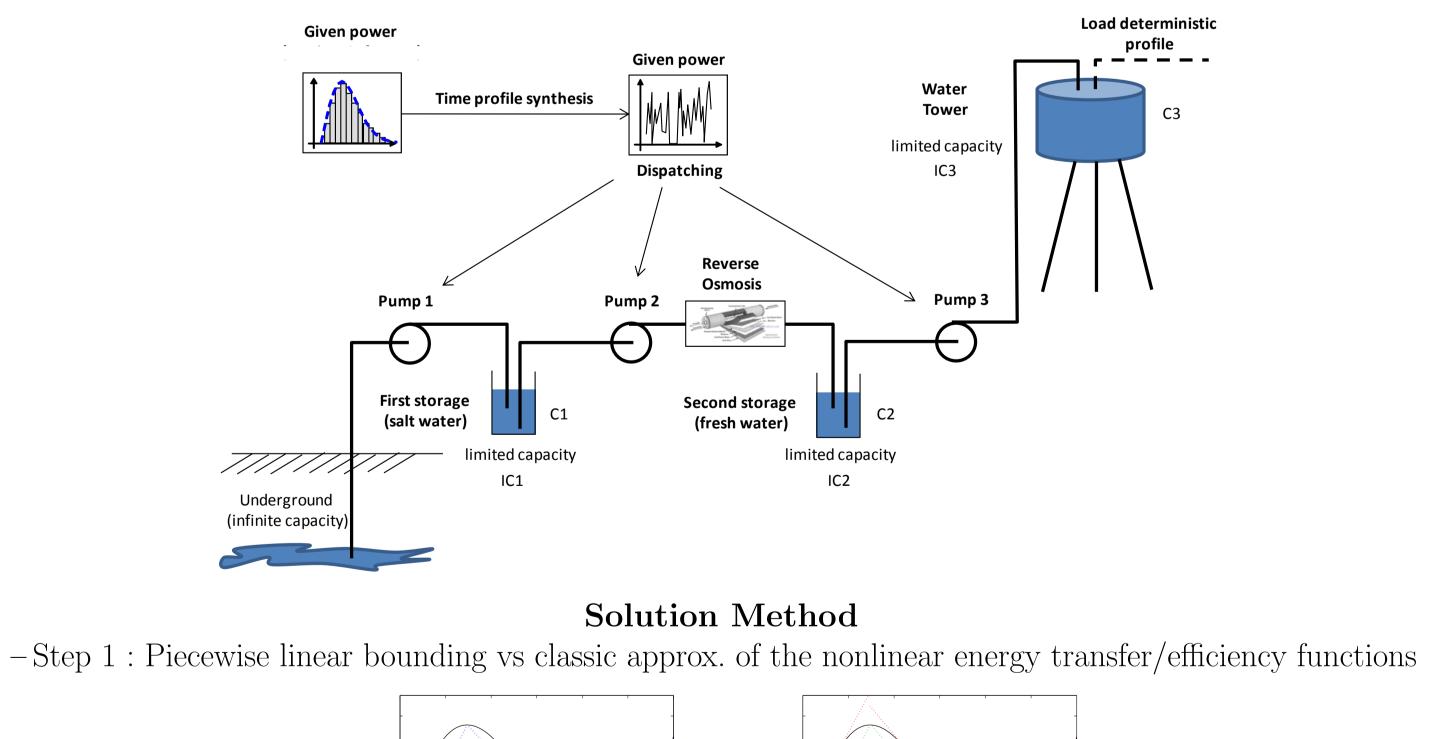
Solution 3, $\cos t = 26$ 3





Piecewise linear bounding procedures for the optimal management of water pumping and desalination processes

Proof of concept on a water pumping and desalination system [CLAIO 2014, IFORS 2014]



Dantzig-Wolfe decomposition and Branch&Price Method

Extended formulation based on feasible subsets of activities

-Set of activity sets executable in parallel \mathcal{L} (at any given time period \overline{L}_t) -Set of activities belonging to set l: demand b_l , cost c_l , time window $[R_l, D_l]$ $-a_{il}$: binary constant term equal to 1 iff *i* belongs to set *l* -Variable y_{lt} : binary, = 1 iff activity set l is being executed at time t

The linear relaxation of the master problem

 $(LRMP)\min \sum_{t\in T}\sum_{l\in \overline{L}_t}c_l y_{lt}$ The resulting dual (DLMRP) is : $\begin{aligned} x_{it} &- \sum_{l \in \overline{L}_t} a_{il} y_{lt} = 0, \ \forall i \in A, t \in T \\ \sum_{l \in \overline{L}} \sum_{t=R_l}^{D_l - 1} a_{il} y_{lt} \geq p_i, \qquad \forall i \in A \end{aligned}$ $-\sum_{l\in\overline{L}_t}y_{lt}\geq -1,\qquad\forall t\in T$ $x_{it} \le 1 \ \forall i \in A, t \in T$ $y_{lt} \ge 0 \ \forall t \in T, l \in \overline{L}_t$ $x_{it} \ge 0 \ \forall i \in A, t \in T$

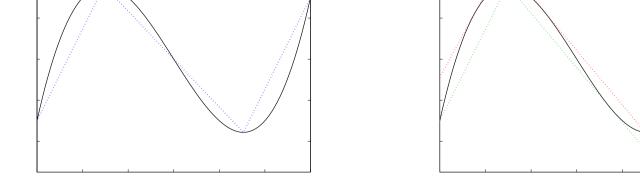
 $\max \sum_{i \in A} p_i u_i - \sum_{t \in T} v_t + \sum_{i \in A} \sum_{t \in T} z_{it}$

 $\sum_{i \in A} a_{il}(u_i - w_{it}) - v_t \le c_l, \ \forall t \in T, l \in \overline{L}_t$ $w_{it} + z_{it} \le 0, \ \forall i \in A, t \in T$ $w_{it} \in \mathbb{R}, \ \forall i \in A, t \in T$ $u_i \ge 0, \qquad \forall i \in A$ $v_t \ge 0, \qquad \forall t \in T$

Therefore, the reduced cost of a column y_{lt} is : $c_l - \sum_{i \in A} a_{il}(u_i) - v_t$

Two column generation schemes

all dual values u_i, v_t, w_{it} (best time t' (a predefined time t')



-Step 2 : Reformulation of the problem into two mixed integer problems (<u>MILP</u> and $\overline{\text{MILP}}$) - the problem is originally a MINLP -using the pair of bounding functions previously defined

Number of sectors per tolerance value								
		Pump 1		(Pump 2+RO)		Pump 3		
	ϵ	$\overline{n_{p_1}}$	n_{p_1}	$\overline{n_{p_2}}$	n_{p_2}	$\overline{n_{p_3}}$	n_{p_3}	
	5%	2	2	11	21	3	2	
	1%	5	5	21	29	8	5	
	0.5%	8	7	35	62	13	7	
	0.3%	10	9	43	74	17	9	

Results									
Lower and upper bound obtained									
		MIL	<u>'</u> P	MILP			Gap	opt	
	ϵ	UB	S	LB	S	UB*	%		
	5%	20580	4	19740	15	_	4.25	no	
	1%	20100	15	19920	140	-	0.9	no	
	0.5%	20040	178	19980	117	_	0.3	no	
	0.3%	20040	64	19980	321	19980	0.0	yes	

SP1 :	all dual values $u_i, v_t,$ problem data $a_{it}, b_i,$	$\left. \begin{array}{c} w_{it} \\ \rho^{-1} \end{array} \right\} \rightarrow \begin{array}{c} \phi^{0} & \phi^{0} \\ \phi^{0} & \phi^{0} \end{array} \rightarrow \left\{ \begin{array}{c} \phi^{0} & \phi^{0} \\ \phi^{0} & \phi^{0} \end{array} \right\}$	best time l' SP2 : related problem	dual values $u_i, w_{it'}$ $\rightarrow \overset{\circ}{\longrightarrow} \rightarrow \langle a_{it}, b_i, \rho^{-1} \rangle$	best task set <i>l'</i>
			Results		
			Extended Model	Compact Model	
		T	Branch & Price	Black Box Solver	
	#Opt/# Ratio	Instances avg (min, max)	261 /288 99.81% (77.47 %, 100%)	5/288 84.21 % (57.85 %, 99.99 %)	
	Time Nbnodes	avg (min, max) avg (min, max)		$\frac{1034 \text{ s} (7 \text{ s}, 1927 \text{ s})}{2174044 (57157, 13470373)}$	