Combinatorial optimization with multiple resources and energy constraints
Sandra Ulrich Ngueveu, Christian Artigues, Pierre Lopez

To cite this version:

HAL Id: hal-01163069
https://hal.science/hal-01163069
Submitted on 12 Jun 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Underground Control

Combinatorial optimization with multiple resources and energy constraints
Optimisation sous contraintes de ressources énergétiques multiples (OREM) - PGMO project (2013-2015) - 1st year
Sandra Ulrich Nguyen, Christian Artigues and Pierre Lopez
LAAS-CNRS, Toulouse, France

OREM project: context and objectives

Context
The integration of energy constraints in deterministic scheduling models, such as job-shop scheduling or resource-constrained project scheduling, yields a combinatorial optimization challenge. It follows that the literature on this subject is sparse. Pre-existing studies involve multiple energy sources and general non-linear efficiency functions, but generally no scheduling. All our previous work on scheduling under energy constraints considered linear (and even identical) energy efficiency functions, which oversimplifies the problem.

Objectives
- Address the (combinatorial) optimization challenge of integrating energy sources constraints (physical, technological and performance characteristics) in deterministic (scheduling) models.
- Solve efficiently and in an integrated fashion the resulting energy resource allocation problems and energy-consuming activity scheduling problems with non linear energy efficiency functions.

Applications and challenges

Applications
Scheduling for hybrid electric vehicles, intelligent buildings, processes and manufacturing

Non-linearities come from energy efficiency functions

Piecewise linear bounding procedures for the optimal management of water pumping and desalination processes

Proof of concept on a water pumping and desalination system [CLAIO 2014, IFORS 2014]

Solution Method
- Step 1: Piecewise linear bounding vs classic approx. of the nonlinear energy transfer/efficiency functions
- Step 2: Reformulation of the problem into two mixed integer problems (MILP and MINLP) - the problem is originally a MINLP

Problem data
- Set of time periods \(T \)
- Set of activities \(A \)
- \(r_i, d_i, p_i \): release date, due date, duration of activity \(i \)
- \(b_i \): constant instantaneous energy demand of activity \(i \)
- Set of non-reversible energy sources \(S \)
- \(\rho^p \): piece-wise linear efficiency function for source \(s \) (\(\rho^p(x) = \begin{cases} \text{cost} & \text{if } x \leq 0, \ x \in S \end{cases} \) otherwise)
- \(a_i \): constant term equal to 1 if \(i \in \{p_i\} \) and 0 otherwise

Decision variables
- \(x_d \): binary, \(x_d = 1 \) if activity \(d \) is ongoing at time \(t \)

Formulation
\[
\begin{align*}
\min \sum_{t \in T} w_{d,t} \sum_{i \in A} x_{d,t} & \quad \forall i \in A, t \in T \\
\sum_{t \in T} x_{d,t} & \geq p_i \quad \forall i \in A \\
\sum_{t \in T} x_{d,t} & \geq -1 \quad \forall i \in T \\
x_{d,t} & \leq 1 \quad \forall i \in A, t \in T \\
x_{d,t} & \geq 0 \quad \forall i \in A, t \in T \\
\end{align*}
\]

Complexity and equivalence between single and multiple sources
- Theorem 1: The problem is NP hard by reduction from discrete bin packing
- Theorem 2: For any problem with multiple sources, there is an equivalent single source problem

The linear relaxation of the master problem
\[
\begin{align*}
\text{min} & \quad \sum_{i \in A} \sum_{t \in T} w_{d,t} x_{d,t} \\
\text{s.t.} & \quad \sum_{i \in A} \sum_{t \in T} w_{d,t} x_{d,t} \geq p_i \quad \forall i \in A \\
\end{align*}
\]

The resulting dual (DLMRP) is:
\[
\begin{align*}
\max & \quad \sum_{i \in A} \sum_{t \in T} c_{d,t} y_{d,t} \\
\text{s.t.} & \quad \sum_{i \in A} \sum_{t \in T} c_{d,t} y_{d,t} \leq w_{d,t} \quad \forall i \in A, t \in T \\
\end{align*}
\]

Therefore, the reduced cost of a column \(y_0 \) is:
\[
\begin{align*}
\epsilon_l - \sum_{i \in A} \sum_{t \in T} c_{d,t} y_{d,t} & \quad \forall i \in A, t \in T \\
\end{align*}
\]

Two column generation schemes:

- Method

Extended formulation based on feasible subsets of activities
- Set of activity sets executable in parallel \(\mathcal{L} \) at any given time period \(t \)
- Set of activities belonging to set \(l \): demand \(b_l \), cost \(c_l \), time window \([R_l, D_l] \)
- \(x_{d,t} \): binary constant term equal to 1 if \(d \) belongs to set \(l \)
- Variable \(y_{d,t} \): binary, \(x_{d,t} = 1 \) if activity \(d \) is being executed at time \(t \)

The resulting dual (DLMRP) is:
\[
\begin{align*}
\text{min} & \quad \sum_{i \in A} \sum_{t \in T} w_{d,t} x_{d,t} \\
\text{s.t.} & \quad \sum_{i \in A} \sum_{t \in T} w_{d,t} x_{d,t} \geq p_i \quad \forall i \in A \\
\end{align*}
\]

Results

Extended Model	Compact Model
Hypervolume | 261.1 ± 85.8 | 261.1 ± 85.8
Hit ratio | 99.81% (75.9 %, 100%) | 99.81% (75.9 %, 100%)
Number of runs | 10 | 10 | 10 | 10
Number of runs | 500 ± 309.1 | 500 ± 309.1 | 500 ± 309.1 | 500 ± 309.1
Total CPU time | 227 ± 694.1 | 227 ± 694.1 | 227 ± 694.1 | 227 ± 694.1