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Abstract

The problem considered is the optimization of water production for autonomous water pump-
ing and desalination units supplied by renewable energy sources, designed to be a viable
solution to fresh water scarcity for remote areas. Non-linear gyrators as well as the non-linear
efficiency of energy and flow transfers model the mechanical-hydraulic power conversion sys-
tems involved. This paper presents a generic formulation and resolution algorithms based
on piece-wise bounding and integer linear programming to solve to optimality the global
optimization problem of finding an optimal energy management strategy.

1 Problem statement

The system studied corresponds to an architecture previously designed by Roboam et al [9]
and illustrated on figure 1. It is composed of motor pumps, desalination process and hydraulic
network (pipes and valves). The first pump draws from the groundwater and pours salt water
into the first tank. The second pump extracts salt water from the first tank and is coupled
with a desalination subsystem (Reverse Osmosis module) so that only filtered drinking water
is poured in tank 2, whereas the rejected water, which has a very high salt concentration,
is discarded. The third pump draws from the tank 2 to fill the third and final tank at the
top of the water tower with clean water available for consumption. For the remainder of the
paper, the intake tank and discharge tank of a given pump will refer to the tank from which
the pump draws water and the one into which the water is poured, respectively. All tanks are
identical, with a height lmax and a base area of hq= 1m2.

The power p required by a pump to pull a quantity of water q is function of the pump
characteristics (fixed parameters available from the manufacturer), but also depends on the
level of water l in its intake tank. Indeed, following Pascal’s law (physics), the higher the
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Figure 1: The global RO system with salt and fresh water storage (Source: B. Sareni)

height difference between the intake point and the discharge point, the higher the pressure
difference, and thus the more suction power is needed. The discharge point of each pump is
fixed, but the intake point depends on the water level, which can vary from the minimum
water level lmin from which the pump can work to the maximal tank height lmax. Only the first
pump does not take into account water height variation, as it pumps from the groundwater
whose level is not affected by the amount of water pumped. The second pump is connected
to a Reverse Osmosis (RO) desalination module. It is modeled as a full hydraulic system in
which a membrane with a given conductivity splits the input water flow into two flows, the
fresh desalinated water flow qpermeate = qtotank(2) and the rejected water qconcentrate which has
a very high concentration of salt. Details on the system characteristics as well as the resulting
expressions of the electrical power from the three pumps and the RO module are available in
[9] and recalled in appendix. It should be noted that presence of RO module and the absence
of groundwater level variation mean that even if identical pumps were used, three different
flow transfer functions would be obtained.

In summary, the main subsystems (pump 1, pump 3 and the combinaison pump 2 + RO
module) are modeled by non linear transfer functions as follows:

ppump1 = f1(qtotank(1)) = f1&3(qtotank(1), 0) (1)

ppump2+ROmodule = f2(qconcentrate, ltank(1)) = f2(qfromtank(1) − qtotank(2), ltank(1)) (2)

ppump3 = f3(qtotank(3), ltank(2)) = f1&3(qtotank(3), ltank(2)) (3)

qfromtank(1) = qpermeate + qconcentrate = f4(qconcentrate) (4)

where f i, ∀i ∈ {1, 2, 3, 4} are four different non linear functions whose analytical expressions
are explicited in appendix 8. An illustration of f3 is provided on figure 2.

The objective was to minimize the total time necessary to fill all the three tanks given an
input wind power profile.
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Figure 2: Non linear transfer function related to pump 3
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2 Literature review

The problem considered was introduced in [9]. The authors first presented the dynamic model
of the system, based on an equivalent hydraulic circuit and its corresponding Bond Graph.
Then they introduced a static model of the system behavior with non-linear equations of the
conversion of the electrical power consumed and state of the system into water flow. They
showed that it is sufficient to focus on the static model when trying to find an efficient water
management strategy. Then they designed and compared different online heuristics, based
on the local optimization, at each instant, of a local non-linear objective function. Different
local objective functions were compared, corresponding to a maximization of respectively the
system efficiency, the total flow of water transfered, the total flow weighted by the tank water
level, quadratic flows and the output hydraulic powers. Tested on three different waveforms
of input powers, they showed that the best results were obtained from locally optimizing the
output hydraulic powers. Finally, the authors compared the results obtained using different
pump characteristics from a pump manufacturer database, to highlight the importance of the
pump sizing during the conception of such autonomous process: less powerful pumps have
the obvious disadvantage of being limited in the water flow they can generate at each instant,
but more powerful pumps present the disadvantage of requiring a higher water level from
their intake tank to be able to pump (higher lmin values). Hence the importance of pump
sizing when implementing the system in a specific region subject to a particular wind profile.
No global optimization method was proposed, and the efficiency of the online heuristic in
comparison to the global optimum was not evaluated.

In the literature, a few promising mathematical programming-based approaches on similar
problems can be found [3, 4], either based on MINLP or transformations into approximated
MILP. A detailed review of MINLP techniques has been proposed by Grossman [7]. Let us
briefly recall the basic elements of the most used algorithms to help positionning the sci-
entific contribution of our work. Classical resolution methods are branch-and-bound (BB),
Outer-Approximation (OA), LP/NLP based branch-and-bound (LPNLP), Generalized Ben-
ders Decomposition (GBD) and Extended Cutting Plane Method (ECP). These methods
differ on the way they generate and use subproblems. There are four basic subproblems that
have been considered for solving MINLPs: three non-linear subproblems (NLP with no more
integer/binary variables) and a MILP cutting plane (MILPCP). The MILPCP is obtained
by replacing the nonlinear convex functions with supporting hyperplanes or Outer Approx-
imation cuts at some chosen boundary points (usually derived at the solution of an NLP
subproblem). New points are obtained by identifying violated inequalities. The solution of
a MILPCP subproblem yields a valid lower bound for the MINLP problem. This bound is
nondecreasing with the number of linearization points. Based on these components, BB for
MINLP is a branch-and-bound solves at each node either an LP relaxation or an NLP. OA is
an iterative procedure that alternates between the resolution of a MILPCP to obtain a lower
bound and the resolution of a NLP to obtain upper an upper bound. The NLP is obtained
by fixing the value of integer variables of the original problem to their values in the previous
MILPCP solution. The NLP solution and the corresponding supporting hyperplane is then
added to the MILPCP before the next iteration. The algorithm ends when the two bounds
assume the same value (within a fixed tolerance). GBD can be regarded as a particular case
of the OA algorithm where in the MILPCP the set of hyperplanes considered is restricted to
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the active inequalities (the others are removed). ECP is based on an iterative resolution of
a MILPCP subproblem and given the optimal solution of the MILPCP which can be infea-
sible for MINLP, the determination of the most violated inequalities whose linearization are
added at the next MILPCP. LPNLP can be seen as an extention of branch-and-Cut to convex
MINLPs. The idea is to solve a BB on MILPCP, but everytime an integer feasible solution is
found, the corresponding NLP subproblem is solved (with the same fixed variables values) to
generate new cuts and local enumerations are performed at some nodes of the search tree. It
is equivalent to applying OA at some nodes of the search trees. Recently hybrid algorithms
and frameworks have been proposed, usually based on the same key components, but able to
switch between the different algorithms during the resolution of a problem, to take advantage
of the strengths of each approach [2], [6], [8].

Classical global optimization methods (OA, BB,...) are able to find globally optimal
solutions of MINLP problems, but may require high computing times and present scalability
challenges. The MILP-based approaches with classical piecewise linear approximations have
been presented as a practical and theoritically sound alternative for solving some problems
but the presence of approximation errors may result into the loss of either the guarantee of
global optimality of the solution obtained, or the guarantee of feasibility of such solution.
Furthermore, it requires the introduction of additional integer variables, and yet there is
no guarantee that a lower discretization level (leading to more variables) would not have
led to a better solution. In the light of the foregoing, as we will describe in next Section,
we propose an alternative approach based on piecewise linear lower and upper bounding,
rather than approximating, the non linear efficiency functions. Related work in scheduling
problems involving non-linear efficiency functions can also be found in the field of scheduling
with continuous resources [1], mainly associated with parallel scheduling applications and
considering theoretical complexity studies of remarkable special cases. In contrast with these
studies, we aim at rather proposing a resolution scheme to solve (relatively) more general
problems.

3 Resolution scheme proposed

Using the non linear efficiency functions f i from equations (1)-(3), it is possible to model the
resulting problem as a MINLP with discrete variables on the state of the pumps (on or off)
or tanks (full or not) and continuous variables measuring the water flows as well as the levels
of water in the tanks.

The resolution scheme proposed is based on two main ideas: (i) the piece-wise bounding
of the nonlinear energy efficiency function, then (ii) the reformulation of the problem, which
originally is a mixed integer non linear problem (MINLP), into two mixed integer linear
problems (MILP) using the pair of bounding functions previously defined. The piece-wise
bounding of a function f of m variables within a tolerance value ε consists in identifying
two piece-wise linear functions denoted f ε and f ε that verify equations (5) to (7). The two
MILP, denoted MILP and MILP respectively, are obtained by substituting f with f ε and f ε,
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respectively.

f ε(x) ≤ f(x) ≤ f ε(x), ∀x ∈ Rm (5)
f(x)− f ε(x) ≤ εf(x), ∀x ∈ Rm (6)

f
ε
(x)− f(x) ≤ εf(x), ∀x ∈ Rm (7)

Performing the linearizations before the optimization allows not only to generate f ε and
f ε with respect to a predefined tolerance value ε, but also to minimize the number of sectors of
the resulting piecewise functions and therefore to minimize the number of additional integer
variables in MILP and MILP. Solving a MILP generates solutions that are feasible for the
original MINLP, and that have a total cost less than ε% higher than the optimal solution
cost. Solving a MILP generates solutions that may not be feasible for the original MINLP,
but whose total cost is less than ε% lower than the optimal solution cost. Note that if feasible,
the solution of MILP is also optimal. Theorem 3.1 states the existence of ε values leading
to optimal solutions of the original problem. Even if not feasible, the solution of MILP
can still help proving the global optimality of the solution of MILP if both have the same
cost, or evaluate the gap to optimality if not. Also note that both problems share the same
structure and only differ in terms of the numerical data of their respective piecewise functions.
Therefore, either a MILP black-box solver is used, or a single dedicated resolution method
needs to be developped and applied to solve both problems.

Theorem 3.1 ∃ε∗ such that ∀f ε, the optimal solution of the corresponding MILP is the global
optimal solution of the original MINLP.

Proof The proof is based on two properties. (i) The value of the solution of MILP does not
decrease with the decrease of ε. (ii) The theorem of Duran and Grossman [5] which is the
basis of the OA algorithm states that if all feasible discrete variables are used as linearization
points then the resulting MILPCP problem (refered to in [7] as M-OA) has the same optimal
solution than the original MINLP. Let ε+ be the maximum relative error between M-OA and
the original MINLP. From (i) and (ii), it can be deduced that any solution of MILP obtained
with ε ≤ ε+ has a cost higher or equal to the optimal solution cost of M-OA, and therefore
equal to the optimal cost of the original MINLP.

To summarize, the use of piecewise linear bounding as we propose allows the application of
combinatorial optimization tools and techniques only, and yet the obtention and certification
of the global optimal solution of the non linear problem. The resulting approach differs from
the usual generic MINLP resolution methods (BB, OA, ...) because the linearizations are
performed before the start of the optimization, the definition of two MILP problems is never
modified and no non-linear subproblem resolution is performed at any time. This approach
also differs from the MILP-based reformulations proposed in the literature for similar problems
([4],[3]) because the piecewise linear bounding of a function differs from its piecewise linear
approximation. Indeed, piece-wise bounding as expressed with equations (5) to (7) imposes
that each of the two functions generated remains in its half-space delimited by the nonlinear
function. Such constraint is not necessarily imposed when performing linear approximation,
as illustrated on figure 3. In addition, we explicitely consider the two bounding functions
whereas in the literature the resulting approximation function may correspond to none or one
of them coincidentally. Also note that neither f ε or f ε is required to be continuous.
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(a) Linear approximation (b) Piecewise bounding

Figure 3: Difference between piecewise linear approximation and piecewise linear bounding

4 Piecewise linear bounding heuristics

Bounding functions f ε and f ε must be generated with respect to a predefined tolerance value
ε, but their number of sectors must be minimized to ensure the minimization of number of
additional integer variables in MILP and MILP. We proposed a fast yet efficient heuristic
to that end for the nonlinear efficiency functions from the water production optimization
problem considered. The heuristic takes advantage of the convexity of the transfer functions.
Note that if the functions were concave instead, the heuristic would remain applicable with a
simple permutation of the upper and lower bounding procedures.

4.1 Piecewise linear bounding of the transfer function of Pump 1

4.1.1 Generation of lower bounding linear sectors

Each sector i of the linear bounding function fε verifies a linear equation in the form p = aiq+bi
and is therefore defined by four parameters: the slope ai, the y-intercept bi and the limits
qmini and qmaxi . The goal of the heuristic is to identify the minimum number of sectors
n, and the parameters of each sector. Each pair of consecutive sectors i − 1 and i satisfies
qmini = qmaxi−1 with qmin1 verifying pmin = f1(qmin1) and qmaxn verifying pmax = f1(qmaxn).
The heuristic we designed proceeds iteratively, from the first sector to the last. One challenge
of the sectorization is to ensure respect of constraints (6). The solution proposed was to define
each sector using a supporting linear function tangent to f1 at a predefined point, ensuring
in this way that the maximum error would be located either at the extremities of the sector,
or at the predefined tangent point of the sector, facilitating its computation.

Let us consider sector i with its origin qmini . Let q̃ be a potential tangent point. The
resulting slope and y-intercept would be ai = df1

dq (q̃), bi = f1(q̃) − q̃ df
1

dq (q̃). Because of the
convexity of the function, the error between the sector and the real curve grows as the distance
|x− q̃| increases. Therefore, the maximum errors would be located at the extremities of sector
i.

If f(qmini)− aiqmini − bi ≤ εf(qmini), then constraint (6) is verified for each q ∈ [qmini , q̃].
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The corresponding ai and bi values can be kept. Only the upper limit qmaxi of the sector i
remains to be identified. The goal is to maximize qmaxi subject to constraint (6). The heuristic
procedure starts by setting qmaxi = qmax and then reduces the value by a parameter θ until the
constraint (6) is verified by qmaxi and therefore by all q ∈ [q̃, qmaxi ]. If f(qmini)−aiqmini−bi >
εf(qmini), it means that the value q̃ had be chosen too far from the origin of the sector qmini .
Therefore its value should be reduced and the slode and y-intercept updated accordingly. The
complete heuristic Hf1 is summarized by Algorithm 1.

4.1.2 Generation of upper bounding linear sectors

The upper bounding procedure for pump1 H
f1

is similar to Hf1 , except this time the resulting

y-intercept is bi = f1(qmini)− qmini
df1

dq (q̃) ensuring that the resulting line crosses the origin of
the sector qmini . In this case, the maximum error for every q ∈ [qmini , q̃], is obtained at the
point q̃. Therefore, the value of q̃ is to be decreased until constraint (6) is verified by q̃. The
resulting ai and bi = f1(qmini)− qmini

df1

dq (q̃) are kept and only qmaxi remains to be computed.
The procedure starts by setting qmaxi = qmax and then reduces the value by a parameter θ
until f(qmaxi) − aiqmaxi − bi ≤ 0 is verified. The complete heuristic H

f1
is summarized by

Algorithm 2.

Algorithm 1 Hf1
1: i := 0; qmin0 = qmin; θ = 0.9
2: repeat
3: i := i+ 1
4: qmini

= qmini−1

5: q̃ = qmax

6: ai :=
df1

dq
(q̃); bi := f1(q̃)− q̃ df

1

dq
(q̃)

7: while f(qmini
)− aiqmini

− bi > εf(qmaxi ) do
8: if q̃ ≥

qmini
θ

then
9: q̃ := qmini

+ θ(q̃ − qmini
)

10: else
11: q̃ := θq̃
12: end if
13: ai :=

df1

dq
(q̃); bi := f1(q̃)− q̃ df

1

dq
(q̃)

14: end while
15: qmaxi = qmax
16: while f(qmaxi )−aiqmaxi−bi > εf(qmaxi ) do
17: if qmaxi ≥

q̃
θ

then
18: qmaxi := q̃ + θ(qmaxi − q̃)
19: else
20: qmaxi := θqmaxi
21: end if
22: end while
23: until qmaxi = qmax

24: nsectors := i

Algorithm 2 H
f1

1: i := 0; qmin0 = qmin; θ = 0.9
2: repeat
3: i := i+ 1
4: qmini

= qmini−1

5: q̃ = qmax

6: ai :=
df1

dq
(q̃); bi := f1(qmini

)− qmini

df1

dq
(q̃)

7: while aiqmini
+ bi − f(q̃) > εf(q̃) do

8: if q̃ ≥
qmini
θ

then
9: q̃ := qmini

+ θ(q̃ − qmini
)

10: else
11: q̃ := θq̃
12: end if
13: ai :=

df1

dq
(q̃); bi := f1(qmini

)− qmini

df1

dq
(q̃)

14: end while
15: qmaxi = qmax
16: while f(qmaxi )− aiqmaxi − bi > 0 do
17: if qmaxi ≥

q̃
θ

then
18: qmaxi := q̃ + θ(qmaxi − q̃)
19: else
20: qmaxi := θqmaxi
21: end if
22: end while
23: until qmaxi = qmax

24: nsectors := i

4.2 Extensions to the transfer functions related to Pump 3 and ’pump 2
+ RO’

The transfer function f3 related to pump 3 varies from the one of pump 1 because it includes
the water level variation from its the intake tank. Therefore it is a function of two variables
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instead of one. To maintain the linearity of the bounding function, this variation was taken
into account with a linear correction term in function of water level in the tank, which results
into piecewise bounding functions in the form p = aq + b− sv where v is the variable of the
water level and s is the correction parameter. The idea of using a linear correction term is
not new, as it has already been applied by [3] to enhance the approximation of the power
production in function of a Hydro Scheduling and Unit Commitment problem. The novelty of
our work is to ensure that constraints (5)-(7) remain verified. To that end, for f ε the reference
function is f3(:, lmin) and the correction term s must never lead to overestimation of the power
saving resulting from water level v; whereas for f ε the reference function is f3(:, lmax) and
the correction term s must never lead to underestimation of the power saving resulting from
water level v.

The bounding functions for f2 also require the usage of a correction term to account for the
level of water in intake tank 1. Note that it is possible to consider and bound separately the
transfer function related to pump 2 and the one related to the RO module, especially if pump
2 and 3 are identical. However, considering a unique global transfer function contributes to
the minimization of the total number of sectors, and also ensures that the complete subsystem
’pump 2 + RO’ respects the tolerance level ε, instead of 2 ∗ ε if the functions are separated.
Finally the bounding functions for f4 are obtained by simply replacing f1 by f4 is heuristics
H
f1

and Hf1 .

4.3 Piecewise linear bounding output

The parameters of the piecewise linear functions computed by the heuristics, can be summa-
rized as follows.

• np1 , np2 , np3 : number of sectors of the piece-wise power functions of pump1, “pump2+filter"
and pump3 respectively

• aji , b
j
i ,∀i ∈ 1...3,∀j ∈ 1..npi : coefficients (slope and y-intercept) of the piece-wise power

functions of pump i found

• sji ,∀i ∈ 2..3, ∀j ∈ 1..npi : coefficient for the surplus of pump i (sj1 = 0,∀j ∈ 1..np1)

• αj , βj ,∀j ∈ 1..np2 : coefficients (slope and y-intercept) of the piece-wise functions of the
total flow of water (Qpermeate+Qconcentrate) versus the flow of rejected water (Qconcentrate)
exiting from the “pump 2 + RO filter module" system

• Qi,jmin, ∀i ∈ 1..3,∀j ∈ 1..npi : starting breakpoint of the jth sector of the piece-wise power
function of pump i

• Qi,jmax,∀i ∈ 1..3,∀j ∈ 1..npi : ending breakpoint of the jth sector of the piece-wise power
function of pump i

For the remainder of the paper, an upper bar will be added to refer specifically to the
upper limit of the parameter (e.g np1) whereas an underline will be added to refer specifically
to its lower limit (e.g np1). The absence of bar will refer to both (e.g np1).
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5 Integer linear programming reformulation of the energy man-
agement problem

Data

• NI : set of time intervals

• NP : set of pumps

• NT : set of tanks

• ts: scale of time, duration of the time intervals

• hq: section of the tanks, used to convert the debit into water level

• P imin, P
i
max,∀i ∈ NP : pumping power limits of pump i

• Limin, L
i
max,∀i ∈ NP : capacity limits of tank i

• ljinit, j ∈ NT ,≥ 0: initial water level of tank j

• Pini, ∀i ∈ N: input power available at time interval i

• piece-wise functions data computed in Section 4: {npi , a
j
i , b

j
i , s

j
i , α

j , βj , Qi,jmin, Q
i,j
max},∀i ∈

NP ,∀j ∈ 1..npi

Binary variables

• ri,∀i ∈ NI : binary variable equal to 0 if all tanks are full at time interval i, and 1
otherwise

• sect j,ki ,∀i ∈ NI , ∀j ∈ 1..np1 ,∀k ∈ 1..3: binary variable equal to 1 if pump k is used at
the jth section of the piece-wise power function during time interval i

Continuous variables

• qj,ki ,∀i ∈ NI , ∀j ∈ 1..np1 ,≥ 0: continuous variable equal to the flow of water pumped by
pump k at time interval i if it is used at the jth section of the piece-wise power function
and 0 otherwise. Note that for pump it corresponds to Qconcentrate.

• lji ,∀i ∈ NI ,∀j ∈ NT ,≥ 0: continuous variable that specifies the level of water going in
tank j at time interval i

• vj,ki ,∀i ∈ NI ,∀j ∈ 1..np2 ,≥ 0: continuous variable equal to the level of water in tank k
if pump k+1 is used at the jth section of the piece-wise power function at time interval
i and 0 otherwise.

Mathematical formulation proposed:

min
∑
i∈N

ri ∗ ts (8)
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subject to

r0 = 1 (9)
lj0 = ljinit, ∀j ∈ NT (10)

ri − ri−1 ≤ 0, ∀i ∈ NI (11)∑
j∈NT

lji + (
∑
j∈NT

Ljmax)ri ≥
∑
j∈NT

Ljmax, ∀i ∈ NI (12)

∑
k∈NP

∑
j∈1..npk

(ajkq
j,k
i + bjksect

j,k
i − s

j
kv
j,k
i ) ≤ Pini, ∀i ∈ NI (13)

l1i − l1i−1 −
∑

j∈1..np1

hq ∗ ts ∗ qij,1 +
∑

j∈1..np2

hq ∗ ts ∗ (αjqij,2 + βjsect j,2i ) ≤ 0, ∀i ∈ NI (14)

l2i − l2i−1 −
∑

j∈1..np2

hq ∗ ts ∗ ((αj − 1)qij,2 + βjsect j,2i ) +
∑

j∈1..np3

hq ∗ ts ∗ qij,3 ≤ 0, ∀i ∈ NI (15)

l3i − l3i−1 −
∑

j∈1..np3

hq ∗ ts ∗ qij,3 ≤ 0, ∀i ∈ NI (16)

Lkmin ≤ lki ≤ Lkmax, ∀i ∈ NI , k ∈ NP (17)

P kmin ≤
∑

k∈Np{1}

∑
j∈1..npk

(ajkq
j,k
i + bjksect

j,k
i − s

j
kv
j,k
i ) ≤ P kmin, ∀i ∈ NI , k ∈ NP (18)

Qi,jminsect
j,k
i ≤ q

j,k
i ≤ Q

i,j
maxsect

j,k
i , ∀i ∈ NI , k ∈ NP , j ∈ 1..npk(19)∑

j∈1..npk

sect j,ki ≤ 1, ∀i ∈ NI , k ∈ NP (20)

vj,ki − l
j
i ≤ 0, ∀k ∈ NP , i ∈ NI , j ∈ 1..npk(21)

vj,ki − L
j
maxsect

j,k
i ≤ 0, ∀k ∈ NP , i ∈ NI , j ∈ 1..npk(22)

The objective function (8) minimizes the total finishing time. Constraints (9) states that
all tanks are not full at time interval 0. Constraints (10) initialize the level of water in each
tank at time interval 0. Constraints (11) ensure that once all tanks have been full, they remain
full. Constraints (12) enforces ri equal to 1 if all tanks are not yet full at time interval i.
Constraints (13) ensure that the total power consumed by all pumps do not exceed the total
power available at time interval i. Constraints (14) to (16) compute the level of water in tanks
1 to 3 respectively, in function of the level of water in the tanks at the previous instant and
the debit of pump upstream and downstream of each tank. Constraints (17) and (18) enforce
the bounds on the levels of water and the power of the pumps. Constraints (19) ensure that
the debit of water from each pump is within the bounds of the sector in which each pump
has been activated. Constraints (20) limit to at most one the number of sectors that can be
activated for each pump. Constraints (21) connect variables vj,ki with lji and pj,ki . Note that
the increase of the values of variables vj,ki goes in the direction of the optimization (because
the higher the values, the lower the power required), therefore only upper bounds of vj,ki were
considered in Constraints (21) , not lower bounds.
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6 Computational results

The heuristics and resulting MILP were implemented and tested on a wind profile that exceeds
the total maximum power of the pumps. The results obtained as summarized by the

Table 1 summarizes the piecewise bounding outputs. It can be seen the total number
of sectors and resulting bounding functions differ significantly for the three main transfer
functions. The comparison between np1 , np1 and np3 np3 highlights the influence of the water
height variation, which has more impact on the upper bounding than on the lower bounding
function, certainly because of the convexity of the transfer function. The comparison between
np2 , np2 and np3 np3 highlights the impact of the RO module (filter), and show a significant
increase of the non linearity. It is interesting to note that in this case only is the lower
bounding function more segmented than the upper bounding function.

Pump 1 Pump 2 (+ filter) Pump 3
tolerance ε np1 np1 np2 np2 np3 np3

5% 2 2 11 21 3 2
1% 5 5 21 29 8 5
0.5% 8 7 35 62 13 7
0.3% 10 9 43 74 17 9

Table 1: Number of sectors per tolerance value

Table 2 shows the results obtained on the water production optimization problem in
function of the tolerance value ε. For reference, note that the solution obtained by the step-
by-step online heuristic proposed by [9] obtained a solution cost of 22100 seconds. UB is
the optimal solution value (in seconds) of MILP whereas LB is the optimal solution value of
MILP. The gap is computed as the ratio UB−LB

LB . Note that its value lower than the tolerance
value. The feasibility of the solutions obtained is always verified with regard to the original
MINLP. The solution of MILP is of course always feasible. UB* is the optimal solution value
of MILP if the corresponding solution happens to be feasible for the original MINLP.

tolerance ε UB s LB s Gap UB vs LB UB* optimality proven?
5% 20580 4 19740 15 4.25% - no
1% 20100 15 19920 140 0.9% - no
0.5% 20040 178 19980 117 0.3% - no
0.3% 20040 64 19980 321 0.3% 19980 yes

Table 2: Upper and Lower bounds values obtained for the instance solved

The results show the efficiency of the resolution scheme proposed. More instances deriv-
ing from real-world wind profiles provided by the LAPLACE electrical engineering team are
currently being tested.
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7 Conclusion

We proposed a new resolution scheme based on the piecewise linear bounding and integer
programming, applied on a water production optimization problem with non linear transfer
functions. Efficient bounding heuristics for convex and concave transfer functions are also
introduced. The resulting algorithm solves to optimality the global optimization problem of
finding an optimal energy management strategy and validates the adequacy of the resolution
methodology designed.
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8 Appendix: Non-linear expressions of the electrical power
and water flow transfers modelling the mechanical-hydraulic
power conversion systems

For pump 1, h = 0 at any instant (groundwater) whereas for pump 3, h = water level in tank
2, therefore:

ppump1 = f1&3(qtotank(1), 0) (23)

ppump3 = f1&3(qtotank(3), ltank(2)) (24)

where


f1&3(q,h) = ((fm + fp) ∗G(h,q) + q ∗ (a ∗G(h,q) + (b ∗ q))) ∗G(h,q) + r ∗K(h,q)

G(h,q) = ((−(b ∗ q) +
√
(((b ∗ q).2)− 4 ∗ a ∗ (−(p0 + ρg ∗ (h− ldischarge) + (k + c) ∗ (q.2)))))/(2 ∗ a))

K(h,q) = ((((fm + fp) ∗G(h,q) + q ∗ (a ∗G(h,q) + (b ∗ q)))/kφ).2)

and a, b, c, k, fm, fp, p0, ρg, ldischarge are parameters deduced from the pump characteristics.

For the subsystem resulting from the combinaison of pump 2 and the Reverse Osmosis
module:

ppump2+ROmodule = f2(qtotank(2), ltank(1)) (25)

where



f2(qc,h2) = ((fm2
+ fp2) ∗G2(qc,h2) + (qc + F (qc)/RMe) ∗M2(qc,h2)) ∗G2(qc,h2) + r2 ∗K2(qc,h2)

M2(qc,h2) = (a2 ∗G2(qc,h2) +H2(qc))

G2(qc,h2) =
(−H2(qc)+

√
((H2(qc).2)−4∗a2∗(−(p02+ρg∗(h2−ldischarge)+(k2+c2)∗((qc+F (qc)/RMe).2)+(F (qc))))))

(2∗a2)
K2(qc,h2) = ((((fm2 + fp2) ∗G2(qc,h2) + (qc + F (qc)/RMe) ∗ (a2 ∗G2(qc,h2) +H2(qc)))/kφ2

).2)
H2(qc) = (b2 ∗ (qc + (RMod +RValve) ∗ qc.

2/RMe))
F (qc) = (RMod +RValve) ∗ qc.

2

and a2, b2, c2, k2, fm2 , fp2 , r2, p02, ρg, kφ2 , RMe, RMod, RValve are parameters deduced from the
pump characteristics.
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