# Supplemental Material: Helical bunching and symmetry lowering inducing multiferroicity in Fe langasites 

L. Chaix,,${ }^{1,2,3,4}$ R. Ballou, ${ }^{2,3}$ A. Cano, ${ }^{5}$ S. Petit, ${ }^{6}$ S. de Brion, ${ }^{2,3}$ J. Ollivier, ${ }^{1}$ L.-P. Regnault,,${ }^{7,3}$ E. Ressouche,,$^{7,3}$ E. Constable,,${ }^{2,3}$ C. V. Colin, ${ }^{2,3}$ J. Balay, ${ }^{2,3}$ P. Lejay, ${ }^{2,3}$ and V. Simonet ${ }^{2,3}$<br>${ }^{1}$ Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble, France<br>${ }^{2}$ Institut Néel, CNRS, 38042 Grenoble, France<br>${ }^{3}$ Université Grenoble Alpes, 38042 Grenoble, France<br>${ }^{4}$ Stanford Institute for Materials and Energy Sciences,<br>SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA<br>${ }^{5}$ CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France<br>${ }^{6}$ CEA, Centre de Saclay, /DSM/IRAMIS/ Laboratoire Léon Brillouin, 91191 Gif-sur-Yvette,France ${ }^{7}$ SPSMS-MDN, INAC, 38054 Grenoble, France

PACS numbers: 75.85.+t, 75.25.-j, 75.30.Ds, 75.30.Gw

## DEVIATION FROM A $120^{\circ}$ MAGNETIC ARRANGEMENT

The magnetic structure of the Fe langasite is described by three magnetic helices propagating perpendicular to the $a b$-plane with a propagation vector $(0,0, \tau)$, based on magnetic moments at $120^{\circ}$ from each other in the $a b$-plane. The magnetic structure factor of this structure, at the reciprocal space position $H= \pm \tau$ with $H$ a reciprocal lattice vector, writes :

$$
\vec{F}_{M}(\vec{Q}=\vec{H} \pm \vec{\tau})=p \sum_{\nu=1,3} f(|\vec{Q}|) \vec{m}_{ \pm \vec{\tau}, \nu} e i \vec{Q} \cdot \vec{r}_{\nu}
$$

with $p=0.269610^{-12} \mathrm{~cm}, f$ the magnetic form factor of the $\mathrm{Fe}^{3+}$ atoms, $\vec{r}_{\nu}$ the position of the atom $\nu$ in the cell: $\vec{r}_{1}=\left(x, 0, \frac{1}{2}\right), \vec{r}_{2}=\left(0, x, \frac{1}{2}\right)$ and $\vec{r}_{3}=\left(-x,-x, \frac{1}{2}\right)$ with $x=0.2496$. The Fourier components of the magnetization distribution for the atom $\nu$ is $\vec{m}_{ \pm \vec{\tau}, \nu}=\left[\frac{\mu \hat{u} \pm i \mu \hat{v}}{2}\right] e^{\mp i \phi_{\nu}}$ with $\mu$ the magnetic moment amplitude, $(\hat{u}, \hat{v})$ an orthonormal basis in the $a b$-plane, and $\phi_{\nu}$ a phase which should account for the relative $120^{\circ}$ dephasing between the three Bravais lattices.


FIG. 1: Temperature dependence of the magnetic contributions of the $(0,-1,1-\tau)$ and $(0,0, \tau)$ satellites measured by neutron scattering and rescaled for comparison.

For $H=(0,0, \ell)$, the magnetic structure factor becomes zero:

$$
\vec{F}_{M}(0,0, \ell \pm \tau)=p f(|\vec{Q}|) \sum_{\nu=1,3}\left[\frac{\mu \hat{u} \pm i \mu \hat{v}}{2}\right] e^{\mp i \Phi_{\nu}} e^{i 2 \pi \frac{(\ell \pm \tau)}{2}}=p f(|\vec{Q}|)\left[\frac{\mu \hat{u} \pm i \mu \hat{v}}{2}\right] e^{i 2 \pi \frac{(\ell \pm \tau)}{2}}\left(1+e^{\mp i \frac{2 \pi}{3}}+e^{\mp i \frac{4 \pi}{3}}\right)=0
$$

For in-plane magnetic moments, the only way to observed a magnetic signal on the ( $0,0, \ell \pm \tau$ ) satellites implies a deviation from the $120^{\circ}$ arrangement of the magnetic moments. Scagnoli et al. have also observed, by magnetic resonant X-ray diffraction, the presence of a $(0,0, \tau)$ magnetic satellite and attributed it to an out-of-plane (butterfly) component of the magnetization [2]. This component presumably originates from the Dzyaloshinskii-Moryia interaction. In addition to the $D$ vector along the $c$ axis, a $D$ vector component along the side of each triangle is also allowed by symmetry, responsible for this small out-of-plane butterfly component of the magnetic arrangement $[2,3]$. However, neutron scattering is only sensitive to the magnetization component perpendicular to the scattering vector $\vec{Q}$. Hence, this out-of-plane component cannot contribute to the $(0,0, \ell \pm \tau)$ satellites measured be neutron diffraction.
The measured temperature dependence of the $(0,0, \tau)$ extra-satellites, produced by the deformation of the $120^{\circ}$ magnetic arrangement is shown in Fig. 1. It follows the temperature dependence of strong first order magnetic satellites.

## NOTE ON THE CHIRALITY

The excellent agreement between the calculated and observed spectral weight extinction in the spin waves when including a single-ion anisotropy in the Hamiltonian is only observed for one triangular chirality (anticlockwise $120^{\circ}$ rotation of the spins on each triangle), in agreement with previous determination of the magnetic chirality [4]. Both Ta and Nb single-crystals thus have the same triangular chirality. Their structural chirality is opposite, as determined from anomalous X-ray scattering. This structural chirality, in turn, imposes the helical chirality to be opposite in both compounds.

## NEUTRON POLARIMETRY

The simplest neutron polarimetry technique to probe the chiral scattering was first introduced by Moon, Riste and Koehler [1], and is called longitudinal polarization analysis (LPA). In this case the final and initial polarizations are parallel, which can be achieved typically on a triple-axis spectrometer with polarizing monochromator/analyser (e.g. Heusler crystals). In addition, two flippers select the polarization states + and - (parallel or antiparallel to the polarization axis). The spin-flip terms (scattering processes changing the sign of the polarization),

$$
\left(\frac{d^{2} \sigma}{d \Omega d E_{f}}\right)^{+-}=\sigma^{+-} \text {and }\left(\frac{d^{2} \sigma}{d \Omega d E_{f}}\right)^{-+}=\sigma^{-+}
$$

and the non-spin-flip terms (scattering processes leaving the sign of the polarization unchanged),

$$
\left(\frac{d^{2} \sigma}{d \Omega d E_{f}}\right)^{++}=\sigma^{++} \text {and }\left(\frac{d^{2} \sigma}{d \Omega d E_{f}}\right)^{--}=\sigma^{--}
$$

of the partial differential cross-section can be measured independently.
In neutron polarimetry, a right-handed coordinated system is usually chosen with the $x$-axis along the scattering vector $\vec{Q}$, the $y$-axis in the scattering plane and the $z$-axis perpendicular to the scattering plane, so that the magnetic interaction vector has zero $x$ component. We shall use in the following the simplified notations: the nuclear crosssection $\sigma_{N}$ is proportional to $|N|^{2}$ with $N$ the nuclear structure factor. The magnetic cross-section $\sigma_{M}$ is proportional to $\left|M_{\perp}\right|^{2}$ with $M_{\perp}$ the magnetic interaction vector, which is the projection of the magnetic structure factor $F_{M}$ onto the plane perpendicular to the scattering vector $Q$. The chiral cross-section $\sigma_{c h}$ is proportional to $M_{c h}$ defined as:

$$
M_{c h}=i\left(M_{\perp}^{Z *} M_{\perp}^{Y}-M_{\perp}^{Y *} M_{\perp}^{Z}\right)
$$

These contributions can then be easily determined from linear combinations of the spin-flip and non-spin-flip crosssections, knowing the initial polarisation $P_{i}$ :

$$
\begin{aligned}
& |N|^{2} \propto \sigma_{x}^{++}=\sigma_{x}^{--} \\
& \left|M_{\perp}\right|^{2} \propto \frac{\sigma_{x}^{+-}+\sigma_{x}^{-+}}{2} \\
& M_{c h} \propto \frac{\sigma_{x}^{+-}-\sigma_{x}^{-+}}{2 P_{i}}
\end{aligned}
$$

Alternatively, one can use an initial unpolarized beam (produced by a graphite monochromator for instance) and perform polarization analysis. In this case, the chiral scattering can be derived from the difference:

$$
\frac{\sigma_{x}^{0-}-\sigma_{x}^{0+}}{2}=M_{c h}
$$

where the symbol 0 is meant for zero beam polarization of the incoming neutrons.
[1] R. M. Moon, T. Riste and W. C. Koehler, Phys. Rev. 181, (1969) 920.
[2] V. Scagnoli, S. W. Huang, M. Garganourakis, R. A. de Souza, and U. Staub, V. Simonet, P. Lejay, R. Ballou, Phys. Rev. B. 88, 104417 (2013).
[3] A. Zorko, M. Potocnik, J. van Tol, A. Ozarowski, V. Simonet, P. Lejay, S. Petit, R. Ballou, Phys. Rev. Lett. 107, 257203 (2011).
[4] V. Simonet, M. Loire, and R. Ballou, Eur. Phys. J. Special Topics 213, 5 (2012).

