Supplemental Material: Helical bunching and symmetry lowering inducing multiferroicity in Fe langasites

L. Chaix,^{1, 2, 3, 4} R. Ballou,^{2, 3} A. Cano,⁵ S. Petit,⁶ S. de Brion,^{2, 3} J. Ollivier,¹ L.-P. Regnault,^{7, 3}

E. Ressouche,^{7,3} E. Constable,^{2,3} C. V. Colin,^{2,3} J. Balay,^{2,3} P. Lejay,^{2,3} and V. Simonet^{2,3}

¹Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble, France ²Institut Néel, CNRS, 38042 Grenoble, France ³Université Grenoble Alpes, 38042 Grenoble, France

⁴Stanford Institute for Materials and Energy Sciences,

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

⁵CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France

⁶CEA, Centre de Saclay, /DSM/IRAMIS/ Laboratoire Léon Brillouin, 91191 Gif-sur-Yvette, France

SPSMS-MDN, INAC, 38054 Grenoble, France

PACS numbers: 75.85.+t, 75.25.-j, 75.30.Ds, 75.30.Gw

DEVIATION FROM A 120° MAGNETIC ARRANGEMENT

The magnetic structure of the Fe langasite is described by three magnetic helices propagating perpendicular to the *ab*-plane with a propagation vector $(0, 0, \tau)$, based on magnetic moments at 120° from each other in the *ab*-plane. The magnetic structure factor of this structure, at the reciprocal space position $H = \pm \tau$ with H a reciprocal lattice vector, writes :

$$\vec{F}_{M}(\vec{Q} = \vec{H} \pm \vec{\tau}) = p \sum_{\nu=1,3} f(|\vec{Q}|) \vec{m}_{\pm \vec{\tau}, \nu} ei\vec{Q}.\vec{r}_{\nu}$$

with $p=0.2696\ 10^{-12}$ cm, f the magnetic form factor of the Fe³⁺ atoms, $\vec{r_{\nu}}$ the position of the atom ν in the cell: $\vec{r_1} = (x, 0, \frac{1}{2}), \vec{r_2} = (0, x, \frac{1}{2})$ and $\vec{r_3} = (-x, -x, \frac{1}{2})$ with x=0.2496. The Fourier components of the magnetization distribution for the atom ν is $\vec{m}_{\pm \vec{\tau},\nu} = \left[\frac{\mu \hat{u} \pm i \mu \hat{v}}{2}\right] e^{\mp i \phi_{\nu}}$ with μ the magnetic moment amplitude, (\hat{u}, \hat{v}) an orthonormal basis in the *ab*-plane, and ϕ_{ν} a phase which should account for the relative 120° dephasing between the three Bravais lattices.

FIG. 1: Temperature dependence of the magnetic contributions of the $(0, -1, 1-\tau)$ and $(0, 0, \tau)$ satellites measured by neutron scattering and rescaled for comparison.

For $H = (0, 0, \ell)$, the magnetic structure factor becomes zero:

$$\vec{F}_M(0,0,\ell\pm\tau) = pf(|\vec{Q}|) \sum_{\nu=1,3} [\frac{\mu\hat{u}\pm i\mu\hat{v}}{2}] e^{\mp i\Phi_\nu} \ e^{i2\pi\frac{(\ell\pm\tau)}{2}} = pf(|\vec{Q}|) [\frac{\mu\hat{u}\pm i\mu\hat{v}}{2}] e^{i2\pi\frac{(\ell\pm\tau)}{2}} (1+e^{\mp i\frac{2\pi}{3}}+e^{\mp i\frac{4\pi}{3}}) = 0$$

For in-plane magnetic moments, the only way to observed a magnetic signal on the $(0, 0, \ell \pm \tau)$ satellites implies a deviation from the 120° arrangement of the magnetic moments. Scagnoli *et al.* have also observed, by magnetic resonant X-ray diffraction, the presence of a $(0, 0, \tau)$ magnetic satellite and attributed it to an out-of-plane (butterfly) component of the magnetization [2]. This component presumably originates from the Dzyaloshinskii-Moryia interaction. In addition to the *D* vector along the *c* axis, a *D* vector component along the side of each triangle is also allowed by symmetry, responsible for this small out-of-plane butterfly component of the magnetic arrangement [2, 3]. However, neutron scattering is only sensitive to the magnetization component perpendicular to the scattering vector \vec{Q} . Hence, this out-of-plane component cannot contribute to the $(0, 0, \ell \pm \tau)$ satellites measured be neutron diffraction.

The measured temperature dependence of the $(0, 0, \tau)$ extra-satellites, produced by the deformation of the 120° magnetic arrangement is shown in Fig. 1. It follows the temperature dependence of strong first order magnetic satellites.

NOTE ON THE CHIRALITY

The excellent agreement between the calculated and observed spectral weight extinction in the spin waves when including a single-ion anisotropy in the Hamiltonian is only observed for one triangular chirality (anticlockwise 120 ° rotation of the spins on each triangle), in agreement with previous determination of the magnetic chirality [4]. Both Ta and Nb single-crystals thus have the same triangular chirality. Their structural chirality is opposite, as determined from anomalous X-ray scattering. This structural chirality, in turn, imposes the helical chirality to be opposite in both compounds.

NEUTRON POLARIMETRY

The simplest neutron polarimetry technique to probe the chiral scattering was first introduced by Moon, Riste and Koehler [1], and is called longitudinal polarization analysis (LPA). In this case the final and initial polarizations are parallel, which can be achieved typically on a triple-axis spectrometer with polarizing monochromator/analyser (e.g. Heusler crystals). In addition, two flippers select the polarization states + and - (parallel or antiparallel to the polarization axis). The spin-flip terms (scattering processes changing the sign of the polarization),

$$\left(\frac{d^2\sigma}{d\Omega dE_f}\right)^{+-} = \sigma^{+-} \text{ and } \left(\frac{d^2\sigma}{d\Omega dE_f}\right)^{-+} = \sigma^{-+}$$

and the non-spin-flip terms (scattering processes leaving the sign of the polarization unchanged),

$$(\frac{d^2\sigma}{d\Omega dE_f})^{++} = \sigma^{++}$$
 and $(\frac{d^2\sigma}{d\Omega dE_f})^{--} = \sigma^{--}$

of the partial differential cross-section can be measured independently.

In neutron polarimetry, a right-handed coordinated system is usually chosen with the x-axis along the scattering vector \vec{Q} , the y-axis in the scattering plane and the z-axis perpendicular to the scattering plane, so that the magnetic interaction vector has zero x component. We shall use in the following the simplified notations: the nuclear cross-section σ_N is proportional to $|N|^2$ with N the nuclear structure factor. The magnetic cross-section σ_M is proportional to $|M_{\perp}|^2$ with M_{\perp} the magnetic interaction vector, which is the projection of the magnetic structure factor F_M onto the plane perpendicular to the scattering vector Q. The chiral cross-section σ_{ch} is proportional to M_{ch} defined as:

$$M_{ch} = i(M_{\perp}^{Z*}M_{\perp}^{Y} - M_{\perp}^{Y*}M_{\perp}^{Z})$$

These contributions can then be easily determined from linear combinations of the spin-flip and non-spin-flip crosssections, knowing the initial polarisation P_i :

$$|N|^2 \propto \sigma_x^{++} = \sigma_x^{--}$$
$$|M_\perp|^2 \propto \frac{\sigma_x^{+-} + \sigma_x^{-+}}{2}$$
$$M_{ch} \propto \frac{\sigma_x^{+-} - \sigma_x^{-+}}{2P_i}$$

Alternatively, one can use an initial unpolarized beam (produced by a graphite monochromator for instance) and perform polarization analysis. In this case, the chiral scattering can be derived from the difference:

$$\frac{\sigma_x^{0-} - \sigma_x^{0+}}{2} = M_{ch}$$

where the symbol 0 is meant for zero beam polarization of the incoming neutrons.

- [1] R. M. Moon, T. Riste and W. C. Koehler, Phys. Rev. 181, (1969) 920.
- [2] V. Scagnoli, S. W. Huang, M. Garganourakis, R. A. de Souza, and U. Staub, V. Simonet, P. Lejay, R. Ballou, Phys. Rev. B. 88, 104417 (2013).
- [3] A. Zorko, M. Potocnik, J. van Tol, A. Ozarowski, V. Simonet, P. Lejay, S. Petit, R. Ballou, Phys. Rev. Lett. 107, 257203 (2011).
- [4] V. Simonet, M. Loire, and R. Ballou, Eur. Phys. J. Special Topics 213, 5 (2012).