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DEVIATION FROM A 120◦ MAGNETIC ARRANGEMENT

The magnetic structure of the Fe langasite is described by three magnetic helices propagating perpendicular to the
ab-plane with a propagation vector (0, 0, τ), based on magnetic moments at 120◦ from each other in the ab-plane.
The magnetic structure factor of this structure, at the reciprocal space position H = ±τ with H a reciprocal lattice
vector, writes :

~FM ( ~Q = ~H ± ~τ) = p
∑
ν=1,3

f(| ~Q|)~m±~τ,νei ~Q.~rν

with p=0.2696 10−12 cm, f the magnetic form factor of the Fe3+ atoms, ~rν the position of the atom ν in the cell:
~r1 = (x, 0, 1

2 ), ~r2 = (0, x, 1
2 ) and ~r3 = (−x,−x, 1

2 ) with x=0.2496. The Fourier components of the magnetization

distribution for the atom ν is ~m±~τ,ν = [µû±iµv̂2 ]e∓iφν with µ the magnetic moment amplitude, (û, v̂) an orthonormal
basis in the ab-plane, and φν a phase which should account for the relative 120◦ dephasing between the three Bravais
lattices.
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FIG. 1: Temperature dependence of the magnetic contributions of the (0, -1, 1-τ) and (0, 0, τ) satellites measured by neutron
scattering and rescaled for comparison.
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For H = (0, 0, `), the magnetic structure factor becomes zero:

~FM (0, 0, `± τ) = pf(| ~Q|)
∑
ν=1,3

[
µû± iµv̂

2
]e∓iΦν ei2π

(`±τ)
2 = pf(| ~Q|)[µû± iµv̂

2
]ei2π

(`±τ)
2 (1 + e∓i

2π
3 + e∓i

4π
3 ) = 0

For in-plane magnetic moments, the only way to observed a magnetic signal on the (0, 0, ` ± τ) satellites implies
a deviation from the 120◦ arrangement of the magnetic moments. Scagnoli et al. have also observed, by magnetic
resonant X-ray diffraction, the presence of a (0, 0, τ) magnetic satellite and attributed it to an out-of-plane (but-
terfly) component of the magnetization [2]. This component presumably originates from the Dzyaloshinskii-Moryia
interaction. In addition to the D vector along the c axis, a D vector component along the side of each triangle is
also allowed by symmetry, responsible for this small out-of-plane butterfly component of the magnetic arrangement
[2, 3]. However, neutron scattering is only sensitive to the magnetization component perpendicular to the scattering

vector ~Q. Hence, this out-of-plane component cannot contribute to the (0, 0, ` ± τ) satellites measured be neutron
diffraction.

The measured temperature dependence of the (0, 0, τ) extra-satellites, produced by the deformation of the 120◦

magnetic arrangement is shown in Fig. 1. It follows the temperature dependence of strong first order magnetic
satellites.

NOTE ON THE CHIRALITY

The excellent agreement between the calculated and observed spectral weight extinction in the spin waves when
including a single-ion anisotropy in the Hamiltonian is only observed for one triangular chirality (anticlockwise 120 ◦

rotation of the spins on each triangle), in agreement with previous determination of the magnetic chirality [4]. Both
Ta and Nb single-crystals thus have the same triangular chirality. Their structural chirality is opposite, as determined
from anomalous X-ray scattering. This structural chirality, in turn, imposes the helical chirality to be opposite in
both compounds.

NEUTRON POLARIMETRY

The simplest neutron polarimetry technique to probe the chiral scattering was first introduced by Moon, Riste
and Koehler [1], and is called longitudinal polarization analysis (LPA). In this case the final and initial polarizations
are parallel, which can be achieved typically on a triple-axis spectrometer with polarizing monochromator/analyser
(e.g. Heusler crystals). In addition, two flippers select the polarization states + and − (parallel or antiparallel to the
polarization axis). The spin-flip terms (scattering processes changing the sign of the polarization),

(
d2σ

dΩdEf
)+− = σ+− and (

d2σ

dΩdEf
)−+ = σ−+

and the non-spin-flip terms (scattering processes leaving the sign of the polarization unchanged),

(
d2σ

dΩdEf
)++ = σ++ and (

d2σ

dΩdEf
)−− = σ−−

of the partial differential cross-section can be measured independently.

In neutron polarimetry, a right-handed coordinated system is usually chosen with the x−axis along the scattering
vector ~Q, the y−axis in the scattering plane and the z−axis perpendicular to the scattering plane, so that the magnetic
interaction vector has zero x component. We shall use in the following the simplified notations: the nuclear cross-
section σN is proportional to |N |2 with N the nuclear structure factor. The magnetic cross-section σM is proportional
to |M⊥|2 with M⊥ the magnetic interaction vector, which is the projection of the magnetic structure factor FM onto
the plane perpendicular to the scattering vector Q. The chiral cross-section σch is proportional to Mch defined as:

Mch = i(MZ∗
⊥ MY

⊥ −MY ∗
⊥ MZ

⊥ )

These contributions can then be easily determined from linear combinations of the spin-flip and non-spin-flip cross-
sections, knowing the initial polarisation Pi :
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|N |2 ∝ σ++
x = σ−−x

|M⊥|2 ∝
σ+−
x + σ−+

x

2

Mch ∝
σ+−
x − σ−+

x

2Pi

Alternatively, one can use an initial unpolarized beam (produced by a graphite monochromator for instance) and
perform polarization analysis. In this case, the chiral scattering can be derived from the difference:

σ0−
x − σ0+

x

2
= Mch

where the symbol 0 is meant for zero beam polarization of the incoming neutrons.
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