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ON THE CAUCHY PROBLEM AND THE BLACK SOLITONS OF
A SINGULARLY PERTURBED GROSS-PITAEVSKII EQUATION

ISABELLA IANNI, STEFAN LE COZ, AND JULIEN ROYER

Abstract. We consider the one-dimensional Gross-Pitaevskii equation per-
turbed by a Dirac potential. Using a fine analysis of the properties of the
linear propagator, we study the well-posedness of the Cauchy Problem in the
energy space of functions with modulus 1 at infinity. Then we show the persis-
tence of the stationary black soliton of the unperturbed problem as a solution.
We also prove the existence of another branch of non-trivial stationary waves.
Depending on the attractive or repulsive nature of the Dirac perturbation and
of the type of stationary solutions, we prove orbital stability via a variational
approach, or linear instability via a bifurcation argument.
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1. Introduction

We consider the one-dimensional singularly perturbed Gross-Pitaevskii equation

iut + uxx − γδu+ (1− |u|2)u = 0, (1.1)

with the boundary condition

|u(t, x)| → 1, as |x| → +∞. (1.2)

Here, u : R×R→ C, γ ∈ R, δ is the Dirac distribution at 0 and the indices denote
the derivatives.

The Gross-Pitaevskii equation is a defocusing nonlinear Schrödinger equation
with non-standard boundary conditions. It has numerous applications in physics,
in particular in nonlinear optics or for Bose-Einstein condensates. Due to the
defocusing nature of the nonlinearity, the dynamics of this equation is relatively
simple if we consider Dirichlet (|u| → 0) conditions at infinity: all solutions to (1.1)
are expected to scatter at large time. However, if we assume that |u| → 1 at infinity
instead, then a much richer dynamics is possible. In particular, there exist solutions
of (1.1) either stationary or propagating a fixed profile: the dark and grey solitons.

Perturbations of nonlinear Schrödinger equations with one or more Dirac distri-
butions appear in different contexts in Physics and Mathematics.

In nonlinear optics, when polarization of light and birefringence are taken into
account in the modeling of optical fibers, the resulting model is a system of coupled
nonlinear Schrödinger equations, see [8]. In the study of the soliton-soliton collisions
(see e.g. [25, 43]), if one of the component is very narrow, then its effect on the
other via the coupling can be approximated by the Dirac distribution (see [18] and
the references therein). The mathematical phenomena related to the interaction
of a soliton with the Dirac perturbation have been studied in depth, first in the
groundlaying work by Goodman, Holmes and Weinstein [36] and then in a series of
papers by Datchev, Holmer, Marzuola and/or Zworski [24, 40, 41, 42].

Dirac distributions also naturally appear for nonlinear Schrödinger equations on
graphs. The motivation comes from nanotechnology where networks of quantum
wires are modeled by nonlinear Schrödinger equations on graphs with the Laplacian
on the edges and Kirchoff transmission conditions at the vertices. The equation
(1.1) constitutes the simplest example of a nonlinear Schrödinger equation posed
on a graph consisting of only one vertex and two edges. An introduction to nonlinear
Schrödinger equations on graphs is provided by Noja in [48].

The mathematical study of singularly perturbed nonlinear Schrödinger equations
started only a few years ago and is currently in very active development. Several
lines of investigation have been followed. One problem is to understand the effect of
the perturbation on the dispersive nature of the equation. Outstanding progresses
have been made recently in this direction by Banica and Ignat [11, 12]. Another
challenge is to analyse the solitons and their stability. After the pioneering work of
Fuikuizumi and co. [27, 28, 45], the analysis of solitons for nonlinear Schrödinger
equations on graphs has known a tremendous development under the impulsion of
Adami and co. [1, 2, 3, 4, 5, 6]. Surprising phenomena appear, e.g. bistability in
the recent work of Genoud, Malomed and Weishäupl [31]. Let us mention also the
recent study of the scattering problem by Banica and Visciglia [13].
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To our knowledge, our work is first one where the singularly perturbed Gross-
Pitaevskii equation (1.1) with the non-standard boundary conditions (1.2) is consid-
ered. We have been interested by the Cauchy problem for (1.1) and by the existence
and stability of stationary solutions. As detailed below, two main difficulties arise.
First, due to the non-standard boundary conditions, the natural energy space is
not a vector space and we have to rethink entirely the strategy to solve the Cauchy
problem. Second, the presence of the Dirac perturbation generates subtle modifi-
cations on the stationary solutions of the equation, thus its treatment requires a
fine analysis, in particular for the spectral part of the study.

Before presenting our results, we give some preliminaries on the structure of
(1.1). At least formally, we have the conservation of the energy Eγ defined by

Eγ(u) =
1

2
‖u′‖2L2 +

γ

2
|u(0)|2 +

1

4

∫
R

(1− |u|2)2 dx,

where ′ denotes the derivative with respect to the variable x. Then the equation
(1.1) can be rewritten into Hamiltonian form

iut = ∂Eγ(u).

This energy is defined in the energy space

E :=
{
v ∈ H1

loc(R) : v′ ∈ L2(R), (1− |v|2) ∈ L2(R)
}
.

Unfortunately E is not a vector space and this yields several difficulties in the
analysis. We will endow E with the structure of a complete metric space. Several
choices are possible for the distance (see e.g. the discussion in [33]). In this work,
we have used the two distances d0 and d∞ defined as follows. For u, v ∈ E we set

d0(u, v) = ‖u′ − v′‖L2 + |u(0)− v(0)|+
∥∥∥|u|2 − |v|2∥∥∥

L2
, (1.3)

d∞(u, v) = ‖u′ − v′‖L2 + ‖u− v‖L∞ +
∥∥∥|u|2 − |v|2∥∥∥

L2
. (1.4)

The size of u in E will be measured with the quantity

|u|2E = E0(u) =
1

2
‖u′‖2L2 +

1

4

∫
R

(1− |u|2)2 dx. (1.5)

Note that we have used E0 instead of Eγ in the definition of |u|E because the Dirac
perturbation is not encoded in the energy space. Notice moreover that Eγ(u) may
be negative when γ is negative.

1.1. The Cauchy Problem. Our first main result concerns the well-posedness of
the Cauchy Problem for (1.1) in the energy space E .

A lot of research has been devoted in the last decades to the study of the Cauchy
Problem for various dispersive PDE and one would expect that a classical-looking
equation like (1.1) is already covered by existing results. This is however not the
case, as most of the works on dispersive PDE deal with well-posedness in vector
function spaces for localized or periodic functions. Because of the condition |u| → 1
at infinity, (1.1) does not fall into that category, and the Cauchy Theory for non-
vector function spaces like E is still at its early stages of development (see e.g.
[29, 33, 34]). Another difficulty arising when dealing specifically with (1.1) is the
effect of the Dirac perturbation, which causes a loss of regularity at x = 0 for the
solution.

Our result is the following.
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Theorem 1.1 (The Cauchy Problem). Let γ ∈ R. Then for any u0 ∈ E the problem
(1.1) has a unique, global, continuous (for d∞ and hence d0) solution u : R → E
with u(0) = u0. Moreover, the following properties are satisfied.

(i) Energy conservation: For all t ∈ R we have

Eγ(u(t)) = Eγ(u0).

(ii) Continuity with respect to the initial condition: For R > 0 and T > 0 there
exists C > 0 such that for u0, ũ0 ∈ E with |u0|E 6 R and |ũ0|E 6 R the
corresponding solutions u and ũ satisfy

∀t ∈ (−T, T ), d∞
(
u(t), ũ(t)

)
6 Cd∞(u0, ũ0).

The proof of Theorem 1.1 is based on a fixed point argument. Several steps are
necessary.

A main task is to acquire a good understanding on the linear propagation. We
denote by Hγ the unbounded self-adjoint operator rigorously defined from the for-
mal expression −∂xx + γδ (see Section 2.2):Hγ = − d2

dx2
,

D(Hγ) =
{
u ∈ H1(R) ∩H2(R \ {0}) : u′(0+)− u′(0−) = γu(0)

}
.

Note that Hγ differs from the usual second order derivative operator only by the
jump condition:

∂xu(0+)− ∂xu(0−) = γu(0). (1.6)

We start by giving an explicit characterization of the linear group e−itHγ . Pre-
cisely, we decompose the linear group e−itHγ in a regular part containing the free
propagator e−itH0 and a singular part Γ(t):

e−itHγ = e−itH0 + Γ(t),

and we give an explicit expression for the kernel of Γ(t).
As expected, the treatment of the free linear evolution does not cause any trouble,

and the tricky part is to deal with Γ(t). In particular, when γ < 0, the kernel of
Γ(t) is rather hard to handle, and we have to find a clever way to decompose it into
two parts that are treatable separately (see the decomposition in Lemma 3.2). This
decomposition is crucially involved in the rest of the study of the linear evolution.
Whereas the explicit formula for the kernel was previously derived in the literature,
the decomposition lemma is a new tool to deal with the propagator e−itHγ .

With the explicit formula for the kernel of the propagator and the decomposition
lemma at our disposal, we are equipped for the study of the propagator e−itHγ . We
first prove that it defines a continuous application on H1(R). It is clear if γ = 0
since H0 = −∂xx commutes with derivatives, but it is no longer the case when
γ 6= 0. Then we extend e−itHγ to an application on the energy space E . This
application will inherit most of the nice properties of the unitary group on L2(R).
Finally, we prove that for u0 ∈ E the map t 7→ e−itHγu0 − u0 is continuous with
values in H1(R). In other words, it sends functions with non-zero boundary data
at infinity to localized functions. That is a central point in our analysis.

After the study of the linear propagator, we are ready to tackle the analysis of the
Cauchy Problem. We rewrite the problem (1.1) in terms of a Duhamel formula, to
which we will apply Banach fixed point theorem to prove the local well-posedness.
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The last step consists in proving the conservation of the energy. As usual (see
e.g. [19]), we first consider a dense subset of more regular initial data, for which
(1.1) has a strong solution. However, the singular nature of the Dirac perturbation
prevents us from working with functions regular at 0. Thus, we have constructed
the space X2

γ of functions which have locally the H2(R) regularity and satisfy at
0 the jump condition (1.6) generated by the Dirac perturbation. We prove the
conservation of the energy for such an initial condition u0 and then, by density, for
any u0 ∈ E . Global existence is then a consequence of energy conservation.

1.2. The Black Solitons. When γ = 0, (1.1) admits traveling waves, i.e. solutions
of the form κc(x − ct). In this case, a traveling wave of finite energy is either a
constant of modulus 1 or, for |c| <

√
2 and up to phase shifts or translations, it has

a non-trivial profile given by an explicit formula.
The nontrivial traveling waves have been the subject of a thorough investigation

in the recent years. When c 6= 0, they are often called grey solitons, a terminology
which stems from nonlinear optics (such solitons appear grey in the experiments).
For c 6= 0, orbital stability was proved via the Grillakis-Shatah-Strauss Theory
[38, 39] by Lin [46] and later revisited by Bethuel, Gravejat and Saut [14] via the
variational method introduced by Cazenave and Lions [20]. When c = 0, the trav-
eling wave becomes a stationary wave and is now called a black soliton. The study
of orbital stability is much trickier when c = 0, due to the fact that the solution
vanishes, and it is no longer possible to make use of the so-called hydrodynamical
formulation of the Gross-Pitaevskii equation (see e.g. [14] for details). Neverthe-
less orbital stability of the black soliton was proved via variational methods by
Bethuel, Gravejat, Saut and Smets [15] and via the inverse scattering transform
by Gérard and Zhang [35] (see also [26] for an earlier result and numerical simu-
lations). Recently, Bethuel, Gravejat and Smets proved the orbital stability of a
chain of solitons of the Gross-Pitaevskii equation [17] as well as asymptotic stabil-
ity of the grey solitons [16] and of the black soliton [37]. Existence and stability
of traveling waves with a non-zero background for equations of type (1.1) with a
general nonlinearity was also studied by Chiron [22, 23].

When γ 6= 0, the Dirac perturbation breaks the translation invariance and trav-
eling waves do not exist anymore. However, stationary solutions u(t, x) ≡ u(x)
solving the ordinary differential equation

u′′ − γδu+ (1− |u|2)u = 0. (1.7)

are still expected. In fact, the black soliton κ0 is still a solution to (1.1) when γ 6= 0,
and another branch of nontrivial solutions bifurcates other branches of nontrivial
solutions bifurcate from the constants of modulus 1. Precisely (see Proposition 5.1)
the set of finite-energy solutions to (1.7) is{

eiθκ, eiθbγ : θ ∈ R
}
if γ > 0,{

eiθκ, eiθbγ , e
iθ b̃γ : θ ∈ R

}
if γ < 0,

where (see also Figure 1)

κ(x) := tanh

(
x√
2

)
, bγ(x) := tanh

( |x| − cγ√
2

)
, b̃γ(x) := coth

( |x|+ cγ√
2

)
,
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for cγ := 1√
2

sinh−1
(
− 2
√

2
γ

)
. This existence result is obtained using ordinary dif-

ferential equations techniques. The analysis of (1.7) is classical when γ = 0 and
the difficulty when γ 6= 0 is to deal with the jump condition (1.6) induced by the
Dirac perturbation.

−5 −4 −3 −2 −1 1 2 3 4 5

1

-1

−5 −4 −3 −2 −1 1 2 3 4 5

1

-1

−5 −4 −3 −2 −1 1 2 3 4 5

1

-1

−5 −4 −3 −2 −1 1 2 3 4 5

1

-1

Figure 1. Top Left: The stationary state κ = κ0 = tanh
(
x√
2

)
.

Top Right: The stationary state b̃γ(x) := coth
(
|x|+cγ√

2

)
, γ = −1.

Bottom: The stationary state bγ for γ = −1 and γ = 1.

The next step in the study of stationary solutions to (1.1) is to understand their
stability. To this aim, and when possible, we give a variational characterization of
the stationary solutions. When γ = 0, the traveling waves can be characterized as
minimizers of the energy on a fixed momentum constraint. This is a non-trivial
result due to difficulties in the definition of the momentum (see [14, 15]). We will
show in our next result that, depending on the sign of γ, either κ b̃γ or bγ can be
characterized as minimizers. Surprisingly, the minimization problem turns out to be
simpler than when γ = 0, and the stationary solutions are in fact global minimizers
of the energy without constraint. This is a rather unusual situation when dealing
with stationary solutions of nonlinear dispersive PDEs. The minimization problem
turns out to be simpler than when γ = 0, and the stationary solutions are in fact
global minimizers of the energy without constraint.

The minimization result is the following.

Proposition 1.2 (Variational Characterization). Let γ ∈ R \ {0}. Then we have

mγ := inf{Eγ(v) : v ∈ E} > −∞.
Moreover the infimum is achieved at solutions to (1.7). Precisely, define

Gγ := {v ∈ E , Eγ(v) = mγ}.
Then the following assertions hold.

(i) If γ > 0, then Gγ = {eiθbγ , θ ∈ R},
(ii) If γ < 0, then Gγ = {eiθκ, θ ∈ R}.
(ii) If γ < 0, then Gγ = {eiθ b̃γ , θ ∈ R}.

In addition, any minimizing sequence (un) ⊂ E such that Eγ(un) → mγ verifies,
up to a subsequence,

d0(un,Gγ)→ 0.
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In the cases covered by Proposition 1.2, stability will be a corollary of the varia-
tional characterization of the stationary states as global minimizers of the energy.
Let us recall that we say that the set Gγ ⊂ E is stable if for any ε > 0 there exists
δ > 0 such that for any u0 ∈ E with

d0(u0,Gγ) 6 δ,

the solution u of (1.1) with u(0) = u0 is global and verifies

sup
t∈R

d0(u(t),Gγ) 6 ε.

When the stationary solutions are not minimizers of the energy, we expect them
to be all unstable. In this paper, we treat the case γ > 0 and we show that κ is
linearly unstable.

Linear instability means that the operator arising in the linearization of (1.1)
around κ (see e.g. [21]) admits an eigenvalue with negative real part. Precisely,
consider the linearization of (1.1) around the kink stationary solution κ(x). For u
solution of (1.1) we write u = κ+ η. The perturbation η verifies

ηt + Lη +N(η) = 0, (1.8)

where the linear and nonlinear parts are given by

Lη = −i(∂xxη − γδη + (1− κ2)η − 2κ2Re(η)),

N(η) = −i(−2κRe(η)η − |η|2(κ+ η)).
(1.9)

The kink κ is said to be linearly unstable if 0 is an unstable solution of the linear
equation

ηt + Lη = 0.

This is in particular the case if L has an eigenvalue λ with Re(λ) < 0. Indeed, such
eigenvalue generates an exponential growth for the corresponding solution of the
linear problem. It is expected that this linear exponential growth translates into
nonlinear instability, as in the theory of Grillakis, Shatah and Strauss [39], see [32]
for a rigorous proof in the case of a nonlinear Schrödinger equation.

The stability/instability result is the following.

Theorem 1.3 (Stability/Instability). The following assertions hold.
(i) (Stability) Let γ 6= 0. Then the set Gγ is stable under the flow of (1.1).
(ii) (Instability) Let γ > 0. Then the kink κ is linearly unstable.

Remark 1.4. In the stability result, a solution starting close to a stationary wave
will always remain close, up to a phase parameter which may vary in time. This type
of stability is usually called orbital stability (see [20] for an early result on orbital
stability and [19, Chapter 8] for a discussion of the orbital nature of stability).

Remark 1.5. It is interesting to note that if we define mγ,rad (resp. mγ,odd) to be
the minimum of Eγ(v) with v ∈ E , v even (resp. odd), then for any γ ∈ R we have

Gγ,rad= {v ∈ E , v even, Eγ(v) = mγ,rad} = {eiθbγ , θ ∈ R},
Gγ,rad= {v ∈ E , v even, Eγ(v) = mγ,rad} = {eiθbγ , θ ∈ R}, if γ > 0

Gγ,rad= {v ∈ E , v even, Eγ(v) = mγ,rad} = {eiθ b̃γ , θ ∈ R}, if γ < 0

Gγ,odd = {v ∈ E , v odd, Eγ(v) = mγ,odd} = {eiθκ, θ ∈ R}.
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Hence, independently of the sign of γ, the set Gγ,rad (resp. Gγ,odd) is stable with
respect to even (resp. odd) perturbations. In particular, the kink κ is always stable
with respect to odd perturbations.

As already said, part (i) (Stability) in Theorem 1.3 is a corollary of Proposition
1.2. The proof of part (ii) (Instability) of Theorem 1.3 relies on a perturbative
analysis partly inspired by [45]. We first convert L into a new operator L by
separating the real and imaginary parts. The operator L is of the form

L =

(
0 −Lγ−
Lγ+ 0

)
,

where Lγ+ and Lγ− are selfadjoint operators whose spectra are well known when
γ = 0. Then we use the continuity of these spectra with respect to γ to obtain
informations on the general case. For instance, 0 is a simple and isolated eigenvalue
of Lγ+. For γ 6= 0, |γ| � 1, this eigenvalue moves on one side or the other of the
real line, depending on the sign of γ. Then we show that when γ 6= 0 the kernel is
always trivial, which implies that the number of negative eigenvalues is constant for
γ ∈ (−∞, 0) and for γ ∈ (0,+∞). With this kind of information on the spectrum of
Lγ±, we can prove that L has a real negative eigenvalue, which is also an eigenvalue
for L.

The rest of the paper is divided as follows. In Section 2 we analyse the structure
of the functional spaces involved in the analysis, in particular the energy space E .
Section 3 is devoted to the study of the linear propagator. This provides the
necessary tools to prove the well-posedness of the Cauchy Problem in Section 4. In
Section 5 we prove the existence and variational characterizations of the stationary
solutions, and we analyse their stability/instability in Section 6.

Acknowledgment. The authors are grateful to Masahito Ohta for pointing them out
the existence of the family of coth based bound states.

Notation. The space L2(R) will be endowed with the real scalar product

〈u, v〉L2 = Re
∫
R
uv̄dx.

The homogeneous Sobolev space Ḣ1(R) is defined by

Ḣ1(R) = {u ∈ H1
loc(R) : u′ ∈ L2}.

Given an operator L, we denote by L∗ its adjoint. As usual, S = S(R) will denote
the Schwartz space of rapidly decreasing functions. We denote by C∞0 (R) the set of
C∞ functions from R to C with compact support. For x ∈ R, we use the Japanese
bracket to denote

〈x〉 =
√

1 + |x|2.

2. Functional Spaces

2.1. The Energy Space. In this section we give the basic properties of the energy
space E . Some of the properties presented are already known (see e.g. [34]) but we
give here statements adapted to our needs.

Recall that we have defined two distances d0, d∞ in (1.3)-(1.4) and |·|E in (1.5).
This endow E with structures of complete metric spaces. We will use d∞ to measure
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the continuity of the flow in Theorem 1.1, while d0 will be useful for the stability
result.

It is clear that for u, v ∈ E we have d0(u, v) 6 d∞(u, v). On the other hand, d0

does not control d∞. Indeed, if for n ∈ N \ {0} and x ∈ R we set

un(x) = 1 and vn(x) = eiπϕn(x) with ϕn(x) =
|x|

n+ |x| ,

then we have
d0(un, vn)2 = ‖v′n‖

2
L2 = π2 ‖ϕ′n‖

2
L2 −−−−−→

n→+∞
0

but for all n
d∞(un, vn) > ‖un − vn‖L∞ = 2.

We start by showing that functions in the energy space are in fact countinuous,
bounded and with modulus 1 at infinity. Moreover the quantities Eγ(u) and |u|E
are comparable. We will see that the first one is preserved for a solution of (1.1)
and the second will give the time of existence for the local well-posedness, so the
following result will be crucial to obtain global well-posedness.

Lemma 2.1. Let u ∈ E. Then u is uniformly continuous, bounded and

lim
|x|→+∞

|u(x)| = 1.

Moreover there exists C > 0 such that for every u ∈ E we have

‖u‖L∞ 6 C(1 + |u|2/3E ), (2.1)

|u|4/3E − C 6 Eγ(u) 6 C(1 + |u|2E). (2.2)

Proof. Let u ∈ E . Since u′ ∈ L2(R), u is uniformly continuous. Assume by contra-
diction that there exist ε > 0 and a sequence (xn) such that

lim
n→+∞

|xn| = +∞ and
∣∣1− |u(xn)|2

∣∣ > ε.

By uniform continuity there exists δ > 0 such that for n ∈ N and x ∈ [xn−δ, xn+δ]
we have ∣∣1− |u(x)|2

∣∣ > ε

2
.

On the other hand, since (1− |u|2) ∈ L2(R), we have

lim
n→+∞

∫ xn+δ

xn−δ
(1− |u|2)2dx = 0.

This gives a contradiction, and hence |u(x)| → 1 as |x| → ∞. Since u is continuous,
we deduce that it is bounded. Now let v = 1− |u|2. Then v belongs to H1(R) and
we have

‖v‖2L∞ . ‖v‖L2 ‖v′‖L2 . |u|2E ‖u‖L∞ .
This gives

‖u‖4L∞ . 1 + ‖v‖2L∞ . 1 + |u|2E ‖u‖L∞ ,
and (2.1) follows. We easily deduce the second inequality of (2.2). The first one is
clear for γ > 0. When γ < 0 we write for some C̃ > 0

Eγ(u) > |u|2E −
|γ|
2
‖u‖2L∞(R) > |u|

4/3
E

(
|u|2/3E − C̃

)
− C̃.

This concludes the proof. �
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Lemma 2.2 (Continuity of the Energy). Let γ ∈ R. Then the energy Eγ is con-
tinuous on (E , d0), and hence on (E , d∞). More precisely, for R > 0 the functional
Eγ is Lipschitz continuous on {u ∈ E : |u|E 6 R}.
Proof. For A,B ∈ C we have

||A|2 − |B|2| = |Re
(
(A−B)(A+B)

)
| 6 |A−B|

(
2|A|+ |A−B|

)
. (2.3)

Thus for u, v ∈ E we have

|Eγ(u)− Eγ(v)|

.
∫
R

∣∣∣|u′|2 − |v′|2∣∣∣+
∣∣∣|u(0)|2 − |v(0)|2

∣∣∣+

∫
R

∣∣∣|1− |u|2|2 − |1− |v|2|2∣∣∣
. d0(u, v)

(
1 + |u|E + d0(u, v)

)
.

Notice that we have used (2.1) to control |u(0)|. The result follows. �

We now look at the perturbation of a function u in E by a function in H1(R).
This will be used to apply the fixed point theorem in the proof of the local well-
posedness.

Lemma 2.3. The following assertions hold.
(i) If u ∈ E and w ∈ H1(R) then u+ w ∈ E.
(ii) There exists C > 0 such that for u ∈ E and w ∈ H1(R) we have

|u+ w|E 6 C (1 + |u|E)
(

1 + ‖w‖2H1

)
.

(iii) Let R > 0. There exists CR > 0 such that for u1, u2 ∈ E and w1, w2 ∈ H1(R)
with max

(
|u1|E , |u2|E , ‖w1‖H1 , ‖w2‖H1

)
6 R we have

d∞(u1 + w1, u2 + w2) 6 CR (d∞(u1, u2) + ‖w1 − w2‖H1) .

Proof. Let u ∈ E and w ∈ H1(R). We have u+ w ∈ H1
loc(R) and u′ + w′ ∈ L2(R).

Since 1− |u| ∈ L2(R), u ∈ L∞(R) and w ∈ L2 ∩ L∞(R) we also have by (2.1) and
Sobolev embeddings∥∥∥1− |u+ w|2

∥∥∥
L2
6
∥∥∥1− |u|2

∥∥∥
L2

+ 2 ‖u‖L∞ ‖w‖L2 + ‖w‖L∞ ‖w‖L2

. (1 + |u|E)
(

1 + ‖w‖2H1

)
.

In particular 1 − |u + w|2 ∈ L2(R), and (i) and (ii) are proved. Now we consider
R > 0 and u1, u2, w1, w2 as in (iii). We have

‖(u1 + w1)− (u2 + w2)‖L∞ 6 ‖u1 − u2‖L∞ + ‖w1 − w2‖L∞
. d∞(u1, u2) + ‖w1 − w2‖H1 .

The same applies for the L2(R)-norms of the derivatives. For the last term in d∞
we write∥∥∥|u1 + w1|2 − |u2 + w2|2

∥∥∥
L2
6
∥∥∥|u1|2 − |u2|2

∥∥∥
L2

+
∥∥∥|w1|2 − |w2|2

∥∥∥
L2

+ 2 ‖u1(w1 − w2)‖L2 + 2 ‖(u1 − u2)w2‖L2 .

The first term is controlled by d∞(u1, u2). For the second we use (2.3). For the
third we use (2.1) to control ‖u1‖L∞ . Finally for the last term we use the fact that
‖u1 − u2‖L∞ 6 d∞(u1, u2) (which would not be the case with the distance d0). �
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Remark 2.4. For u ∈ E fixed, the map w ∈ H1 7→ u + w ∈ E is also continuous
for the metric d0. In other words, the last statement of Lemma 2.3 holds with d∞
replaced by d0 when u1 = u2.

In order to study the nonlinearity of (1.1), we set for u ∈ E
F (u) =

(
1− |u|2

)
u.

Lemma 2.5 (Nonlinear Estimates). The function F maps E into H1(R). More-
over, for R > 0 there exists CR > 0 such that for u, u1, u2 ∈ E and w,w1, w2 ∈
H1(R) with

max
(
|u|E , |u1|E , |u2|E , ‖w‖H1 , ‖w1‖H1 , ‖w2‖H1

)
6 R,

we have

‖F (u+ w)‖H1 6 CR,

‖F (u1 + w1)− F (u2 + w2)‖H1 6 CR
(
d∞(u1, u2) + ‖w1 − w2‖H1

)
.

Proof. Let u ∈ E . We have (1 − |u|2) ∈ L2(R) (by definition) and u ∈ L∞(R) (by
Lemma 2.1), so F (u) ∈ L2(R). In addition, we have

F (u)′ =
(
1− 2|u|2

)
u′ − u2u′. (2.4)

Since u2 ∈ L∞(R) and u′ ∈ L2(R) this proves that F (u)′ ∈ L2(R) and gives the
first statement. By Lemmas 2.1 and 2.3 we have

‖F (u1 + w1)− F (u2 + w2)‖L2 6
∥∥∥|u2 + w2|2 − |u1 + w1|2

∥∥∥
L2
‖u1 + w1‖L∞

+
∥∥∥1− |u2 + w2|2

∥∥∥
L2
‖(u1 + w1)− (u2 + w2)‖L∞

.R d∞(u1 + w1, u2 + w2)

.R d∞(u1, u2) + ‖w1 − w2‖H1 .

We proceed similarly for F (u1 + w1)′ − F (u2 + w2)′, starting from (2.4) and using
(2.3) to estimate ∥∥∥|u1 + w1|2 − |u2 + w2|2

∥∥∥
L∞

.

This concludes the proof. �

2.2. Functions with Higher Regularity. Functions on E can only be solutions
of (1.1) in a weak sense. For computations it will be useful to have a dense subset
of function with higher regularity.

We first give a precise meaning to the expression −∂xxu+ γδu which appears in
(1.1). For u, v ∈ H1(R) we have formally

〈−∂xxu+ γδu, v〉 = qγ(u, v),

where qγ is the sesquilinear form defined on H1(R) by

qγ(u, v) =

∫
R
u′v̄′dx+ γu(0)v̄(0).

This defines a closed form bounded from below on H1(R). Then we can check that
the corresponding selfadjoint operator on L2(R) is given by

Hγ = − d2

dx2
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on the domain

D(Hγ) =
{
u ∈ H1(R) ∩H2(R \ {0}) : u′(0+)− u′(0−) = γu(0)

}
(2.5)

(see Theorem VI.2.1 in [44]). This means that for u ∈ D(Hγ) we define Hγu as the
only L2(R) function which satisfies 〈Hγu, φ〉 = −〈u, φ′′〉 for all φ ∈ C∞0 (R \ {0}).
Notice that Hγ can also be defined via the approach of selfadjoint extensions (see
e.g. [10, Theorem I.3.1.1]).

We remark that functions in C∞0 (R) do not belong to the domain of Hγ in
general. For computations in a weak sense, we will use the following space of test
functions:

D0(Hγ) = {u ∈ D(Hγ) : supp(u) is compact} .
It will be useful to apply the theory of selfadjoint operators to Hγ on the Hilbert

space L2(R). However, functions in E are not in L2(R). Set

X2
γ =

{
u ∈ L∞(R) ∩ Ḣ1(R) ∩ Ḣ2(R \ {0}) : u′(0+)− u′(0−) = γu(0)

}
.

Functions in X2
γ have the same local properties as functions in D(Hγ) (regularity

and jump condition), but the integrability at infinity has been relaxed to include a
dense subset of E .

Lemma 2.6 (Density Results). The following assertions hold.

(i) D0(Hγ) is dense in H1(R).
(ii) X2

γ ∩ E is dense in E for the distance d∞, and hence for d0.

Proof. It follows from a regularization argument by convolution with a mollifier
(see e.g. [33, Lemma 6]) that X2

0 is dense in E . Let u ∈ X2
0 . For n ∈ N \ {0} and

x ∈ R we set ζn(x) = 1 + γ|x|
2 e−nx

2

. We have

(ζnu)′(0+)− (ζnu)′(0−) = u(0)
(
ζ ′n(0+)− ζ ′n(0−)

)
= γu(0) = γ(ζnu)(0).

This proves that ζnu ∈ X2
γ . On the other hand

‖ζn − 1‖L∞ −−−−→n→∞
0, ‖ζ ′n‖L2 −−−−→

n→∞
0 and

∥∥∥1− |ζn|2
∥∥∥
L2
−−−−→
n→∞

0

so

d∞(u, ζnu) −−−−→
n→∞

0,

and the second statement is proved. Since H2(R) is dense in H1(R), we similarly
prove that D0(Hγ) is dense in H1(R). �

Formally, we can apply Hγ to functions in X2
γ . However, to emphasize the fact

that a function u ∈ X2
γ is not necessarily in D(Hγ), we denote by H̃γu the function

−u′′ (again, this is the only L2(R) function which coincides with −u′′ on (0,+∞)

and (−∞, 0), in particular for φ ∈ C∞0 (R \ {0}) we have
〈
H̃γu, φ

〉
= 〈u,−φ′′〉).

Integrations by parts between functions in X2
γ and D0(Hγ) read as follows: for

u ∈ X2
γ and φ ∈ D0(Hγ) we have〈

H̃γu, φ
〉

= 〈u,Hγφ〉 .
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3. The Linear Evolution

In this section, we study the propagator associated to the linear part of (1.1).
We naturally begin in L2(R), and then we extend this propagator to functions in
the energy space E . For the proof of Theorem 1.1 it will also be useful to prove
some results for the linear evolution in H1(R) and X2

γ .

3.1. The Linear Evolution in L2(R). In the Hilbert space L2(R), the selfadjoint
operator Hγ generates a unitary group t 7→ e−itHγ ∈ L(L2(R)). In particular, for
u0 ∈ D(Hγ) the function u : t 7→ e−itHγu0 belongs to C1(R, L2(R))∩C0(R, D(Hγ))
and is the unique solution for the problem{

∂tu(t) + iHγu(t) = 0, ∀t ∈ R,
u(0) = u0.

The purpose of this section is to describe more explicitely the operator e−itHγ .
It is known that for t 6= 0 the kernel K0(t) of the free propagator e−itH0 is given

by

K0(t, ζ) =
1√
4iπt

e−
ζ2

4it .

As explained in introduction, our purpose is to give an explicit expression for the
kernel of e−itHγ − e−itH0 . For x, y ∈ R we set Γ(t, x, y) = 0 if γ = 0,

Γ(t, x, y) = −γ
2

∫ +∞

0

e−
γs
2 K0(t, s+ |x|+ |y|)ds if γ > 0,

Γ(t, x, y) = −|γ|
2

∫ +∞

0

e−
|γ|s
2 K0(t, s− |x| − |y|)ds+

|γ|
2
ei
γ2t
4 e−

|γ|(|x|+|y|)
2 if γ < 0.

Then we denote by Γ(t) the operator on the Schwartz space S whose kernel is
Γ(t, x, y). We first observe that Γ(t)∗ = Γ(−t) for all t ∈ R.

Proposition 3.1 (Description of the Propagator). Let t ∈ R. Then Γ(t) extends
to a bounded operator on L2(R) and we have

e−itHγ = e−itH0 + Γ(t).

The kernel of e−itHγ was derived for γ > 0 in [30, 49, 47]. A more general
perturbation (with δ and δ′ interactions) is considered in [9] (see also [7]). Here we
give a proof for any γ ∈ R. The case γ < 0 requires a particular attention.

For computations on Γ(t, x, y) when γ > 0, we will often use the operators

Lx(t, s, x, y) = − 2it sign(x)

(s+ |x|+ |y|)
∂

∂x
,

Ly(t, s, x, y) = − 2it sign(y)

(s+ |x|+ |y|)
∂

∂y
,

Ls(t, s, x, y) = − 2it

(s+ |x|+ |y|)
∂

∂s
.

(3.1)

These three operators leave invariant the function

(t, s, x, y) 7→ K0(t, s+ |x|+ |y|).
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They will be used in integrations by parts to obtain powers of t and negative
powers of x and y. Thus we also introduce the formal adjoints of these operators.
For instance for Lx we set

Lx(t, s, x, y)∗φ : y 7→ 2it
∂

∂x

(
sign(y)φ(y)

s+ |x|+ |y|

)
. (3.2)

Things will be quite different for γ < 0 since (s − |x| − |y|) can vanish even if
(s, x, y) 6= (0, 0, 0). In this case the following decomposition lemma will be of great
use.

Lemma 3.2 (Decomposition of the Kernel). Assume that γ < 0. For t > 0 and
ρ > 0, let g(t, ρ) be defined by

g(t, ρ) = e−|γ|ρ
√
t

(
1√
4iπt

∫ +∞

−2ρ
√
t

e−
(v−iγt)2

4it dv − 1

)
.

Then the following assertions hold.
(i) For t > 0, the operator Γ can be decomposed in

Γ(t) = Γ1(t) + Γ2(t)

where the operators Γ1(t) and Γ2(t) have kernels

Γ1(t, x, y) = −|γ|
2

∫ |x|+|y|
2

0

e−
|γ|s
2 K0(t, s− |x| − |y|)ds,

Γ2(t, x, y) = −|γ|
2
ei
γ2t
4 e−

|γ|(|x|+|y|)
4 g

(
t,
|x|+ |y|

4
√
t

)
.

(ii) For any T > 0 the function g is bounded on (0, T ]× R+. Moreover we have

g(t, ρ)→ 0 as t→ 0, ρ→ +∞.
The interest of the decomposition Γ = Γ1 + Γ2 is that on the one hand |s− |x| −

|y|| > |x|+|y|2 when s 6 |x|+|y|2 , so it will be possible to deal with the contributions of
Γ1 as for Γ(t) in the case γ > 0, using operators of the form (3.1) with (s+ |x|+ |y|)
replaced by (s − |x| − |y|). On the other hand, Γ2 will have nice properties given
by the exponential decay in x and y of its kernel.

Proof of Lemma 3.2. Let x, y ∈ R and t > 0. We have∫ +∞

|x|+|y|
2

e−
|γ|s
2 e−

(s−|x|−|y|)2
4it ds = e−

|γ|(|x|+|y|)
2

∫ +∞

− |x|+|y|2

e−
|γ|v
2 e−

v2

4it dv

= ei
γ2t
4 e−

|γ|(|x|+|y|)
2

∫ +∞

− |x|+|y|2

e−
(v−iγt)2

4it dv,

and (i) follows. To prove (ii), we argue as follows. For R > 0, t > 0 and ρ > 0 we
set

IR(t, ρ) =
1√
4iπt

∫ 2R
√
t

−2ρ
√
t

e−
(v−iγt)2

4it dv.

For t > 0 and z ∈ C we also set

ft(z) =
1√
4iπt

e−
(z−iγt)2

4it .
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This defines a holomorphic function on C. Then we have

g(t, ρ) = e−|γ|ρ
√
t lim
R→+∞

(
− I1,R(t) + I2,R(t, ρ) + I3(t, ρ)

)
where for R > 0 we have denoted by I1,R(t), I2,R(t, ρ) and I3(t, ρ) the integrals of
ft along the curves γ1 : θ ∈

[
0, π4

]
7→ 2R

√
teiθ, γ2 : r ∈ [−ρ,R] 7→ 2r

√
tei

π
4 = r

√
4it

and γ3 : θ ∈
[
0, π4

]
7→ −2ρ

√
teiθ, respectively. We have

lim
R→+∞

|I1,R(t)| = lim
R→+∞

∣∣∣∣∣2iR
√
t√

4iπt

∫ π
4

0

eiθ exp

(
− (2
√
tReiθ − iγt)2

4it

)
dθ

∣∣∣∣∣
6 lim
R→+∞

R√
π

∫ π
4

0

exp
(
−R2 sin(2θ)− |γ|R

√
t cos(θ)

)
dθ

= 0.

Using the dominated convergence theorem we obtain

lim
R→+∞

I2,R(t, ρ) = lim
R→+∞

1√
π

∫ R

−ρ
exp

(
− (r
√

4it− iγt)2

4it

)
dr

=
1√
π

∫ +∞

−ρ
exp

(
−r2 + rγ

√
it− iγ2t

4

)
dr −−−−−→

t→0
ρ→+∞

1.

And finally

|I3(t, ρ)| =
∣∣∣∣∣− iρ√

iπ

∫ π
4

0

eiθ exp

(
− (−2ρ

√
teiθ − iγt)2

4it

)
dθ

∣∣∣∣∣
6

ρ√
π

∫ π
4

0

∣∣∣∣exp

(
iρ2e2iθ − γρ

√
teiθ − iγ2t

4

)∣∣∣∣ dθ
6

ρ√
π

∫ π
4

0

exp
(
−ρ2 sin(2θ) + |γ|ρ

√
t cos(θ)

)
dθ.

At this point we have proved that I3 and hence limR→+∞ IR are bounded uniformly
in t ∈ (0, T ] and ρ ∈ [0, ρ0] for any T, ρ0 > 0. For ρ > 1 we write

|I3(t, ρ)| 6 ρ√
π

∫ ρ−3/2

0

exp
(
|γ|ρ
√
t
)
dθ +

ρ√
π

∫ π
4

ρ−3/2

exp
(
−ρ2 sin(2θ) + |γ|ρ

√
t
)
dθ

6 e|γ|
√
tρ

(
1√
πρ

+

√
πρe−ρ

2 sin(2ρ−3/2)

4

)
,

and hence
e−|γ|ρ

√
tI3(t, ρ) −−−−−→

ρ→+∞
0,

uniformly in t. This concludes the proof. �

Before giving the proof of Proposition 3.1, we state a result about the decay of
Γ(t)φ when φ ∈ S. This will be useful when defining Γ in the distributional sense
(see (3.11)).

Lemma 3.3 (Decay Estimate). Let φ ∈ S and t ∈ R. Then there exists C > 0
which only depends on t and on some semi-norm of φ in S and such that

|(Γ(t)φ)(x)| 6 C 〈x〉−2
.
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Some computations are common to the proofs of Lemma 3.3 and Proposition
3.1.

Proof of Lemma 3.3. Since Γ(−t) = Γ(t)∗, it is enough to prove the result for t > 0.
Fix such a t > 0 and let φ ∈ S. We first observe that Γ(t)φ ∈ L∞(R) with

‖Γ(t)φ‖L∞ . ‖φ‖L1 . (3.3)

Assume that γ > 0 and let x ∈ R \ {0}. After an integration by parts in y, we
obtain(

Γ(t)φ
)
(x) = −γ

2

∫
R

∫ +∞

0

e−
γs
2 K0(t, s+ |x|+ |y|)Ly(t, s, x, y)∗φ(y) ds dy

− 2itγφ(0)

∫ +∞

0

e−
γs
2
K0(t, s+ |x|)

s+ |x| ds,

where Ly(t, s, x)∗ is similar to Lx(t, s, x)∗ defined in (3.2). After a similar integra-
tion by parts with respect to s we get(

Γ(t)φ
)
(x) = −γ

2

∫
R

∫ +∞

0

K0(t, s+ |x|+ |y|)L∗s
(
e−

γs
2 L∗yφ

)
(y) ds dy

− iγt
∫
R

K0(t, |x|+ |y|)
|x|+ |y| L∗yφ(y) dy

− 2itγφ(0)

∫ +∞

0

K0(t, s+ |x|)L∗s
(
e−

γs
2

s+ |x|

)
ds

+ 4γt2φ(0)
K0(t, |x|)
|x|2 .

(3.4)

Using the fact that L∗s and L∗y are both of order t and |x|−1, this proves that

|
(
Γ(t)φ

)
(x)| . t3/2

x2

(
|φ(0)|+ ‖φ‖W 1,1

)
.

With (3.3) to control the small values of |x|, this concludes the proof when γ > 0.
Now assume that γ < 0. We use the decomposition of Lemma 3.2. For Γ1

we proceed as above and use that |s − |x| − |y|| > |x|+|y|
2 when s 6 |x|+|y|

2 . The
additional boundary terms given when integrating by parts in s are exponentially
small in |x| since they contain e−|γ|(|x|+|y|)/4. For Γ2 we have by Lemma 3.2:

|
(
Γ2(t)φ

)
(x)| . e− |γ||x|4 ‖φ‖L∞ .

This concludes the proof in the case γ < 0. �

Proof of Proposition 3.1. As above, since Γ(−t) = Γ(t)∗ it is enough to prove the
result for t > 0. Let φ ∈ C∞0 (R \ {0}). For t > 0 we set

u(t) = e−itH0φ+ Γ(t)φ ∈ L2.

We first show that u is continuous at 0 and satisfies the equation pointwise. For
γ > 0, (3.4) now gives

|
(
Γ(t)φ

)
(x)| . t3/2

〈x〉2
‖φ‖W 1,1 ,

from which we infer that
lim
t→0
‖Γ(t)φ‖L2 = 0. (3.5)
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Let us prove that (3.5) also holds if γ < 0. We proceed similarly as when γ > 0
for the contribution of Γ1. For the contribution of Γ2 we consider t0 > 0 such that
|y| > 4t

1/4
0 for all y ∈ suppφ. Then for t ∈ (0, t0], x ∈ R and y ∈ supp(φ) we have

|x|+|y|
4
√
t
> t−1/4, so thanks to Lemma 3.2 we have Γ2(t)φ→ 0 in L2(R) as t→ 0. In

particular we have u(t)→ φ as t→ 0 in L2(R).
The map u0 : (t, x) 7→ (e−itH0φ)(x) is smooth on (0,+∞)× R and satisfies

(i∂t + ∂xx)u0 = 0.

Using differentiation under the integral sign and straightforward computations, we
can check that the map uΓ : (t, x) 7→ (Γ(t)φ)(x) is smooth on (0,+∞) × R \ {0}
with

(i∂t + ∂xx)uΓ = 0 on (0,+∞)× R \ {0}.
This implies that the same holds for u.

We claim that for all t ∈ (0,+∞) the following jump condition is verified

∂xu(t, 0+)− ∂xu(t, 0−) = γu(t, 0). (3.6)

Let us make the computations to prove (3.6) in the case γ > 0, the case γ < 0
being similar. We first remark that for the unperturbed part we have

(∂xe
−itH0φ)(0+)− (∂xe

−itH0φ)(0−) = 0. (3.7)

For the singular part, we have

(∂xΓ(t)φ) (0±) =

∫
R
∂xΓ(t, 0±, y)φ(y)dy

= ∓γ
2

∫
R

∫ +∞

0

e−
γs
2
s+ |y|

2it
K0(t, s+ |y|)φ(y)dsdy.

Therefore,

(∂xΓ(t)φ)(0+)− (∂xΓ(t)φ)(0−) = −γ
∫
R

∫ +∞

0

e−
γs
2
s+ |y|

2it
K0(t, s+ |y|)φ(y)dsdy.

We recognize that ∂sK0(t, s + |y|) = s+|y|
2it K0(t, s + |y|), so after an integration by

parts in s we obtain

(∂xΓ(t)φ)(0+)− (∂xΓ(t)φ)(0−)

= γ

∫
R
K0(t, |y|)φ(y)dy − γ γ

2

∫
R

∫ +∞

0

e−
γs
2 K0(t, s+ |y|)φ(y)dsdy

= γ(e−itH0φ)(0) + γ(Γ(t)φ)(0) = γu(t, 0).

Combined with (3.7), this proves (3.6).
We now identify e−itHγφ with u(t). Let ψ0 ∈ C∞0 (R \ {0}) ⊂ D(Hγ) and

ψ : (t, x) 7→ (e−itHγψ0)(x). For t 6= 0 we have
d

dt
〈u(t), ψ(t)〉L2 = 〈ut(t), ψ(t)〉 − 〈u(t), iHγψ(t)〉

= 〈iuxx(t), ψ(t)〉+ 〈u(t), iψxx(t)〉
= Re

((
−iux(t, 0+) + iux(t, 0−)

)
ψ(t, 0) + iu(t, 0)

(
ψx(t, 0+)− ψx(t, 0−)

))
= Re

(
−iγu(t, 0)ψ(t, 0) + iγu(t, 0)ψ(t, 0)

)
= 0.
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Since the map t 7→ 〈u(t), ψ(t)〉L2 is continuous at t = 0 this proves that for all t ∈ R
we have 〈

eitHγu(t), ψ0

〉
= 〈u(t), ψ(t)〉 = 〈φ, ψ0〉 .

Since C∞0 (R \ {0}) is dense in L2(R) we obtain

eitHγu(t) = φ,

and hence
u(t) = e−itHγφ.

Since e−itHγ is continuous on L2(R), this concludes the proof. �

Remark 3.4. With Proposition 3.1 and Lemma 3.3 we obtain that for φ ∈ S and
t ∈ R we have

|e−itHγφ(x)| . 〈x〉−2
.

3.2. The Linear Evolution in H1(R). Having identified the propagator e−itHγ
on L2(R), we now describe its action on H1(R). The situation here is quite different
from the case γ = 0, where it follows from the semi-group theory that e−itH0 defines
an isometry on H1(R). We nevertheless can prove the following result:

Proposition 3.5 (Action of the Propagator on H1(R)). The following assertions
hold.
(i) Let w ∈ H1(R). Then e−itHγw ∈ H1(R) for all t ∈ R and the map t 7→

e−itHγw is continuous on R.
(ii) Let T > 0. Then there exists C > 0 such that for all w ∈ H1(R) and

t ∈ [−T, T ] we have ∥∥e−itHγw∥∥
H1 6 C ‖w‖H1 .

Proposition 3.5 is a direct consequence of the description of the propagator
e−itHγ = eitH0 + Γ(t) given in Proposition 3.1, the fact that the result is already
known if γ = 0 and the following result.

Lemma 3.6 (Action of Γ on H1(R)). Let T > 0. There exists C > 0 such that for
t ∈ [−T, T ] and w ∈ H1(R) we have Γ(t)w ∈ H1(R) and

‖Γ(t)w‖H1 6 C ‖w‖H1 .

Moreover the map t 7→ Γ(t)w is continuous from R to H1(R).

Proof. Let φ ∈ C∞0 (R). By Proposition 3.1 we know that the map t 7→ Γ(t)φ =
e−itHγφ − e−itH0φ is continuous from R to L2(R) with ‖Γ(t)φ‖L2 6 2 ‖φ‖L2 . Let
t ∈ R and x ∈ R \ {0}. Since (x, y) 7→ K(t, x, y) can be seen as function of |x|+ |y|
we have

(Γ(t)φ)′(x) =

∫
R
∂xΓ(t, x, y)φ(y) dy = sign(x)

∫
R
∂yΓ(t, x, y) sign(y)φ(y) dy

= − sign(x)(Γ(t)(sign(y)φ′))(x)− 2 sign(x)Γ(t, x, 0)φ(0). (3.8)

By continuity of Γ(t) in L2(R) we obtain that the first term defines a function in
L2(R) of size not greater than 2 ‖φ′‖L2 and is continuous with respect to t.

The rest of the proof is devoted to the treatment of the second term in (3.8).
Since |φ(0)| . ‖φ‖H1 , it is enough to prove that t 7→ Γ(t, ·, 0) is continuous from
[0,+∞) to L2(R) (the continuity on R will follow by duality).
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First assume that γ > 0. For t > 0, x ∈ R \ {0} and β > 0 we get after an
integration by parts with Ls(t, s, x, 0)

γ

2

∫ +∞

β

e−
γs
2 K0(t, s+ |x|) ds

=
iγt

|x|+ β
e−

γβ
2 K0(t, β + |x|) + iγt

∫ +∞

β

K0(t, s+ |x|)∂s
(
e−

γs
2

s+ |x|

)
ds

and hence

|Γ(t, x, 0)| . β√
t

+

√
t

|x|+ β
. (3.9)

Applied with β = 1 for |x| < 1 and β = 0 for |x| > 1, this proves that Γ(t, ·, 0)
belongs to L2(R) for t > 0 fixed. Moreover the map t 7→ Γ(t, x, 0) is continuous on
(0,+∞) for all x ∈ R and (3.9) is uniform for t in a compact subset of (0,+∞).
By the dominated convergence theorem we obtain that t 7→ Γ(t, ·, 0) is continuous
from (0,+∞) to L2(R). It remains to prove that ‖Γ(t, ·, 0)‖L2 goes to 0 as t goes
to 0. For t > 0 we write

‖Γ(t, ·, 0)‖2L2 =

∫
|x|6
√
t

|Γ(t, x, 0)|2 dx+

∫
|x|>
√
t

|Γ(t, x, 0)|2 dx. (3.10)

In these two integrals we apply (3.9) with β =
√
t and β = 0, respectively. This

gives

‖Γ(t, ·, 0)‖2L2 .
√
t+ t

∫
|x|>
√
t

1

|x|2
dx .

√
t −−−→
t→0

0.

This proves the result for γ > 0.
Now assume that γ < 0. We use the decomposition of Lemma 3.2. We can check

that Γ1(t, x, 0) satisfies (3.9) (the additionnal boundary term for the integration by
parts in harmless), so we conclude as above for the contribution of Γ1. For Γ2 we
use the exponential decay to see that t 7→ Γ2(t, ·, 0) is continuous from (0,+∞) to
L2(R). For the continuity at t = 0 we write

‖Γ2(t, ·, 0)‖2L2 =

∫
|x|6t1/4

|Γ2(t, x, 0)|2 dx+

∫
|x|>t1/4

|Γ2(t, x, 0)|2 dx

The first term goes to 0 since Γ2(t, x, y) is uniformly bounded and for the second
we use the fact that for |x| > t1/4 we have g

(
t, |x|/(4

√
t)
)
→ 0 (see Lemma 3.2).

This concludes the proof. �

3.3. The Linear Evolution in E. In this paragraph we extend Γ(t) and hence
e−itHγ to applications on E .

We first recall that for u ∈ Ḣ1(R) (and in particular for u ∈ E) there exists
C > 0 such that for almost all x ∈ R we have

|u(x)| 6 C 〈x〉 12 .
Let t ∈ R. Thanks to Lemma 3.3 we can define a temperate distribution Γ(t)u by

∀φ ∈ S(R), 〈Γ(t)u, φ〉S′,S = 〈u,Γ(−t)φ〉 . (3.11)

Then we can similarly extend e−itHγ . For u ∈ Ḣ1(R), the distribution Tγ(t)u is
defined by

∀φ ∈ S(R), 〈Tγ(t)u, φ〉 =
〈
u, eitHγφ

〉
.
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Of course, if u ∈ H1(R) we have Tγ(t)u = e−itHγu ∈ L2(R). As for Hγ , we choose
a different notation to emphasize the difference between the propagator e−itHγ
defined on L2(R) by the usual theory of selfadjoint operators and the distribution
Tγ(t) defined by duality. It will appear in the sequel that Tγ(t) enjoys in fact most
of the properties of e−itHγ .

The following result describes the action of Γ(t) on functions of Ḣ1(R).

Lemma 3.7 (Action of Γ on Ḣ1(R)). Let T > 0. There exists C > 0 such that for
t ∈ [−T, T ] and u ∈ Ḣ1(R) we have Γ(t)u ∈ H1(R) and

‖Γ(t)u‖H1 6 C
(
‖u′‖L2 + |u(0)|2

)
.

Moreover the map t 7→ Γ(t)u is continuous from R to H1(R).

Proof. We first assume that u vanishes on [-1,1]. With similar calculations as in
the proof of Lemma 3.6 we see that for t > 0 and φ ∈ C∞0 (R \ {0}) we have

〈Γ(t)u, φ′〉 = −Re
∫
R

∫
R
u(x)∂yΓ(t, x, y)φ(y) dy dx

= −Re
∫
R

∫
R
u(x) sign(x)∂xΓ(t, x, y) sign(y)φ(y) dy dx

= 〈Γ(t)(sign(x)u′), sign(y)φ〉 .

(3.12)

Since Γ(t) is continuous on L2(R), this proves that t 7→ (Γ(t)u)′ defines a continuous
map from R to L2(R) and

‖(Γ(t)u)′‖ 6 ‖u′‖L2 .

Now assume that γ > 0. After an integration by parts with the operator Lx
defined in (3.1) we see that 〈u,Γ(−t)φ〉 = Re(A1(t) +A2(t)) where

A1(t) = −iγt
∫
R

∫
R

∫ +∞

0

u′(x) sign(x)

s+ |x|+ |y| e
− γs2 K0(t, s+ |x|+ |y|)φ(y) ds dy dx

and

A2(t) = iγt

∫
R

∫
R

∫ +∞

0

u(x)

(s+ |x|+ |y|)2
e−

γs
2 K0(t, s+ |x|+ |y|)φ(y) ds dy dx.

With another integration by parts with Ls we obtain

|A1(t)| . t3/2
∫
|x|>1

∫
y∈R

|u′(x)||φ(y)|
(|x|+ |y|)2

dy dx . t3/2 ‖u′‖L2 ‖φ‖L2 . (3.13)

The term A2(t) is estimated similarly using the Hardy inequality:∫
R

|u(x)|
|x| dx . ‖u′‖L2 .

In all the integrals given by these two integrations by parts we can apply the
continuity theorem under the integral sign to see that t 7→ Γ(t)u is continuous on
(0,+∞). We also see in (3.13) and the analogous estimate for A2 that ‖Γ(t)u‖L2

goes to 0 when t goes to 0. Thus the result is proved for γ > 0 and u vanishing in
[−1, 1].

For the case γ < 0 we use the decomposition of Lemma 3.2. For Γ1 we proceed
as in the case γ > 0, and for Γ2 we use the exponential decay given by Lemma 3.2
and the Hardy inequality. Thus we have proved the proposition if u vanishes on
[−1, 1].
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Finally we consider the case of a generic u. Let χ ∈ C∞0 (R, [0, 1]) be supported in
(−2, 2) and equal to 1 on [−1, 1]. For u ∈ Ḣ1(R) we have χu ∈ H1(R) and (1−χ)u
vanishes on [-1,1], so with Lemma 3.6 we obtain that t 7→ Γ(t)χu+ Γ(t)(1− χ)u is
continuous from R to H1(R). Moreover for T > 0 fixed and t ∈ [−T, T ] we have

‖Γ(t)u‖H1 . ‖χu‖H1 + ‖((1− χ)u)′‖L2 . ‖u′‖L2 + ‖u‖L∞([−2,2]) . ‖u′‖L2 + |u(0)|.
This concludes the proof. �

Now we deduce from Lemma 3.7 the properties of the map t 7→ Tγ(t):

Proposition 3.8 (Properties of the Propagator Tγ(t)). Let u0 ∈ E. The following
assertions hold.
(i) For all t ∈ R the distribution Tγ(t)u0 belongs to E.
(ii) For s, t ∈ R we have Tγ(s) ◦ Tγ(t) = Tγ(s+ t) on E.
(iii) The map t 7→ Tγ(t)u0 − u0 is continuous from R to H1(R).
(iv) The map t 7→ Tγ(t)u0 is continuous from R to E.
(v) Let R > 0 and T > 0. Then there exists CR > 0 such that for u0 ∈ E with
|u0|E 6 R and t ∈ [−T, T ] we have

‖Tγ(t)u0 − u0‖H1 6 CR.

(vi) Let R > 0 and T > 0. Then there exists C > 0 such that for u0, ũ0 ∈ E with
E(u0) 6 R and E(ũ0) 6 R we have

sup
t∈[−T,T ]

d∞ (Tγ(t)u0, Tγ(t)ũ0) 6 Cd∞(u0, ũ0).

Proof. We first deal with the unperturbed part of the evolution. The map

t 7→ T0(t)u0 − u0

is continuous from R to H1(R). Indeed, as it was proved in [34], it is a consequence
of the formulation in Fourier variables:

T0(t)u0 − u0 = F−1
(
eit|ξ|

2

û0 − û0

)
= F−1

(
(−iξ)e

it|ξ|2 − 1

|ξ2| (−iξ)û0

)
= F−1

(
(−iξ)e

it|ξ|2 − 1

|ξ2| û′0

)
.

Then, thanks to Proposition 3.1 and Lemma 3.7 the same holds for

t 7→ Tγ(t)u0 − u0 = e−itH0u0 − u0 + Γ(t)u0.

With Lemma 2.3, this proves (i), (iii) and (iv). Statement (ii) is then clear by
duality. For the last two statements (v) and (vi), we use again the fact that they
hold if γ = 0. The contribution of Γ(t) is controlled by Lemma 3.7 and Lemma
2.3. �

3.4. The Linear Evolution in X2
γ . The map t 7→ e−itHγu is continuous for

any u ∈ L2(R) and is differentiable for u ∈ D(Hγ). We expect that the map
t 7→ Tγ(t)u0, continuous when u0 ∈ E , similarly enjoys better properties when
u0 ∈ X2

γ .

Proposition 3.9 (Linear Evolution in X2
γ). Let t ∈ R and u ∈ X2

γ . Then the
following properties hold.
(i) Tγ(t)u ∈ X2

γ .
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(ii) H̃γTγ(t)u = e−itHγ H̃γu.
(iii) We have

Tγ(t)u = u− i
∫ t

0

e−isHγ H̃γu ds.

In particular, the map t 7→ Tγ(t)u is differentiable on R and for all t ∈ R we
have

d

dt
Tγ(t)u = −ie−itHγ H̃γu ∈ L2(R).

Proof. For t ∈ R we set v(t) = Tγ(t)u. By Proposition 3.8 we have v(t)−u ∈ H1(R),
so v(t) ∈ L∞(R) ∩ Ḣ1(R). We can write v(t) = v0(t) + vΓ(t) with v0(t) = T0(t)u
and vΓ(t) = Γ(t)u. Let φ ∈ C∞0 (R \ {0}). We have on the one hand

〈v0, φ
′′〉 =

〈
u, eitH0φ′′

〉
=
〈
u, (eitH0φ)′′

〉
= −

〈
u′, (eitH0φ)′

〉
=
〈
u′′, eitH0φ

〉
+Re

((
u′(0+)− u′(0−)

)(
e−itH0φ

)
(0)
)

=
〈
u′′, eitH0φ

〉
+ γRe

(
u(0)

(
e−itH0φ

)
(0)
)
.

With the same kind of computation as in (3.12) (except that u no longer vanishes
on a neighborhood of 0, see also the proof of Lemma 3.6 in this case), we have on
the other hand

〈vΓ, φ
′′〉 = 〈Γ(t)(sign(x)u′), sign(y)φ′〉+ 2Re

(
u(0)

(
Γ(t)(sign(y)φ

′
)
)
(0)
)

= 〈Γ(t)u′′, φ〉+Re
(
γu(0)

(
Γ(t)φ

)
(0) + 2u(0)

(
Γ(t)(sign(y)φ

′
)
)
(0)
)
.

If γ > 0 we have(
Γ(t)(sign(y)φ

′
)
)
(0) = −γ

2

∫
R

∫ +∞

0

e−
γs
2 K0(t, s+ |y|) sign(y)φ

′
(y) ds dy

=
γ

2

∫
R

∫ +∞

0

e−
γs
2 ∂sK0(t, s+ |y|)φ(y) ds dy

= −γ
2

∫
R
K0(y)φ(y) dy +

(γ
2

)2
∫
R

∫ +∞

0

e−
γs
2 K0(t, s+ |y|)φ(y) ds dy

= −γ
2

∫
R
K0(y)φ(y) dy − γ

2

(
Γ(t)φ)(0),

so finally
〈v, φ′′〉 =

〈
u′′, eitHγφ

〉
.

We obtain the same result if γ < 0 and, finally, we have v′′ ∈ L2(R) in both cases.
Now let φ± ∈ S be supported in R∗±. We have similarly

−
〈
vΓ, φ

′
±
〉

= ±Re
(
γ

2
lim

R→+∞

∫ R

−R

∫
R
u(x)K0(t, |x|+ |y|)φ±(y) dx dy

± γ

2
lim

R→+∞

∫ R

−R

∫
R
u(x)Γ(t, x, y)φ±(y) dx dy

)
.

Now assume that the sequence (φ±n ) of Schwartz functions supported in R∗± is an
approximation of the Dirac distribution. Then at the limit when n goes to infinity
in this equality we get

v′Γ(0±) = ±γ
2
v(0).
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Since v′0(0+)− v′0(0−) = 0 this finally proves that

v′(0+)− v′(0−) = γv(0),

which concludes the proof of the first statement. Then H̃γTγ(t)u is well defined
and the second statement follows by duality (against functions in C∞0 (R \ {0}) and
the fact that e−itHγ and Hγ commute.

It remains to prove the last claim. For t ∈ R we set

v(t) = Tγ(t)u− u+ i

∫ t

0

e−isHγ H̃γu ds.

This defines a continuous function from R to L2(R). Let t ∈ R and ψ0 ∈ D0(Hγ).
We have

〈v(t), ψ0〉 =

〈
u, eitHγψ0 − ψ0 − i

∫ t

0

eisHγHγψ0 ds

〉
= 0.

By density of D0(Hγ) in L2(R) we obtain that v(t) = 0 on R. Then, since the map
s 7→ e−isHγ H̃γu belongs to C0(R, L2(R)), the last property is proved. �

4. The Cauchy Problem

This section is devoted to the proof of Theorem 1.1. We first prove that for any
u0 ∈ E the equation (1.1) has a unique solution with u(0) = u0. Then we study
(1.1) and the conservation of energy in X2

γ . By density we obtain the conservation
of energy and then the global existence.

We first recall explicitely what is called a solution of (1.1):

Definition 4.1 (Solution of (1.1)). Let u0 ∈ E and T ∈ (0,+∞]. We say that
u : (−T, T )→ E is a solution of (1.1) with u(0) = u0 if the following properties are
satisfied.
(i) The function u is continuous from (−T, T ) to (E , d∞) (and hence to (E , d0)).
(ii) We have u(0) = u0.
(iii) For v ∈ S(R) we have in the sense of distributions in (−T, T )

i
d

dt
〈u(t), v〉 − 〈∂xu(t), ∂xv〉 − γu(t, 0)v(0) + 〈F (u(t)), v〉 = 0.

4.1. Local Well-Posedness in the Energy Space. In this paragraph we prove
the local well-posedness result of (1.1) with initial condition in E . As usual for
non-linear problems, it is convenient to write it in Duhamel form.

Proposition 4.2 (Duhamel Formula). Let u0 ∈ E and u ∈ C0((−T, T ), E) for
some T ∈ (0,+∞]. Then u is a solution of (1.1) with u(0) = u0 if and only if

u(t) = Tγ(t)u0 + i

∫ t

0

e−i(t−s)HγF (u(s)) ds. (4.1)

Proof. Since we are dealing with functions in E , which is not a vector space, we
have to be careful and check that the ideas of the standard proof indeed transfer
to our current setting.

We first assume that u is a solution of (1.1). For t ∈ (−T, T ) we set

ũ(t) = Tγ(−t)u(t)− i
∫ t

0

eisHγF (u(s)) ds.
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By Proposition 3.8, the first term of the right-hand side defines a continuous func-
tion from (−T, T ) to (E , d∞). By Lemma 2.5 and Proposition 3.5, the second term
is of class C1 with values in H1(R), so by Lemma 2.3 the function ũ belongs to
C0((−T, T ), E). Then for v ∈ C∞0 (R \ {0}) we have in the sense of distributions

d

dt
〈ũ(t), v〉 dt = 0.

We deduce that ũ is constant (with respect to t), and hence u is indeed as given by
(4.1).

Conversely, we have to check that a continuous solution of (4.1) is a solution of
(1.1) in the sense of Definition 4.1. The first property holds by assumption and the
second is clear. By Lemma 2.6, we can find a sequence (u0,n)n∈N of functions in X2

γ

such that d∞(u0,n, u0) goes to 0. We can also find a sequence of continuous functions
(Fn) from (−T, T ) to D0(Hγ) such that Fn tends to F ◦u in L∞loc((−T, T ), H1(R)).
Then for n ∈ N and t ∈ (−T, T ) we set

un(t) = Tγ(t)u0,n + i

∫ t

0

e−i(t−s)HγFn(s) ds.

Then, by Proposition 3.9, the function un belongs to C1
(
(T, T ), E

)
and for v ∈ S(R)

i
d

dt
〈un, v〉 =

〈
H̃γun, v

〉
− 〈Fn(t), v〉 = 〈∂xun, ∂xv〉+ γun(t, 0)v(0)− 〈Fn(t), v〉 .

Now for φ ∈ C∞0 (−T, T ) we multiply this equality by φ(t), take the integral over
t ∈ (−T, T ), perform a partial integration on the left-hand side and take the limit
n→∞ to conclude. �

Now we can prove the local well-posedness of (1.1) and the continuity with
respect to the initial condition:

Proposition 4.3 (Local Well-Posedness). Let R > 0. Then there exists T > 0
such that for all u0 ∈ E with |u0|E 6 R the problem (1.1) has a unique solution
u : (−T, T ) → E with u(0) = u0. Moreover there exists CR > 0 such that for
u0, ũ0 ∈ E with |u0|E 6 R and |ũ0|E 6 R then the corresponding solutions u and ũ
satisfy

∀t ∈ (−T, T ), d∞
(
u(t), ũ(t)

)
6 CRd∞(u0, ũ0).

Proof. Let u0 ∈ E , T > 0, and w ∈ C0((−T, T ), H1(R)). By Proposition 3.8,
Lemma 2.3, Lemma 2.5 and Proposition 3.5 the function

s 7→ e−i(t−s)HγF
(
w(s) + Tγ(s)u0

)
belongs to C0((−T, T ), H1(R)) for all t ∈ (−T, T ). Thus we can set

ΦT,u0(w) : t 7→ i

∫ t

0

e−i(t−s)HγF
(
w(s) + Tγ(s)u0

)
ds. (4.2)

This also defines a function in C0((−T, T ), H1(R)).
Given u ∈ C0((−T, T ), E), the equality (4.1) is then equivalent to

w = ΦT,u0
(w) (4.3)

where we have set
w : t 7→ u(t)− Tγ(t)u0. (4.4)

Our purpose is to use the fixed point Theorem to prove that (4.3) has a unique
solution in a suitable space.
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Let R > 0 be greater that |u0|E . For T > 0 we set

WR(T ) =
{
w ∈ C0((−T, T ), H1(R)) : ‖w(t)‖H1 6 R for all t ∈ (−T, T )

}
.

By Lemma 2.3 and Proposition 3.8 there exists R̃ which only depends on R such
that for w ∈WR(T ) and s ∈ (−T, T ) we have

|w(s) + Tγ(s)u0|E 6 R̃.
Then, by Proposition 3.5, Lemma 2.5 and Proposition 3.8 we have for all T > 0
and t ∈ (−T, T )

‖ΦT,u0
(w)(t)‖H1 . T sup

s∈(−T,T )

∥∥F (w(s) + Tγ(s)u0

)∥∥
H1 . T.

This proves that if T > 0 is small enough then we have

‖ΦT,u0
(w)‖L∞((−T,T ),H1) 6 R.

We similarly prove that for T > 0 small enough we have

‖ΦT,u0
(w)− ΦT,u0

(w̃)‖L∞((−T,T ),H1) 6
1

2
‖w − w̃‖L∞((−T,T ),H1) . (4.5)

In particular, for T > 0 small enough, ΦT,u0
is a contraction of WR(T ). Now let

such a T be fixed. By the fixed point theorem there exists a solution w ∈ WR(T )
of (4.3), which gives a solution u of (1.1) with u(0) = u0. Conversely, if u is such
a solution on (−T, T ) for some T > 0, then w given by (4.4) belongs to WR(T ) for
R large enough. We deduce uniqueness.

Finally, we prove the continuity of u(t) with respect to u0. Let u0, ũ0 ∈ E and
R > 0 be such that |u0|E 6 R and |ũ0|E 6 R. Let w, w̃ ∈ WR(T ) be the fixed
points for ΦT,u0

and ΦT,ũ0
respectively, T > 0 being chosen small enough. As for

(4.5) we see that for T > 0 smaller if necessary we have

‖w − w̃‖L∞((−T,T ),H1) = ‖ΦT,u0(w)− ΦT,ũ0(w̃)‖L∞((−T,T ),H1)

6
1

2

(
d∞(u0, ũ0) + ‖w − w̃‖L∞((−T,T ),H1)

)
,

and hence
‖w − w̃‖L∞((−T,T ),H1) 6 d∞(u0, ũ0).

With (4.4) and Proposition 3.8, we obtain that for all t ∈ (−T, T ) we have

d∞(u(t), ũ(t)) . d∞(u0, ũ0),

and the theorem is proved. �

4.2. Conservation of Energy and Global Existence. In order to prove the
conservation of the energy, we need a solution of (1.1) in a strong sense. This is
the case when the initial condition is in X2

γ :

Proposition 4.4 (Local Well-Posedness at High Regularity). Let u0 ∈ X2
γ and

let u be the solution of (1.1) with u(0) = u0 (at least defined on (−T, T ) for some
T > 0). Then there exists T̃ > 0 such that u ∈ C1((−T̃ , T̃ ), L2(R)). Moreover for
all t ∈ (−T̃ , T̃ ) we have u(t) ∈ X2

γ and

∂tu(t) = −iH̃γu(t) + iF (u(t)).



26 I. IANNI, S. LE COZ, AND J. ROYER

Proof. Let w ∈ C0((−T, T ), H1(R)) be given by (4.4). By Proposition 3.9 it is
enough to prove that for T̃ > 0 we have w ∈ C1((−T̃ , T̃ ), L2(R)) and for t ∈
(−T̃ , T̃ ):

w(t) ∈ D(Hγ) and w′(t) = −iHγw(t) + iF (u(t)). (4.6)

Let R, T̃ > 0. We denote by W̃R(T̃ ) the set of functions w̃ ∈ C0((−T, T ), H1(R))∩
C1((−T, T ), L2(R)) such that w̃(0) = 0 and, for all t ∈ (−T, T ),

‖w̃(t)‖H1 6 R and ‖∂tw̃(t)‖L2 6 R.

Let w̃ ∈ W̃R(T̃ ). For t ∈ (−T̃ , T̃ ) we set v(t) = w̃(t) + Tγ(t)u0. Then v ∈
C0((−T̃ , T̃ ), E) and, by Proposition 3.9, v is differentiable on (−T̃ , T̃ ) with ∂tv ∈
C0((−T̃ , T̃ ), L2(R)). Then F (v) belongs to C1((−T̃ , T̃ ), L2(R)). For t ∈ (−T̃ , T̃ )
we have (recall that Φ was defined in (4.2))

(ΦT̃ ,u0
(w̃))(t+ τ)− (ΦT̃ ,u0

(w̃))(t)

τ

= i

∫ t

0

e−isHγ
F (v(t+ τ − s))− F (v(t− s))

τ
ds

+
i

τ

∫ t+τ

t

e−isHγF (v(t+ τ − s)) ds

−−−→
τ→0

i

∫ t

0

e−isHγ∂t(F (v))(t− s) ds+ ie−itHγF (v(0)).

Since w̃(0) = 0 we have F (v(0)) = F (u0). Thus ΦT̃ ,u0
(w̃) ∈ C1((−T̃ , T̃ ), L2(R))

and for all t ∈ (−T̃ , T̃ ) we have∥∥∥∂t(ΦT̃ ,u0
(w̃))(t)

∥∥∥
L2
. Cu0(1 + T̃CR),

where Cu0
only depends on u0 and CR only depends on R. Moreover for w̃1, w̃2 ∈

WR(T ) we have∥∥∥∂t(ΦT̃ ,u0
(w̃1))(t)− ∂t(ΦT̃ ,u0

(w̃2))(t)
∥∥∥
L2
6 T̃Cu0CR.

Finally (ΦT̃ ,u0
(w̃))(0) = 0 so we have proved that for u0 fixed and R chosen large

enough the map ΦT̃ ,u0
defines a contraction of W̃R(T̃ ) if T̃ ∈ (0, T ] is chosen small

enough. Thus the equation ΦT̃ ,u0
w̃ = w̃ has a unique solution in W̃R(T̃ ). By

uniqueness, this proves that the fixed point w of ΦT,u0
obtained in the proof of

Theorem 1.1 is in W̃R(T̃ ). It remains to prove (4.6). For t ∈ (−T̃ , T̃ ) we have

e−iτHγ − 1

τ
(ΦT̃ ,u0

(w))(t)

=
(ΦT̃ ,u0

(w))(t+ τ)− (ΦT̃ ,u0
(w))(t)

τ
− i

τ

∫ t+τ

t

e−i(t+τ−s)HγF (v(s)) ds

−−−→
τ→0

∂t(ΦT̃ ,u0
(w))(t)− iF (v(t)).

This proves that w(t) = (ΦT̃ ,u0
(w))(t) ∈ D(Hγ) with

−iHγ(ΦT̃ ,u0
(w))(t) = ∂t(ΦT̃ ,u0

(w))(t)− iF (v(t)),

which concludes the proof. �
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We are now in position to finish the proof of Theorem 1.1, i.e. to prove the
conservation of the energy Eγ and the global existence for the solution of (1.1).

Proof of Theorem 1.1, Global Existence, assuming Conservation of Energy. Let u0 ∈
E . Let u be the maximal solution of (1.1) with u(0) = u0. It is defined on some
interval I of R. By conservation of energy and the energy bound of Lemma 2.1,
there exists R > 0 such that |u(t)|E 6 R for all t ∈ I. Let T be the corresponding
local existence time given by Proposition 4.3. Let T1 > 0 be such that u is defined
on (−T1, T1). By the local existence result the problem (1.1) with initial condition
u(t) has a solution defined on (−T, T ) for any t ∈ (−T1, T1). By uniqueness of a
solution, the maximal solution u is at least defined on (−T1−T, T1 +T ). Repeating
the argument we obtain that u is globally defined. This concludes the proof of the
global existence. �

Proof of Theorem 1.1, Conservation of Energy. Let u0 ∈ X2
γ and T̃ > 0 be given

by Proposition 4.4. Since the solution u of (1.1) associated with u0 lives also in
X2
γ , the formal conservation of energy can be justified: the map t 7→ Eγ(u(t)) is

differentiable on (−T̃ , T̃ ) with derivative 0, and hence Eγ(u(·)) is constant.
Now let u0 ∈ E . By Lemma 2.6 there exists a sequence (u0,n)n∈N of functions

in X2
γ which converges to u0 in E . We denote by u the maximal solution of (1.1)

with initial condition u0. It is defined on some interval I of R. For all n ∈ N
we denote by un the maximal solution of (1.1) with initial condition u0,n. By the
global existence result for u0,n, un is defined on R, and in particular on I. By
continuity of the flow in E and the continuity of the energy (see Lemma 2.2) we
have for all t ∈ I:

Eγ(u(t)) = lim
n→+∞

Eγ(un(t)) = lim
n→+∞

Eγ(u0,n) = Eγ(u0).

Thus we have conservation of the energy for u, which is then globally defined. This
concludes the proof of Theorem 1.1. �

5. Existence and Characterizations of Black Solitons

5.1. Existence of Black Solitons. As announced in introduction, the finite en-
ergy stationary solutions to (1.1) are given in the following result.

Proposition 5.1 (Existence of Black Solitons). Let γ ∈ R \ {0}. Then the set of
finite-energy solutions to (1.7) is{

eiθκ, eiθbγ : θ ∈ R
}
, if γ > 0{

eiθκ, eiθbγ , e
iθ b̃γ : θ ∈ R

}
, if γ < 0

where

κ(x) := tanh

(
x√
2

)
, bγ(x) := tanh

( |x| − cγ√
2

)
, b̃γ(x) := coth

( |x|+ cγ√
2

)
,

for cγ := 1√
2

sinh−1
(
− 2
√

2
γ

)
.

Some preparation is in order. We first recall that u ∈ E is said to be a solution
of (1.7) if for all φ ∈ C∞0 (R) we have∫

R
u′φ
′
+ γu(0)φ(0)−

∫
R

(1− |u|2)uφ = 0. (5.1)
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By elliptic regularity, such solutions are in fact smooth, except at the origin, where
they satisfy the jump condition.

Lemma 5.2. Let γ ∈ R \ {0} and u ∈ E be a solution of (1.7). Then

u ∈ C∞(R \ {0}) ∩ C0(R),

u′′ + (1− |u|2)u = 0 on R \ {0},
u′(0+)− u′(0−) = γu(0).

Proof. The continuity of u is given by Lemma 2.1. From (5.1) applied with φ ∈
C∞0 (R \ {0}) we deduce that u ∈ E is a solution of

u′′ + (1− |u|2)u = 0 (5.2)

in the sense of distributions on R \ {0}. This implies that u is in fact smooth and a
classical solution of this equation on R \ {0}. Finally, we consider φ ∈ C∞0 (R) with
φ(0) = 1. Starting from (5.1) and using (5.2) after an integration by parts gives
the jump condition and concludes the proof of the lemma. �

Let us now determine what are the finite energy solutions on the half-line.

Lemma 5.3. Assume that u ∈ E is a solution to

u′′ + (1− |u|2)u = 0, on (0,+∞). (5.3)

Then there exist θ ∈ R and c ∈ R such that either u(x) = eiθ for all x ∈ (0,+∞),
or  ∀x ∈ (0,+∞), u(x) = eiθ tanh

(
x−c√

2

)
,

c < 0, ∀x ∈ (0,+∞), u(x) = eiθ coth
(
x−c√

2

)
.

(5.4)

The same conclusion holds if we replace (0,+∞) by (−∞, 0) and c < 0 by c > 0.

Proof. Equation (5.3) may be integrated using standard arguments from ordinary
differential equations, which we recall now.

Multiplying the equation by u′ and taking the real part we obtain

d

dx

(
1

2
|u′|2 − 1

4

(
1− |u|2

)2)
= 0,

so there exists K ∈ R such that
1

2
|u′|2 − 1

4

(
1− |u|2

)2 ≡ K.
By Lemma 2.1, 1

2 |u′(x)|2 goes to K as x goes to +∞. Since u′ ∈ L2(R), we
necessarily have K = 0, so

1

2
|u′|2 − 1

4

(
1− |u|2

)2 ≡ 0. (5.5)

If |u(x0)| = 1 for some x0 > 0, then |u′(x0)| = 0 and by uniqueness we have u ≡ C
where |C| = 1. Now we assume that |u(x)| 6= 1 for every x ∈ (0,+∞). Since |u(x)|
goes to 1 as x goes to +∞, there exists A > 0 such that |u(x)| > 0 for |x| > A.
Therefore we may write u(x) := eiθ(x)ρ(x) for x > A, where θ, ρ ∈ C2 and ρ > 0.
Writing down the system of equations satisfied by θ and ρ we see in particular that

θ′′ρ+ 2θ′ρ′ ≡ 0 for x > A,
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which implies that
d

dx
(θ′ρ2) ≡ 0 on (A,+∞).

Therefore there exists K̃ ∈ R such that θ′ρ2 ≡ K̃ for x > A . Since ρ(x) → 1, as
x→ +∞, it follows that θ′(x)→ K̃, and hence

|u′(x)|2 = (ρ′)2 + (θ′)2ρ2 > (θ′)2ρ2 −−−−−→
x→+∞

K̃2.

As above it follows that K̃ = 0. As a consequence θ′ ≡ 0 on (A,+∞), so there
exists θ0 ∈ R such that

∀x > A, u(x) = eiθ0ρ(x).

Since |u| 6= 1 on (0,+∞), we infer from (5.5) that

ρ′

(1− ρ2)
= ± 1√

2
on (A,+∞).

By explicit integration, there exists c ∈ R such that for x > A we have

either ρ(x) = tanh

(
±x− c√

2

)
or ρ(x) = coth

(
±x− c√

2

)
, c < A.

Since tanh and coth are odd, up to replacing θ0 by θ0 + π we have either

u(x) = eiθ0 tanh

(
x− c√

2

)
on (A,+∞),

or

u(x) = eiθ0 coth

(
x− c√

2

)
, c < A, on (A,+∞).

By the Cauchy Lipschitz Theorem we can take A = 0., we have in fact the same
equality on (0,+∞), which was the desired conclusion. �

Proof of Proposition 5.1. Let u be a finite-energy solution to (1.7). From Lemma
5.2 and from the characterization given by Lemma 5.3, u is either constant with
modulus 1 or of the form (5.4) on each side of the origin. Assume by contradiction
that u is constant on (−∞, 0). By continuity, |u(0)| = 1 and u is also constant
on (0,+∞). This gives a contradiction with the jump condition. Thus u is of the
form (5.4) on (−∞, 0). By continuity (or by a similar argument), u is also of the
form (5.4) on (0,+∞). More precisely, there exist θ−, θ+, c−, c+ ∈ R such that for
±x > 0 we have either

u(x) = eiθ± tanh

(
x− c±√

2

)
, (5.6)

or

c+ < 0, c− > 0, u(x) = eiθ± coth

(
x− c±√

2

)
. (5.7)

Assume first that (5.6) holds. By continuity at the origin we have eiθ+ = eiθ−

or eiθ+ = −eiθ− . In the first case we necessarily have c+ = c−. And with the jump
condition we see that in fact c+ = c− = 0, so

∀x ∈ R, u(x) = eiθ+ tanh

(
x√
2

)
. (5.8)
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If eiθ+ = −eiθ− then by continuity we have c := c+ = −c−. Thus

∀x ∈ R, u(x) = eiθ+ tanh

( |x| − c√
2

)
. (5.9)

Since u is even, the jump condition reads 2u′(0+) = γu(0). More explicitely we
have

√
2

(
cosh

(−c√
2

))−2

= γ tanh

(−c√
2

)
,

so
√

2 = γ sinh

(−c√
2

)
cosh

(−c√
2

)
=
γ

2
sinh

(
−
√

2c
)

= −γ
2

sinh
(√

2c
)
,

and finally

c = cγ :=
1√
2

sinh−1

(
−2
√

2

γ

)
. (5.10)

Note that cγ > 0 if γ < 0 and cγ < 0 if γ > 0.
Assume now that (5.7) holds. By continuity at the origin we again have eiθ+ =

eiθ− or eiθ+ = −eiθ− , but this time, due to the singularity of coth at 0, only
eiθ+ = −eiθ− is possible. Arguing as previously, we find that (5.7) is possible only
if γ < 0, and in that case

∀x ∈ R, u(x) = eiθ+ coth

( |x|+ cγ√
2

)
. (5.11)

where cγ is as in (5.10).
In conclusion the functions given by (5.8), (5.9), (5.10), (5.11) are the only

candidates to be finite-energy solutions to (1.7). Conversely we can verify directly
that this is indeed the case, which concludes the proof. �

5.2. Variational Characterizations. This section is devoted to the proof of
Proposition 1.2. Let us recall that for γ ∈ R \ {0} we have set

mγ := inf{Eγ(v) : v ∈ E} > −∞,
and that we want to prove that the infimum is achieved at solutions to (1.7).
Precisely, we want to prove that

Gγ = {eiθbγ , θ ∈ R}, if γ > 0; Gγ = {eiθκ, θ ∈ R}, if γ < 0,

Gγ = {eiθbγ , θ ∈ R}, if γ > 0; Gγ = {eiθ b̃γ , θ ∈ R}, if γ < 0,

where we have defined

Gγ := {v ∈ E , Eγ(v) = mγ}.
Finally, we also want to prove compactness of the minimizing sequences, i.e. any
minimizing sequence (un) ⊂ E such that E(un)→ mγ verifies, up to a subsequence,

d0(un,Gγ)→ 0.

Proof of Proposition 1.2. We first remark that by Lemma 2.1 the energy is bounded
from below, so mγ is finite. Let (vn)n∈N ⊂ E be a minimizing sequence, i.e.

Eγ(vn) =
1

2
‖v′n‖2L2 +

γ

2
|vn(0)|2 +

1

4
‖1− |vn|2‖2L2 → mγ .
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By Lemma 2.1 again, the sequence (v′n) is bounded in L2(R). Since L2(R) is a
reflexive Banach space, there exists g ∈ L2(R) such that, up to a subsequence, v′n ⇀
g weakly in L2(R). On the other hand, the sequence (un(0)) is also bounded, so vn
is uniformly bounded in H1(I) for every bounded interval I ⊂ R. Hence by Rellich
compactness theorem there exists f ∈ L∞loc(R) such that, up to a subsequence,
vn → f in L∞loc(R). SinceH1(I) is a reflexive Banach space, there exists u ∈ H1

loc(R)
such that up to a subsequence vn ⇀ u in H1

loc(R). But then g = u′ ∈ L2(R), and
f = u. Finally,

v′n ⇀ u′ in L2(R) and vn → u in L∞loc(R).

By the weak-lower semicontinuity of the L2(R)-norm and Fatou lemma we have

Eγ(u) =
1

2
‖u′‖2L2 +

γ

2
lim

n→+∞
|vn(0)|2 +

1

4

∫
R

lim inf
n→+∞

(
1− |vn|2

)2
dx

6 lim inf
n→+∞

Eγ(vn),

so that Eγ(u) = mγ . In particular u ∈ E , and we easily see that vn → u in (E , d0).
Now we show that this limit u is a solution of (1.7). Let φ ∈ C∞0 (R) and t ∈ R.

We have

0 6 lim inf
t→0

Eγ(u+ tφ)− Eγ(u)

t

6 Re
(∫

R
u′φ̄′dx+ γu(0)φ̄(0)−

∫
R

(
1− |u|2

)
uφ̄dx

)
.

Since the choice of φ is arbitrary (we can replace φ by −φ or ±iφ) we get for all
φ ∈ C∞0 (R) ∫

R
u′φ̄′dx+ γu(0)φ̄(0)−

∫
R

(
1− |u|2

)
uφ̄ dx = 0.

This is (5.1), which means that u is a solution of (1.7).
By Proposition 5.1 there exists θ ∈ R such that u = bγ or u = κ. either u = eiθbγ ,

or u = eiθ b̃γ , or u = eiθκ. To conclude it is enough to show that:{
Eγ(bγ) < Eγ(κ) if γ > 0,

Eγ(bγ) > Eγ(κ)> E(b̃γ) if γ < 0.
(5.12)

By elementary but tedious computations we can check that

Eγ(κ) =
2
√

2

3

and

Eγ(bγ) =
2

3

√
γ2 + 8

√
2 + 4√

γ2 + 8 + 2
√

2
− 2

√
2 sign(γ)√

γ2 + 8− sign(γ)γ
+

4
√

3

2
.

Since κ, bγ and b̃γ all satisfy for x 6= 0 the equation

u′ =
1√
2

(1− u2),
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we have for all γ 6= 0

Eγ(κ) =

∫ +∞

0

(
1− κ2(x)

)2
dx,

Eγ(bγ) =

∫ +∞

−cγ

(
1− κ2(x)

)2
dx+

γ

2
κ2(−cγ),

Eγ(b̃γ) =

∫ +∞

cγ

(
1− coth2

(
x√
2

))2

dx+
γ

2
coth2

(
cγ√

2

)
.

For x ∈ R we set ϕ(x) = tanh(x/
√

2). With a partial integration we compute for
α ∈ R∫ +∞

α

(
1− tanh2

(
x√
2

))
dx = 2

∫ +∞

α

ϕ′(x)2 dx (5.13)

= −
√

2 tanh

(
α√
2

)(
1− tanh2

(
α√
2

))
+ 2

∫ +∞

α

tanh2

(
x√
2

)
tanh′

(
x√
2

)
dx

= −
√

2 tanh

(
α√
2

)(
1− tanh2

(
α√
2

))
+

2
√

2

3
− 2
√

2

3
tanh3

(
α√
2

)
.

With α = 0 we obtain

Eγ(κ) =
2
√

2

3
. (5.14)

Now let γ 6= 0. Using the identity

tanh
(α

2

)
=

sinh(α)

2

(
1− tanh

(α
2

)2
)

we obtain

Θγ =

√
2

γ
(1−Θ2

γ), where Θγ = tanh

(
− cγ√

2

)
. (5.15)

Notice that since Θγ and γ have the same sign we obtain

Θγ =
sign(γ)

2
√

2

(√
γ2 + 8− |γ|

)
.

By (5.13), (5.14) and (5.15) we have

Eγ(bγ)− Eγ(κ) = −Θ2
γ

(
γ

2
+

2
√

2

3
Θγ

)
,

which proves in particular that Eγ(bγ) − Eγ(κ) and γ have opposite signs. It
remains to consider Eγ(b̃γ) when γ < 0. Define

Θ̃γ = coth

(
cγ√

2

)
= −Θ−1

γ .

By (5.15), we also have

Θ̃γ =

√
2

γ

(
1− Θ̃2

γ

)
(5.16)

As before, we obtain∫ +∞

cγ

(
1− coth

(
x√
2

))2

dx = −γΘ̃γ −
2
√

2

3
Θ̃3
γ +

2
√

2

3
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Using (5.16) to linearize Θ̃3
γ , we get

Eγ(b̃γ) =
γ

6
− 2
√

2

3

(
Θ̃γ − 1

)
Since Θ̃γ > 1, we have Eγ(b̃γ) < 0 and therefore

Eγ(b̃γ) < Eγ(κ).

The alternative (5.12) follows, and Proposition 1.2 is proved. �

6. Stability and Instability of the Black Solitons

In this section we prove the orbital stability of the set of minimizers of the energy
and the linear instability of the kink κ when γ > 0.

6.1. Stability of Black Solitons. We begin with the proof of part (i) (Stability)
in Theorem 1.3, which is a consequence of Theorem 1.1 and Proposition 1.2.

Proof of part (i) (Stability) in Theorem 1.3. We argue by contradiction. Let ε > 0
and let (u0,n) be a sequence of initial conditions in E . For n ∈ N we denote by un
the solution of (1.1) for which un(0) = u0,n. Then we assume by contradiction that

lim
n→+∞

d0(u0,n,Gγ) = 0

and
∀n ∈ N,∃tn ∈ R, d0(un(tn),Gγ) > ε.

By conservation of energy (see Theorem 1.1) we have

Eγ(un(tn)) = Eγ(u0,n) −−−−→
n→∞

mγ ,

and by the compactness of the minimizing sequences (see Proposition 1.2) we deduce
that, up to a subsequence,

lim
n→+∞

d0(un(tn),Gγ) = 0.

This gives a contradiction and finishes the proof. �

6.2. Instability of Black Solitons. This section is devoted to the proof of part
(ii) (Instability) of Theorem 1.3. For this we have to prove that the operator L
defined in (1.9) has a negative eigenvalue.

We consider the selfadjoint operators defined on the domain D(Hγ) (see (2.5))
by

Lγ− = Hγ − (1− κ2) and Lγ+ = Hγ + 2− 3(1− κ2).

These are the selfadjoint operators corresponding to the forms defined on H1(R)
by

qγ−(u) = ‖u′‖2L2 + γ|u(0)|2 −
∫
R

(1− κ2)|u|2dx,

qγ+(u) = ‖u′‖2L2 + γ|u(0)|2 + 2 ‖u‖2L2 − 3

∫
R

(1− κ2)|u|2dx.

Separating the real and imaginary parts of η in (1.8) gives the system

∂t

(Re(η)

Im(η)

)
+ L

(Re(η)

Im(η)

)
+N (η) = 0,
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where
L =

(
0 −Lγ−
Lγ+ 0

)
and N (η) =

(Re(N(η))

Im(N(η))

)
.

Notice that a real eigenvalue of L is also an eigenvalue of L, so the proof of part
(ii) (Instability) in Theorem 1.3 reduces to proving that L has a real negative
eigenvalue. We start by analyzing Lγ+ and Lγ−.

Proposition 6.1 (Spectral properties of Lγ±). Let γ ∈ R.
(i) The essential spectra of Lγ− and Lγ+ are σess(L

γ
−) = [0,+∞) and σess(L

γ
+) =

[2,+∞).
(ii) The operator Lγ− has a trivial kernel and at least one negative eigenvalue.
(iii) If γ < 0 then Lγ+ has a trivial kernel and a unique negative eigenvalue. If

γ = 0, then 0 is the first eigenvalue of L0
+. If γ > 0 then Lγ+ has no eigenvalue

in (−∞, 0].

Proof. We know that the essential spectrum of Hγ is [0,+∞) (see Theorem 3.1.4
in [10]). This implies in particular that the essential spectrum of Hγ +2 is [2,+∞).
Since

1− κ2(x) = sech2

(
x√
2

)
−−−−−→
|x|→+∞

0,

the first statement follows from Weyl Theorem.
The forms qγ− and qγ+ are analytic with respect to γ, so Lγ− and Lγ+ define

analytic families of operators of type B in the sense of Kato (see §VII.4 in [44]). In
particular, if I is an open interval of R and a, b ∈ R are in the resolvent set of Lγ+
for all γ ∈ I, the the spectral projection Πγ

a,b of L
γ
+ on (a, b) is an analytic family

of orthogonal projections, and the spectrum of the restriction of Lγ+ on Πγ
a,bL

2(R)

is σ(Lγ+) ∩ (a, b).
For γ = 0, we can check that the spectrum of L0

+ is included in [0,+∞) and
that 0 is a simple eigenvalue of L0

+. Indeed, by differentiating with respect to x the
equation (1.7) satisfied by κ, we see that κ′ belongs to the kernel of L0

+. Since it
takes positive values on R, this implies that 0 is simple and is the first eigenvalue
of L0

+. Similarly, we check by direct computation that u0
− : x 7→ sech

(
x/
√

2
)
takes

positive values and is an eigenfunction for L0
− corresponding to the eigenvalue − 1

2 .
By analyticity of the spectrum of Lγ+, there exist ν > 0 and two analytic functions

λ : (−ν, ν) → R and u : (−ν, ν) → L2(R) such that λ(0) = 0, u(0) = κ′ and, for
all γ ∈ (−ν, ν), λ(γ) is the first eigenvalue of Lγ+, it is simple, and u(γ) is a
corresponding eigenfunction. On the one hand we have〈

Lγ+u(γ), u(γ)
〉

= λ(γ)‖u(γ)‖2L2 = γλ′(0)‖κ′‖2L2 +O(γ2).

On the other hand〈
Lγ+u(γ), u(γ)

〉
=
〈
L0

+u(γ), u(γ)
〉

+ γ|u(γ)(0)|2 = γ|κ′(0)|2 +O(γ2),

so

λ′(0) =
|κ′(0)|2
‖κ′‖2L2

> 0.

Thus λ(γ) has the same sign as γ for |γ| small enough.
Let Γ > 0. Assume that γ ∈ [−Γ, 0], u ∈ D(Hγ) and λ ∈ (−∞, 0] are such that

‖u‖L2 = 1 and Lγ+u = λu. Since |u(0)|2 6 2 ‖u‖ ‖u′‖ we have

λ = qγ+(u) > ‖u′‖2L2 − |γ||u(0)|2 − 1 > ‖u′‖2L2 − 2|γ| ‖u′‖L2 − 1.
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This proves that there exists C > 0 such that for γ ∈ [−Γ, 0] the operator Lγ+ has
no eigenvalue in (−∞,−C].

If we prove that the kernel of Lγ+ is trivial for all γ < 0, this will imply that
λ extends to an analytic function on (−Γ, 0) which gives the unique eigenvalue
of Lγ+ in (−C, 0) and hence in (−∞, 0). Indeed the projection Πγ

−C,0 is analytic
for γ ∈ (−Γ, 0). Since it is of rank 1 for |γ| small enough, it is of rank 1 for all
γ ∈ (−Γ, 0), which means that σ(Lγ+) ∩ (−C, 0) = σ(Lγ+) ∩ (−∞, 0) consists on a
simple eigenvalue. Since the choice of Γ is arbitrary, this will prove that for any
γ < 0 the operator Lγ+ has a unique negative eigenvalue.

So let γ ∈ R \ {0} and v ∈ ker(Lγ+). Then v satisfies

−v′′ + 2v − 3(1− κ2)v = 0 on (0,+∞).

Since κ′ solves the same equation, there exists C ∈ R such that

vκ′′ − v′κ′ = C on (0,+∞).

Then, since v ∈ L2(0,+∞), this implies that there exists α ∈ R such that v = ακ′

on (0,+∞). Similarly, there exists β ∈ R such that v = βκ′ on (−∞, 0). Since v is
continuous and κ′(0) 6= 0, we have α = β. And finally, the jump condition

v′(0+)− v′(0−) = γv(0)

implies that α = β = 0 and hence v = 0. This proves that ker(Lγ+) = {0} and
concludes the proof of the third statement.

Now we check that we also have ker(Lγ−) = {0} for any γ ∈ R. Indeed, if v
satisfies the equation

−v′′ − (1− κ2)v = 0 on (0,+∞),

then it is not hard to find out that there exist C1, C2 ∈ R such that

v(x) = C1

(√
2 + xκ(x)

)
+ C2κ(x).

Since v ∈ L2(R), we necessarily have (C1, C2) = (0, 0), and hence ker(Lγ−) = {0}.
It remains to show that Lγ− has at least one negative eigenvalue. For this we

prove that there exists v ∈ H1(R) such that qγ−(v) < 0. For γ 6 0 we can take the
eigenfunction v = u0

− of L0
−. For γ > 0, we need a more refined construction. Let

χ ∈ C∞0 (R, [0, 1]) be equal to 1 on a neighborhood of 0. For r > 1 and x ∈ R we
set χr(x) = χ(x/r) and

vr(x) = κ(|x|)χr(x) +

√
2

γ
u0
−(x) = κ(|x|)χr(x) +

√
2

γ
sech

(
x√
2

)
.

We first remark that

v′r(0
+)− v′r(0−) = 2v′r(0

+) = γvr(0),

and then that vr ∈ D(Hγ) for all r > 1. Therefore

q−γ (vr) =
〈
−v′′r − (1− κ2)vr, vr

〉
= 2

∫ +∞

0

((
− κ′′ − (1− κ2)κ

)
χr − 2κ′χ′r − κχ′′r

)
vr +

√
2

γ

〈
L0
−u

0
−, vr

〉
= −2

∫ +∞

0

(2κ′χ′r + κχ′′r )vr −
1

γ

〈
u0
−, vr

〉
.
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By the dominated convergence theorem we have

lim sup
r→+∞

q−γ (vr) = lim sup
r→+∞

(
− 1

γ

〈
u0
−, vr

〉)
< 0,

so there exists r > 1 such that q−γ (vr) < 0. This concludes the proof of the
proposition. �

Remark 6.2. Having a negative or positive eigenvalue λ(γ) for Lγ+ gives no hint
toward stability/instability, unlike what was happening for the localized standing
waves studied in [45] where it was possible to appeal to Grillakis-Shatah-Strauss
Theory. It is even more counter intuitive: for localized standing wave, a negative
eigenvalue λ(γ) of the equivalent of Lγ+ would point out toward instability, whereas
we have seen in Section 6.1 that in our setting we have stability.

Now we can prove part (ii) (Instability) of Theorem 1.3.

Proof of part (ii) (Instability) of Theorem 1.3. Let γ > 0. We have to show that L
has a real negative eigenvalue. Since the operator Lγ+ is positive, we can set

Λ = (Lγ+)
1
2Lγ−(Lγ+)

1
2 .

This defines a selfadjoint operator on the domain

D(Λ) =
{
u ∈ D

(
(Lγ+)

1
2

)
: (Lγ+)

1
2u ∈ D(Lγ−) and Lγ−(Lγ+)

1
2u ∈ D

(
(Lγ+)

1
2

)}
.

Assume that w ∈ D(Λ) \ {0} and λ ∈ R \ {0} are such that Λw = −λ2w. Then
we set u = (Lγ+)−

1
2w and v = 1

λ (Lγ+)
1
2w (notice that (Lγ+)−

1
2 is a bounded operator

on L2(R) since the spectrum of Lγ+ is included in [ν,+∞) for some ν > 0). By
construction we have u ∈ D

(
(Lγ+)

1
2

)
and (Lγ+)

1
2u ∈ D

(
(Lγ+)

1
2

)
, so u ∈ D(Lγ+). We

also have v ∈ D(Lγ−). Moreover,

−Lγ−v = λu and Lγ+u = λv,

so λ is an eigenvalue of L. Thus it remains to prove that Λ has a negative eigenvalue.
For this we prove that its essential spectrum is non-negative while its full spectrum
has a negative part.

We denote by Πγ
− and Πγ

+ the spectral projections of Lγ− on (−∞, 0) and [0,+∞),
respectively. Then we set Λ± = (Lγ+)

1
2 Πγ
±(Lγ+)

1
2 . By Proposition 6.1, Πγ

− is of finite
rank, so it is a compact operator from L2(R) to D(Lγ−) = D(Lγ+). This implies
that Λ− is a relatively compact perturbation of Λ. Thus, by the Weyl Theorem, Λ
and Λ+ have the same essential spectrum. But Λ+ is a non-negative operator, so
σess(Λ) ⊂ [0,+∞).

Now let ξ ∈ D(Lγ−) be an eigenfunction corresponding to a negative eigenvalue
λ of Lγ− and η = (Lγ+)−

1
2 ξ. Then η ∈ D

(
(Lγ+)

1
2

)
and (Lγ+)

1
2 η = ξ ∈ D(Lγ−).

Moreover, Lγ−(Lγ+)
1
2 η = λξ ∈ D(Lγ−) = D(Lγ+) ⊂ D((Lγ+)

1
2 ). Therefore, η ∈ D(Λ)

and
〈Lη, η〉 =

〈
Lγ−ξ, ξ

〉
< 0.

This implies that the selfadjoint operator Λ has a negative eigenvalue, which con-
cludes the proof of the linear instability of κ. �
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