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MULTI-SCALE SALIENCY OF 3D COLORED MESHES
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ABSTRACT

Mesh surface saliency detection is an important preprocessing
step for many 3D applications. This paper proposes a novel
saliency computation method by the use of a local vertex
descriptor in the form an adaptive patch. This descriptor is
used as a basis for similarity measurement and integrated into
a weighted multi-scale saliency computation. Experimen-
tal results demonstrate that the proposed approach achieves
competitive and innovative results, especially for 3d colored
meshes.

Index Terms— Saliency, colored mesh, patch, multi-
scale.

1. INTRODUCTION

Visual saliency is the perceptual information that makes some
objects in the scene stand out from their surrounding regions
and thus capture human visual attention. A large number of
saliency models have been proposed in the past decades for
2D images [1]. In the meantime, there has recently been a
strong development of 3D acquisition techniques, and this has
led to the widespread acquisition of large amounts of 3D data
in the form of 3D meshes. As 2D saliency models have facili-
tated different saliency-based applications such as salient ob-
ject detection/segmentation and content-aware image/video
retargeting, it is natural to want to dispose of saliency mea-
sures for 3D meshes. Indeed, this can be of high value in
several human centered visual computing applications, such
as adaptive compression [2, 3], smoothing [4], resizing [5],
and viewpoint selection [6].

Mesh saliency is a measure that attempts to capture the
importance of a point on a 3D surface mesh in a similar way
to human visual perception. The literature is much less impor-
tant than that of 2D saliency, but some important works can be
quoted. Lee et al. [2] computed mesh saliency using a center-
surround operator on Gaussian-weighted curvatures in a DoG
scale space. Leifman et al [6] defined surface regions of in-
terest by combining vertex distinctness (with similarities be-
tween SpinImage descriptors [7]) and mesh shape extremities.
Wu et al [4] defined mesh saliency by considering both local
contrast (with multi-scale similarities between local height
maps [8]) and global rarity (using clustering on local con-
trast features). Tao et al [9] have proposed to over-segment

the mesh into regions using also local height maps [8], and
to use manifold ranking to define each region saliency. Song
et al [10] have proposed to estimate the saliency in the spec-
tral domain by considering the properties of the log-Laplacian
spectrum of the mesh and analyzing its deviations.

In this paper we propose a new multi-scale method for the
estimation of the saliency of 3D meshes. It is based on a new
local vertex descriptor in the form an adaptive patch descrip-
tor per vertex. This descriptor is used as a basis for similar-
ity measurement and integrated into a weighted multi-scale
saliency computation. In addition, the proposed approach can
be easily applied to colored 3D meshes, that has never been
investigated before. The approach is compared to state-of-
the-art methods and shows competitive results.

2. MESH SALIENCY

To define our 3D mesh saliency measure, we first need to con-
struct, for each vertex, a local descriptor (named a patch) that
characterizes its local geometric (or colorimetric) configura-
tion on the mesh. Once local patches are defined, similarities
between the local features of adjacent vertices are computed
and the degree of a vertex provides its single-scale saliency.
By varying the size of the local patch, several scales are ob-
tained that are merged using entropy-based coefficients. A
mesh M is represented by a non-oriented graph [11] G =
(V,E) where V = {v1, . . . , vN} is the set of N vertices and
E ⊂ V × V the set of edges. The set of edges is deduced
from the mesh faces that connect vertices. To each vertex vi
are associated its 3D coordinates pi = (xi, yi, zi)

T ∈ R3 and
eventually its color ci = (ri, gi, bi)

T ∈ R3. The notation
vi ∼ vj is also used to denote two adjacent vertices in G (i.e.,
(vi, vj) ∈ E).

2.1. Local Surface Patch Descriptor

We describe a definition of adaptive patches that account for
local neighborhood configurations. This patch feature de-
scriptor is a height map lying on the vertex tangent plane. It
extends recent works [12, 8, 13] with an adaptive patch size to
better reflect local geometric configurations. The interest of
using 2D patches as 3D local surface descriptors comes from
the success of self-similarity with patches in image processing
[14]. To build patches at each vertex, we have to construct a



bounded sub-region of the tangent plane and we need to first
estimate the latter. Then, the patch is filled with projection
heights from neighbor vertices.

2.1.1. Tangent Plane Estimation

For every vertex vi on the mesh surface, we compute its nor-
mal vector z(vi) and the directional vectors x(vi) and y(vi)
that correspond to the estimation of the 2D tangent plane at
vertex vi on the mesh. Classically, the PCA of the covari-
ance matrix of the neighbors of vi in a local sphere around
vi is considered [15]. The vertices contained in a sphere
Sε(vi) =

{
vj | ||pj − pi||22 ≤ ε

}
centered at vi within a

radius ε are considered. Let p̄ = 1
|Sε(vi)|

∑
vj∈Sε(vi)

pj and

C(vi) = 1
|Sε(vi)|

∑
vj∈Sε(vi)

(pj − p̄)(pj − p̄)T be respectively

the center of gravity of Sε(vi) and the associated covariance
matrix. From this matrix, eigenvectors of the covariance ma-
trix are used to estimate both the normal vector z(vi) and the
2-directional vectors x(vi) and y(vi) that form an orthogonal
basis of the tangent plane P(vi). However the normal vectors
of all the vertices can have different directions (outwards and
inwards). To guide these normals outwards, we propagate the
orientation of the neighboring normals using the minimum
spanning tree of the graph [16].

2.1.2. Patch Construction

To construct the patch, points pj contained in the sphere
Sε(vi) are projected onto the 2D plan P(vi) defined by the
associated vectors, giving rise to projected points p′j . We
then construct an adaptive patch, the size of which is not re-
lated to the radius ε of the sphere Sε(vi), but to the maximum
distance between all the 2D projected points along both x and
y axis. The dimensions of the patch are determined by

Td(vi) = max
(p′j ,p

′
k)∈P(vi)

(||p′dj − p′
d
k||22) (1)

where d represents the x or y coordinates, p′dj the d-th coordi-
nate of p′j , and ||.||2 the Euclidean norm. Thus, the patch at
vertex vi is represented by a rectangle of size Tx(vi)×Ty(vi)
centered at vi. It should be noted that usually a patch is rep-
resented by a square of fixed size [12, 8]. This local patch
is then divided into l × l cells and each projected point is af-
fected to the cell the center of which is the closest. Finally,
each cell Pi of the patch is filled with the absolute value of
the sum of the projections heights

∑
p′j∈Pi

||(pj−p′j)||22 within

one cell. The result is a l× l patch image describing the shape
surrounding the vertex vi: each vertex is then described by
a local feature vector P(vi) composed of all the patch cells’
values. This approach is robust to poorly shaped triangles,
non-manifoldness and surfaces with holes.

2.2. Single Scale Saliency

To compute the single-scale saliency of a vertex, a measure of
similarity between its associated patch and the patches asso-
ciated to its neighbors is required. The similarity assigned to
the weight of the edge (vi, vj) ∈ E is:

wP(vi, vj) = exp
[
− κ(vj) · ||P(vi)−P(vj)||22
σP(vi) · σP(vj) · ||pi − pj ||22

]
(2)

where P(vi) ∈ Rl×l is the vector of accumulated heights into
the cells of the patch, κ(vj) is the curvature at the vertex vj ,
and ||pi − pj ||22 represents the Euclidean distance between
the points of vertices vi and vj . We propose to locally com-
pute the scale parameters σP(vi). Indeed, using a specific
scale parameter for each node allows us to better take into ac-
count the local distribution around each grid node. The scale
parameter is defined as σP(vi) = max

vk∼vi
(||pi − pk||2). We

have also tested having the scale parameter based on the dif-
ference between the patch vectors and it has been found that
the difference between 3D coordinates vertices leads to better
results. Finally, the visual saliency of the vertex vi on the 3D
mesh is defined by its degree in G as:

ss-saliencyP(vi) =
1

|vj ∼ vi|
∑
vi∼vj

wP(vi, vj) (3)

2.3. Multi-scale saliency

To better consider the hierarchical aspect of human vision, we
propose to estimate the saliency at different scales. Indeed,
saliency at primary scales will detect finest and cramped de-
tails, while higher scales will highlight large regions (see Fig-
ure 1 (b-d)). The aim is to detect saliency at different scales
to cope with noise, since it is only noticeable at some scales.
To apply the concepts of multi-scale to our patch local fea-
ture, we observe that the size of the neighborhood Sε(vi)
can be used as a scale parameter and increasing the size of
the local neighborhood is similar to applying a smoothing fil-
ter [15]. So, we vary the radius ε of the sphere Sε to de-
fine the local patch descriptor, and we consider three differ-
ent neighborhoods. Then, we calculate the single-scale map
saliency for each considered neighborhood. Before combin-
ing the obtained saliency maps, we calculate the entropy that
measures the disorder and the disparity of the saliency in-
formation on each map. To do so, at a given scale k,we
compute a histogram Hk of the saliency values of the ver-
tices to obtain the probability to have the saliency value i:
P k
i = Hk(i)/|V |, where Hk

i gives the number of vertices of
saliency i at scale k. Then, the scale-entropy is defined by
Ek = −

∑
i

P k
i ∗ logP k

i . By weighting the saliency of each

node by the scale-entropy in the combination of the different
scales, we can obtain a robust multi-scale saliency map that



(a) Original (b) ε = 1 (c) ε = 2 (d) ε = 3 (e) Multi-scale saliency

Fig. 1. Influence of the radius ε on single scale saliency computation (b-d), and the multi-scale result (e).

considers the disparity of the saliency at each scale. It is com-
puted as follows:

ms-saliencyP(vi) =

∑K
k=1 ss-saliencyk(vi) · Ek∑K

k=1Ek

(4)

where k is the scale index (corresponds to different values of
the radius ε in the patch definition), and K the number of
scales.

2.4. Extension to 3D colored meshes

In all the previous sections, we have considered 3D meshes:
only points pi are associated to vertices vi. However, with
recent 2D scanners is now possible to also simultaneously ac-
quire a color per vertex and a RGB color vector ci is also
associated to the vertices. To extend our multi-scale saliency
to 3D colored meshes, we proceed in the following way. A
patch is constructed in the same way but patches’ cells Pi are
filled-in with the average RGB colors of the projected points

1
|p′j∈Pi|

∑
p′j∈Pi

c′j , defining a local color patch vector C(vi)

for each vertex. Edges are then weighted with

wC(vi, vj) = exp
[
− ||C(vi)− C(vj)||22
σC(vi) · σC(vj) · l2

]
(5)

with σC(vi) = max
vk∼vi

(||Ci − Ck||2). From this we can define,

similarly than with patch height maps,

ss-saliencyC(vi) =
1

|vj ∼ vi|
∑
vi∼vj

wC(vi, vj) (6)

and deduce ms-saliencyC(vi) as color saliency at one vertex.

3. EXPERIMENTAL RESULTS

In this section we present the benefit of our approach on 3D
meshes, we provide a comparison with state-of-the-art ap-
proaches and innovative results on 3D colored meshes. In
all the experiments, a patch is divided into 27× 27 cells. The

number of scalesK in the multi-scale saliency computation is
fixed to 3. These 3 scales are obtained with spheres Sε(vi) of
radii ε0, 2ε0, and 3ε0 where ε0 is manually fixed, depending
on the considered meshes. To present the computed saliency,
we use a color map. Warmer colors (reds and yellows) show
high saliency and cooler colors (greens and blues) show low
saliency.

First we begin by presenting single-scale saliency results.
Figure 1 presents, for an original gorilla mesh, the computed
saliencies with three different values of ε. As expected, with
small values of ε, only small regions very different of their
surrounding ones are considered as salient. When ε increases,
the saliency is much more spread out and larger regions are
considered as salient. However, in the same time, the saliency
also saturates in very salient regions (e.g., eyes of the go-
rilla). The multi-scale saliency permits to cope with all these
problems by efficiently blending all the single-scale results
together.

(a) Original (b) Ours (c) [6] (d) [10]

Fig. 2. Comparison of our saliency with state-of-the-art ap-
proaches on the 3D ’Angel’ mesh.

Second we compare our approach to state-of-the-art ones.
We have compared our approach with the reference approach
of [6] and the recent one of [10]. Figure 2 presents these
comparisons. The 3D object Angel’s surface is complex as it
contains many extremities. It has also both rough and smooth
surfaces. One can see that the extremity of the scarf presents
a lot of fluctuations. This one is considered salient by the ap-



(a) Original Points (b) Geometric saliency (c) Original Colors (d) Colorimetric saliency (e) Color.×Geom. saliency

(f) Original Points (g) Geometric saliency (h) Original Colors (i) Colorimetric saliency (j) Color.×Geom. saliency

Fig. 3. Saliency of 3D colored meshes.

proach of [10] and ours while the approach of [6] considers
it as non salient. The discontinuities on the eyes, the arms,
the hip and the stomach are represented as salient by the ap-
proach of [10] and ours, contrary to the method of [6]. This
comparison shows that our approach provide much more de-
tailed saliency estimation than reference ones that provide a
very rough estimation. We believe this is a strong benefit of
our approach, and similar results with the other two reference
approaches can simply be obtained by strongly smoothing our
saliency map.

Third, to assess the accuracy of our approach and its fine
detection of saliency, we compare the results we obtain on ob-
jects from the SHREC 2007 Watertight Models [17]. In [18],
a pseudo saliency ground-truth is provided that was obtained
from an analytical model derived from psycho-visual exper-
iments. Figure 4 presents the comparison. One can notice
that our detected saliency corresponds very well to the pseudo
ground-truth salient regions and this shows the benefit of our
approach.

Fourth, we show innovative results that have, to the best of
our knowledge, never been investigated before: saliency com-
putation on 3D colored meshes. Figure 3 shows such results
on a 3D scan of a human head and of a stuffed duck. Figures
3(b),(g) present the obtained geometric saliencies that take
into account only the vertices’ coordinates to build patches.
As expected flat regions appear as non salient whereas fluctu-
ant ones are considered as salient. Figures 3(d),(i) present
the obtained colorimetric saliencies that takes into account
only the vertices’ colors to build patches. These results are
very different from the geometric saliencies since areas hav-

ing strong color variations appear as salient (the very visually
salient white collar of the duck is now much salient). Figures
3(e),(j) present a merging of both results as a simple product
of both geometric and colorimetric saliencies.

4. CONCLUSION

In this paper we have proposed a simple, yet effective, ap-
proach to the difficult problem of estimating saliency in 3D
meshes. In order to describe salient regions, local adaptive
patches describing the geometric or colorimetric neighbor-
hood configurations are computed at each vertex. This de-
scriptor is used as a basis for similarity measurement and
integrated into a weighted multi-scale saliency computation.
The approach goes beyond state-of-the-art by quantifying the
saliency of 3D colored meshes, that was never investigated
before.

(a) (b) (c) (d)

Fig. 4. Comparison with the pseudo ground-truth saliency in
[18]. (a),(c) ground-truth saliency, (b),(d) our approach.
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