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Abstract

In this work, we introduce a novel algorithm for the Biot problem based on a Hybrid
High-Order discretization of the mechanics and a Symmetric Weighted Interior Penalty
discretization of the flow. The method has several assets, including, in particular, the sup-
port of general polyhedral meshes and arbitrary space approximation order. Our analysis
delivers stability and error estimates that hold also when the specific storage coefficient
vanishes, and shows that the constants have only a mild dependence on the heterogeneity
of the permeability coefficient. Numerical tests demonstrating the performance of the
method are provided.

1 Introduction

We consider in this work the quasi-static Biot’s consolidation problem describing Darcian flow
in a deformable saturated porous medium. Our focus is on applications in geosciences, where
the support of general polyhedral meshes is crucial, e.g., to handle nonconforming interfaces
arising from local mesh adaptation or Voronoi elements in the near wellbore region when
modelling petroleum extraction; cf. Figure|l|for an example. Let Q c R?, 1 < d < 3, denote a
bounded connected polyhedral domain with boundary €2 and outward normal n. For a given
finite time ¢t > 0, volumetric load f, fluid source g, the Biot problem consists in finding a
vector-valued displacement field w and a scalar-valued pore pressure field p solution of

—Vo(u)+aVp=§f in Q x (0,tp), (1la)
codep + V-(adiu) — V- (kVp) =g in Q x (0,tp), (1b)

where ¢y = 0 and a > 0 are real numbers corresponding to the constrained specific storage and
Biot—Willis coefficients, respectively, k is a real-valued permeability field such that K < kK <&
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Figure 1: An example of polyhedral mesh in the context of numerical modelling of petroleum extraction.
Voronoi elements are present to match the radial wellbore mesh and the CPG mesh away from the well.

almost everywhere in 2 for given real numbers 0 < £ < &, and the Cauchy stress tensor is
given by

o(u):=2uViu + A\ 4V-u,
with real numbers A > 0 and p > 0 corresponding to Lamé’s parameters and I; identity
matrix of R¥?  Equations and (Lb)) express, respectively, the mechanical equilibrium

and the fluid mass balance. We consider, for the sake of simplicity, the following homogeneous
boundary conditions:

u=0 on 09 x (0,tp), (1c)
kVpmn =0 on 09 x (0,tp). (1d)

Initial conditions are set prescribing w(-,0) = u® and, if ¢g > 0, p(-,0) = p°. In the incom-
pressible case ¢ = 0, we also need the following compatibility condition on g:

fg(.,t)=o vte (0, t), (1e)
Q

as well as the following zero-average constraint on p:

f P =0 Ve (0,t). (1f)
Q

For the derivation of the Biot model we refer to the seminal work of Terzaghi [26] and Biot [3//4].
A theoretical study of problem can be found in . For the precise regularity assumptions
on the data and on the solution under which our a priori bounds and convergence estimates
are derived we refer to Lemma [§| and Theorem [T} respectively.

A few simplifications are made to keep the exposition as simple as possible while still
retaining all the principal difficulties. For the Biot—Willis coefficient we take

a=1,

an assumption often made in practice. For the scalar-valued permeability x, we assume that
it is piecewise constant on a partition Pq of €2 into bounded open polyhedra. The treatment of
more general permeability coefficients (with anisotropy and fine-scale spatial variations) can
be done following the ideas of [10,[11]. Also, more general boundary conditions than —
can be considered up to minor modifications.



Several difficulties have to be accounted for in the design of a discretization methods
for problem : in the context of nonconforming methods, the linear elasticity operator
has to be carefully engineered to ensure stability expressed by a discrete counterpart of the
Korn’s inequality; the Darcy operator has to accomodate rough variations of the permeability
coefficient; the choice of discrete spaces for the displacement and the pressure must satisfy
an inf-sup condition to contribute reducing spurious pressure oscillations for small time steps
combined with small permeabilities when ¢y = 0. An investigation of the role of the inf-sup
condition in the context of finite element discretizations can be found, e.g., in Murad and
Loula [17,/18]. A recent work of Rodrigo, Gaspar, Hu, and Zikatanov [24] has pointed out
that, even for discretization methods leading to an inf-sup stable discretization of the Stokes
problem in the steady case, pressure oscillations can arise owing to a lack of monotonicity of
the operator. Therein, the authors suggest that stabilizing is possible by adding to the mass
balance equation artificial diffusion terms with coefficient proportional to h?/7 (with h and
7 denoting, respectively, the spatial and temporal meshsizes). However, computing the exact
amount of stabilization required is in general feasible only in 1 space dimension.

The discretization of the Biot problem has been considered in several other works. Finite
element discretizations are discussed, e.g., in the monograph of Lewis and Schrefler |16]; cf.
also references therein. A finite volume discretization for the three-dimensional Biot problem
with discontinuous physical coefficients was considered by Naumovich [19]. In [21}22], Phillips
and Wheeler propose and analyze an algorithm that models displacements with continuous
elements and the flow with a mixed method. In [23], the same authors also propose a different
method where displacements are instead approximated using discontinuous Galerkin methods.
In [27], Wheeler, Xue and Yotov study the coupling of multipoint flux discretization for the flow
with a discontinuous Galerkin discretization of the displacements. While certainly effective
on matching simplicial meshes, discontinuous Galerkin discretizations of the displacements
usually do not allow to prove inf-sup stability on general polyhedral meshes.

In this work, we propose a novel discretization of problem where the linear elasticity
operator is discretized using the Hybrid High-Order (HHO) method of [9], while the flow relies
on the Symmetric Weighted Interior Penalty (SWIP) discontinuous Galerkin method of [1113];
see also [8, Chapter 4]. The proposed method has several assets: (i) it delivers an inf-sup
stable discretization on general meshes including, e.g., polyhedral elements and nonmatching
interfaces; (ii) it allows to increase the space approximation order to accelerate convergence in
the presence of (locally) regular solutions; (iii) it is locally conservative on the primal mesh;
(iv) it is robust with respect to the spatial variations of the permeability coefficient, with
constants in the error estimates that depend on the square root of the heterogeneity ratio;
(v) it is (relatively) inexpensive: at the lowest order, after static condensation of element
unknowns for the displacement, we have 4 (resp. 9) unknowns per face for the displacements
+ 3 (resp. 4) unknowns per element for the pore pressure in 2d (resp. 3d). Finally, the
proposed construction is valid for arbitrary space dimension, a feature which can be exploited
in practice to conceive dimension-independent implementations.

The material is organized as follows. In Section [2| we introduce the discrete setting,
formulate the method, and investigate its local conservation properties by identifying the
conservative normal tractions and mass fluxes. In Section [3] we derive a priori bounds on the
exact solution for regular-in-time volumetric load and mass source. The convergence analysis
of the method is carried out in Section [4] Finally, numerical tests are proposed in Section



2 Discretization

In this section we introduce the assumptions on the mesh, define the discrete counterparts of
the elasticity and Darcy operators and of the hydro-mechanical coupling terms, formulate the
discretization method and investigate its local conservation properties.

2.1 Mesh and notation

Denote by H < R} a countable set of meshsizes having 0 as its unique accumulation point.
Following [8, Chapter 1|, we consider h-refined mesh sequences (7, )xey where, for all h € H, T
is a finite collection of nonempty disjoint open polyhedral elements T" such that Q = UTeTh T
and h = maxreT;, hr with hy standing for the diameter of the element 7. We assume that
mesh regularity holds in the following sense: For all h € H, T, admits a matching simplicial
submesh T} and there exists a real number ¢ > 0 independent of h such that, for all h € H,
(i) for all simplex S € ¥}, of diameter hg and inradius rg, ohs < rg and (ii) for all T € Tp,
and all S € T, such that S < T, phr < hg. A mesh with this property is called regular. It is
worth emphasizing that the simplicial submesh %}, is just an analysis tool, and it is not used
in the actual construction of the discretization method. These assumptions are essentially
analogous to those made in the context of other methods supporting general meshes; cf.,
e.g., [2, Section 2.2| for the Virtual Element method. To avoid dealing with jumps of the
permeability inside elements, all the meshes in 7, are assumed to be compatible with the
known partition Po on which the diffusion tensor is piecewise constant, so that jumps can
only occur at interfaces.

We define a face F as a hyperplanar closed connected subset of Q with positive (d—1)-
dimensional Hausdorff measure and such that (i) either there exist T1,7» € T, such that
F < 0Ty n 0T (with 0T; denoting the boundary of 7;) and F' is called an interface or (ii) there
exists T' € Ty, such that F' < 0T n 052 and F is called a boundary face. Interfaces are collected
in the set F!, boundary faces in FP, and we let Fj := f}l U ]:}L’. The diameter of a face
F € Fy, is denoted by hp. For all T' € Ty, Fr := {F € F}, | F < 0T} denotes the set of faces
contained in 0T and, for all F € Fp, npp is the unit normal to F pointing out of 7. For a
regular mesh sequence, the maximum number of faces in Fr can be bounded by an integer
N, uniformly in h. For each interface F' € Fi, we fix once and for all the ordering for the
elements T7,T5 € Ty, such that £ < 0T n 015 and we let ng := npy p. For a boundary face,
we simply take ngp = n, the outward unit normal to €.

For integers [ = 0 and s > 1, we denote by IP)ld(’E) the space of fully discontinuous piecewise
polynomial functions of degree < I on 7;, and by H*(T) the space of functions in L?(Q) that
lie in H*(T) for all T' € T;,. The notation H*(Pq) will also be used with analogous meaning.
Under the mesh regularity assumptions detailed above, using [8, Lemma 1.40| together with
the results of |12, one can prove that there exists a real number C,p, depending on p and I,
but independent of h, such that, denoting by wﬁl the L?-orthogonal projector on Pﬁl(ﬁ), the
following holds: For all se€ {1,...,l+ 1} and all v e H*(Ty),

v —7r§ZU|Hm(7—h) < Capph® "V 5 (77) Vm e {0,...,s —1}. (2)
For an integer | > 0, we consider the space

Cl(V) := CY([0,tp]; V),



spanned by V-valued functions that are [ times continuously differentiable in the time inter-
val [0,tr]. The space C°(V) is a Banach space when equipped with the norm lellcoqy ==
maxe(o ] [#(t)|v, and the space C!Y(V) is a Banach space when equipped with the norm
lellctyy = maxogms [d7* @[ coqvy. For the time discretization, we consider a uniform mesh
of the time interval (0,tr) of step 7 := tp/N with N € N* and introduce the discrete times
t"™ := n7 for all 0 < n < N. Non-uniform time meshes can be also be treated, but we avoid
them to keep the notation simple. For any ¢ € C!(V') we denote by ©™ € V its value at discrete
time t", and we introduce the backward differencing operator d; such that, forall 1 <n < N,

SOn _ (pn—l

T

Opp" 1= eV. (3)

In what follows, for X < €2, we respectively denote by (-, )y and || x the standard inner
product and norm in L?(X), with the convention that the subscript is omitted whenever
X = Q. The same notation is used in the vector- and tensor-valued cases. For the sake of
brevity, throughout the paper we will often use the notation a < b for the inequality a < Cb
with generic constant C' > 0 independent of h, 7, ¢g, A, u, and &, but possibly depending on
o and the polynomial degree k. We will name generic constants only in statements and when
this helps to follow the proofs.

2.2 Linear elasticity operator

The discretization of the linear elasticity operator is based on the Hybrid High-Order method
of |9]. Let a polynomial degree k > 1 be fixed. The degrees of freedom (DOFs) for the
displacement are collected in the space

Uj = { X PS(T)‘Z} X { X ]P)]:i—l(F)d}' (4)
TeT, FeFy

For a generic collection of DOFs in QZ we use the notation v, := ((’UT)TeTha (UF)Fe]:h). We

also denote by vy, (not underlined) the function of PX(7,)? such that v = vr for all T € T,

The restrictions of QZ and vy, to an element T are denoted by Qlfp and vy = ('UT, (vF) e }-T),

respectively. For further use, we define the reduction map I Z cHY(Q)? — Qﬁ such that, for
all v e HY(Q), Lo = ((Lkv)r)rer;, (L) r)rery) with

(I¥v)p :=7ho YT €T,  (Itv)p:=7hv YFeF,. (5)

For all T € 7Tj,, the reduction map on Qlfp obtained by the appropriate restriction of I IfL is
denoted by I%.

For all T € Ty, we obtain a high-order reconstruction r% : Uk — }P’ZH(T)CI of the displace-
ment field by solving the following local pure traction problem: For a given local collection of
DOFs vy = (’UT, (vF)Fe]:T) € Ql}, find ri}yT € IP’];H(T)d such that

(VSTI%QT, Vsw)r = (Vsvr, Vsw)r + Z (vp —vp, Vswnrp)p Yw € }P’SH(T)d, (6)
FE]:T

with closure conditions §, v, = §vrand § Verko, = > Fery Sp % (nrr @ vEp —vp @nrp).
We also define the global reconstruction of the displacement rF : UY — ]P’SH(E)d such that,
for all v, € Q’fl,

(rivp)ir = vy VT €T, (7)



The following approximation property was proved in |9, Lemma 2|: For all v € H'(Q)?
Hk+2(PQ)d,
IVs (ThIhU —v)| < hk+1H'UHHk+2(PQ)d. (8)

We next introduce the discrete divergence operator D : Uk — IP”;(T) such that, for all
q € Py(T)

(Divr, )7 = (V-or,q)r + Z (vp —vr,qnrp)p (9a)
FE]'—T
= —(vr,Vo)r + Y. (v, qnop)r, (9b)
FE]:T

where we have used integration by parts to pass to the second line. The divergence operator
satisfies the following commuting property: For all T € T, and all v € H(T)?,

Dy Ifv = o (V-v). (10)

The local contribution to the discrete linear elasticity operator is expressed by the bilinear
form ar on Q? X Ql} such that, for all w, v, € Q?,

ar(wy,vy) = 20 { (Varkawr, Vrbor)r + sr(wy,vp) | + A(Dfwy, Divr)r, (1)
with stabilization bilinear form st such that

st(wr, vr) Z h 7TF RT’wT wF),W]If“(RIZC"QT —vp))F, (12)
FE./—'T

where we have introduced a second displacement reconstruction such that, for all v, e U I%,
Rhvy = rbv, — cbrbo, +vp.

The global bilinear form a;, on QZ X Qﬁ is assembled element-wise:

ap(wy,, vy) = Z ar(wyp, vy). (13)
TeTh

To account for the zero-displacement boundary condition , we consider the subspace

Uh = {on = (0r)rem, (wp)rer,) e Uk |vp =0 VFe Fp}. (14)
Define on Qk the discrete strain seminorm
2ni= ) i, e = IVsvrlz + ) bptlve —vrf3. (15)
TeTh FeFr

It can be proved that |- defines a norm on U z,O' Moreover, using |9, Corollary 6|, one has
the following coercivity and boundedness result for ay:

n 2w, < on = an(wy,vy) <2+ dX)|vy, |2, (16)

Additionally, we know from |9, Theorem 8| that, for all w € HE(Q)¢ n H¥*2(Pq)? such that
V-w € H**1(Pq) and all v, € Q’fw, the following consistency result holds:

(17)

an(Tw, vy) + (V-0 (w), v)| < B4 (20w g ryye + NIV isspy ) o

To close this section, we prove the following discrete counterpart of Korn’s inequality.



Proposition 1 (Discrete Korn’s inequality). There is a real number Cx > 0 depending on o
and on k but independent of h such that, for all v;, € Qlfi,o’ recalling that vy, € Pg(ﬁ)d denotes
the broken polynomial function such that vy = vy for all T € Ty,

lval < Crdalvylep, (18)
where dg denotes the diameter of €.

Proof. Using a broken Korn’s inequality [6] on P%(7,)? (this is possible since k > 1), one has

do’[vnl* < Vaponl® + ) [lonlrlE + 3 loal?, (19)
FeF} FeFp

where V ;, denotes the broken symmetric gradient on H L(T»)?. For an interface F € Fr,nFry,
we have let [vy]F 1= v, — vp,. Thus, the triangle inequality allows to infer that |[vs]r|r <
lvp —vr|lF + |[vF — v1,|F. For a boundary face F' € Fp such that F € Fr n Fp for some
T € T;, we have, on the other hand, ||vy|r = |[vF — v7|F since vy = 0 (cf. ) Using these
relations in the right-hand side of and rearranging the sums yields the assertion. O

2.3 Darcy operator

The discretization of the Darcy operator is based on the Symmetric Weighted Interior Penalty
method of [11,[13], cf. also |8, Section 4.5]. At each time step, the discrete pore pressure is
sought in the broken polynomial space

pE {P’;(Th) if co > 0,

_ 20
P o(Th) if co =0, (20

ho=
where we have introduced the zero-average subspace }P’]j’o(ﬁl) = {qn € PE(T1) | (an, 1) = 0}.

For all F € F!, we define the jump and (weighted) average operators such that, for all
¢ € H'(Ty,), denoting by o1 and k7 the restrictions of ¢ and  to T € Ty, respectively,

[elF = o — o, {o}F == wnon +wnen, (21)

where wr, = 1 — wyp, 1= 573/(kp, +r1,). Denoting by Vj, the broken gradient on H'(7) and
letting, for all F € F}, Ai,F 1= 28T 5Ty /(ky +rTy), We define the bilinear form ¢, on P}’f X P,’f
such that, for all gy, 7, € PF,

ch(rhyqn) == (EVarn, Vaan) = . (({6Varntene, [a]r)r + (ralr {6 Vian}rnr) )
FeF}

+ ) g;\;’F([Th]F, lan]F) P,

FeF}

(22)
where ¢ > 0 is a user-defined penalty parameter and the fact that the bondary terms only
appear on internal faces reflects the Neumann boundary condition . From this point
on, we will assume that ¢ > C2 N, with Cy, denoting the constant from the discrete trace
inequality [8 Eq. (1.37)], which ensures that the bilinear form ¢y, is coercive. Since ¢, is also
symmetric, it defines a seminorm on P} denoted hereafter by || (the map || is in fact
a norm on IP’QO(’EL)).



The following known results will be needed in the analysis. Let
. = {re H'(Q) n H*(Py) | kVr-n =0 on 0Q}, Pk = P, + P}

Extending the bilinear form ¢;, to Pfh X Pfh, the following consistency result can be proved
adapting the arguments of |8, Chapter 4] to account for the homogeneous Neumann boundary

condition ([Ld):
Vr € Py, —(V-(kVT),q) = cp(r,q) Vq € Pyp. (23)

Assuming, additionally, that r € H¥*2(Py), as a consequence of [8, Lemma 5.52] together
with the optimal approximation properties of Tr,"f on regular mesh sequences one has,

k
Ch\T — T, T, _
sup A X)) < gYepk

|71l gr+1. () - (24)
aneP% o (Th)\{0}

2.4 Hydro-mechanical coupling

The hydro-mechanical coupling is realized by means of the bilinear form by on Qﬁ X ]P’S(ﬁ)
such that, for all v, € UF and all g, € P%(T3),

bh(wp, ) == Y br(ur,aur),  br(ranr) == —(Dfvr, qur)r, (25)
TeTh

where D% is the discrete divergence operator defined by . A simple verification shows
that, for all v, € U} and all g, € P5(Ty,),

(26)

bh(ghv Qh) ~

Additionally, using the definition of D and . ) of Uh 0+ it can be proved that, for all
v, e U 20, it holds (xq denotes here the characteristic function of ),

bn(vp, xa) = 0. (27)
The following inf-sup condition expresses the stability of the hydro-mechanical coupling:

Lemma 2 (inf-sup condition for by). There is a real number 5 depending on §2, o and k but
independent of h such that, for all g € P§70(771),

bh (yhu Qh)
e,h

lgnl < B sup (28)

v, €U} 4\{0}

Proof. Let g € sto(ﬁl). Classically [5], there is vy, € H}(Q)? such that Vv, = g, and
|vg, 1@yt S lgnll. Let T € Ty Using the H'-stability of the L*-orthogonal projector, it is
inferred that

|Vsmivg, |7 < [Vog, lr.

Moreover, for all F' € Fr, using the boundedness of 7TF and the continuous trace inequality
of |8, Lemma 1.49] followed by a local Poincaré’s inequality for the zero-average function
(R, — vy, ), we have

—1 —1
hi Pl (whvg, —vg,)IF < BE | 7hvg, —vg,|r < [Vog, 1.



As a result, recalling the definition of the local reduction map I l} and of the strain
norm || 7, it follows that |I5v,, [c7 < |lvg, | 1 (r)a- Squaring and summing over T' € Ty, the
latter inequality yields

k
[L5vg, len S Vgl r@)a < lgnl- (29)

Using , the commuting property and denoting by S the supremum in , one has

HQhH2 = (Vevg,,qn) = Z (Dég“llig“v%vq}L)T = _bh(lzv%vcﬂb) < S”liv%
TeTs

eh < Slanl;

and the conclusion follows. O

2.5 Formulation of the method

For all 1 <n < N, the discrete solution (uj,p}) € Qﬁ’o X P,]f at time t" is such that, for all
(vh,qn) € Qlfi,o X P'é(ﬁ),

an(up,vy,) + by (vy, pp) = Ui (vy), (30a)
(codep, an) — br(orur, an) + cn(ph, an) = (", an), (30b)

where the linear form I on U} is defined as

Ih(vy) == (f"vn) = Z (f" vr)r. (31)

TeT,

In petroleum engineering, the usual way to enforce the initial condition is to compute a
displacement from an initial (usually hydrostatic) pressure distribution. For a given scalar-
valued initial pressure field p® € L?(), we let ﬁg = W}’fpo and set gg = @2 with @2 elU 2,0
unique solution of

ah(@(f)nﬂh) = Z?L(yh) - bh(ﬂhaﬁ%) Yy, € Qlfi,o- (32)

If ¢g = 0, the value of ﬁ?l is only needed to enforce the initial condition on the displacement
while, if ¢y > 0, we also set pg = 132 to initialize the discrete pressure.

Remark 3 (Discrete compatibility condition for cg = 0). Also when ¢ = 0 it is possible to
take the test function qp in in the full space IP”C}(’EL) instead of the zero-average subspace
P’é,o(ﬁ); since the compatibility condition is verified at the discrete level. To check it, it suffices
to let g, = xq n @, observe that the right-hand side is equal to zero since g" has zero
average on § (cf. (]ED), and use the definition of cp, together with to prove that the
left-hand side also vanishes. This remark is crucial to ensure the local conservation properties
of the method detailed in Section [2.6

To close this section, we prove stability and approximation properties for the discrete
initial displacement given by (32)).

Proposition 4 (Stability and approximation properties for @%) The initial displacement
satisfies the following stability condition:

9o < (21) 72 (dall £ + 12°1) - (33)



Additionally, recalling the global reduction map l’,ﬁ defined by , and assuming the additional
regularity po € H**1(Py), u® € H*2(Pq)?, and V-u’ € H*+1(Py), it holds

(200) 8~ o < W4 (2] gssagpys + NIV gsongony + 21 sy ) - (34)
Proof. (1) Proof of . Using the first inequality in followed by the definition of
uy,, we have

~ an (G, v
@lan s sup  onln )
v, €U} ;\{0} (20) 72 vple,n

_ 19(vy) — by (v, 7hp?) _
S @R s s @ (dal £+ 1),
v,€U} o\{O0 =l

where to conclude we have used the Cauchy—Schwarz and discrete Korn’s inequalities for
the first term in the numerator and the continuity of by, together with the boundedness
of 775 as a projector for the second. (2) Proof of . The proof is analogous to that of point
(3) in Lemma (10| except that we use the approximation properties of W,’j instead of .
For this reason, elliptic regularity is not needed. O

2.6 Flux formulation

We reformulate the discrete problem to unveil the local conservation properties of the
method. Before doing so, we need to introduce a few operators and notations to treat the
boundary terms.

We start from the mechanical equilibrium. Let an element T" € T, be fixed and denote by
Usr = IP”;?I(}"T)‘Z the broken polynomial space of degree < k on the boundary 0T of T. We
define the operator L]% : Usr — Upr such that, for all ¢ € Upr,

Liop =1} (‘P\F — (0, (¢yp) Fery) + TETH(O, (<P|F)FeFT)> VF € Fr. (35)
We also need the adjoint Ll}’* of L% such that

Ve e U, (Lkp,)or = (@, L )or Vi e Ugy. (36)

For a collection of DOFs v € Q?, we denote in what follows by var € Ugr the function in
U ;1 such that Vor|F = VF for all F' € Fp. Finally, it is convenient to define the discrete stress
operator S : Uk — Pk(T)4%? guch that, for all v, € U%.,

Shvy = 2uVerior + A 4Djy. (37)

To reformulate the mass conservation equation, we need to introduce the lifting operator
RE . PF — PE=1(T;,)? such that, for all g, € PF, it holds

(RE pansmn) = O, (lanles {rTr}eme)p  Vrp e PYH(Th)% (38)
FeF}

10



Lemma 5 (Flux formulation of problem ) Problem can be reformulated as follows:
Find (u},p}) € Qlfw x PF such that it holds, for all (v, qn) € Qlfi,o x PX(T,) and all T € Ty,

(Stut — ppda, Veor)r + Y (®fp(uh, phir), vr —vr)r = (f*,v1)7,

FeFr
(39a)
(codepf, an)r — (8w — k(Vipj — RE 107), Vian)r — Z (& (6w, DY), anyr) F = (9" an),
FeFr
(39D)

where, for all T € Ty, and all F € Fr, the numerical traction ®p : Uk x PE(T) — Pk (F)4
and mass fluz ¢kt PR (F)? x PE(T,) — PE_ (F) are such that

@ (vr, q) = (Shvy — qlg)nrr + (2u) LE* (tor L (vor — vr)),

¢17€’F(UF7 Qh) = {

An , .
(— %+ {kVran}r) nrp — ghF’F lan]rerr if F e Fi,
0 otherwise,

with 757 € Pg(]—"T) such that Tor|p = h}l for all F € Fr, erp := ny-nrr, and it holds, for all
F e Fl such that F € Fr, 0 Fr,,

@IiﬂlF(gg—i’pqul) + ¢§2F(g%2’pZ|T2) = 0 (40&)
Ot (Seulp, bf) + O, p(Seulp, i) = 0. (40b)
Remark 6 (Local mechanical equilibrium and mass conservation). Let an element T € T}, be

fized. Choosing as test functions in (39a) v, € Q;‘;O such that vp =0 for oll F € Fp, v =0

for all T" € T\{T}, and vy spans ]P’S(T)d, we infer the following local mechanical equilibrium

relation: For all vy € PX(T)4,

(STt —phla, Vsor)r — Y (®Fp(wh, pfir), vr)r = (F*07)7!
FG.FT

Similarly, selecting gy, in (39b) such that qni = 0 for all T" € TA\{T} and qr := qnp spans
PX(T), we infer the following local mass conservation relation: For all qr € PX(T),

(codeph, qr)r — (Sruf — K(Vapf — RE ,00), Var)r — Y| (56, ph),ar)r = (9", qr)-
FG.FT

Proof. (1) Proof of (39al). Proceeding as in |7, Section 3.1], the stabilization bilinear form sz
defined by can be rewritten as

st(wr, vyp) = Z (L5  (ror L (wor — wr)),vp — v1)F.
FeFr

Therefore, using the definitions @ of r]%yT with w = r%g{ﬁ and of Di]ﬁgT with ¢ = pj|r,
and recalling the definition of S%, one has

ar(wh, vr) = (Skuh, Veor)r + Y (Shwhnrr + (2u) Ly (ror L (wly — uf)), vr — v1)p.
FE]'—T
(41)

11



On the other hand, using again the definition of DEv, with ¢ = Ph 7> one has

br(vp, phir) = —(Phlas Vsor)r — Z (PhirMTF, VF — UT)F- (42)
FE.FT

Equation ([39a) follows summing and (42).

roof of (39Db|). Using the definition o with v = ogur and ¢ = qp7, 1t 1s Inferre
2) P 39bf). Usi he definition fD:',i'hT dsuf and |"'fd
that

br (5w, gn) = —(Swf, Vagn)r + Y, (Srup-nrr, gur)p. (43)
FeFr

On the other hand, adapting the results |8 Section 4.5.5] to the homogeneous Neumann
boundary condition , it is inferred

cn(Phan) = D, {(H(Vhpﬁ — Ry 1ph)-Vaan)T
TeT),

7 g)‘ﬂy 7
- >, (kVapp}enoe — . F[ph]FETFaQMT)F}- (44)
FeFrnF} F

Equation follows summing and .

(3) Proof of . To prove , let an internal face F' € F}, be fixed, and make v, in (40al)
such that vy = 0 for all T € Ty, v = 0 for all F' € F,\{F}, let vp span Pk (F) and
rearrange the sums. The mass flux conservation follows immediately from the expression
of % . observing that, for all (v),,q) € UF x P}’f and all F € Fi the quantity

g)\/@
(—vr + {kVhan}r)nr — hF’F lqn]F

is single-valued on F'. O

3 Stability analysis

In this section we study the stability of problem and prove its well-posedness. We recall
the following discrete Gronwall’s inequality, which is a variation of the one proved in |15
Lemma 5.1].

Lemma 7 (Discrete Gronwall’s inequality). Let an integer N and reals 6,G > 0, and K > 0
be given, and let (a")o<n<n, (0™)o<n<n, and (Y")o<n<n denote three sequences of nonnegative
real numbers such that, for all 0 <n < N

a"+52bm+K<5i’ymam+G.
m=0 m=0

Then, if y™6 < 1 for all 0 < m < N, letting <™ := (1 —~™38)~1, it holds, for all 0 <n < N,
that

n

an+52bm+K<exp <6ng7m) x G. (45)
m=0

m=0

12



Lemma 8 (A priori bounds). Assume f € CH(L?(Q)9) and g € C°(L3(R)), and let (uf,p)) =
(ap, 7Y) with (@), p?) defined as in Section|2.5, For all 1 < n < N, denote by (u},p}') the
solution to . Then, for T small enough, it holds that

ol |?

1
N2 N 2 1 02
lwp [an + lco ph |7 + m“ph —pp 7+ Z THPthh < (2w~ + o) 2]

+ (2M)_1d%2”f”201(1;2(g)d) (2 + d)‘)tFHg”CO(LQ @) T 219020 (r2()):  (46)
with the convention that cal||§|%0(L2(Q)) =0ifco=0 and pY = (p¥, 1).

Remark 9 (A priori bound on the pressure when ¢y = 0). When c¢g = 0, the choice of
the discrete space for the pressure ensures that p; = 0 for all0 < n < N. Thus, the third term
in the left-hand side of ({46) . ) yields an estimate on ||p |2, and the a priori bound reads

1 2
ot gl P+ S rlpil2s <

n=1

(2)™" (@RS 12 2y + I9°12) + 21+ AN LglZo oy (47)

The convention cal|\§\|200(L2(Q)) =0 if co = 0 is justified since the term %o in point (4) of the
proof of Lemma@ vanishes in this case thanks to the compatibility condition (|le)).

Proof. Throughout the proof, C; with i € N* will denote a generic positive constant indepen-
dent of h, 7, and of the physical parameters cg, A, , and k.

(1) Estimate of |p) — pj|. Using the inf-sup condition followed by to infer that
bn(vy, D) = 0, the mechanical equilibrium equation , and the second inequality in ,
forall 1 <n < N we get

b (@, Ph ~Ph) _ g bn (v, Ph)

lph —DPrll < B  sup sup
v,eul oy 12alen 0, €U \(0}

l’l’l v —a un7y . §
= /3 Sup h(h)“v ’h(h h) < Ci/Q (dQHf ” + (2# + d)\)l/QHEh ||a7h) ’
EhEQZ,O\{Q} YUplle,h

where we have set, for the sake of brevity, Ci/ ? .= fmax(Ck,n). This implies, in particular,

i = PRl? < 201 (dal£71% + (2 + dN) |7 1) (48)

(2) Energy balance. Adding (30a)) with v;, = 76u} to (30b)) with ¢, = 7p}}, and summing the
resulting equation over 1 < n < N, it is inferred

N N N N N
Z Tap(up, Sup) + Z (codeph . ph) + 2 [P, Hch = Z iy (Sruy) + Z 9" o). (49)
n=1 n=1 n=1 n=1 n=1

We denote by £ and R the left- and right-hand side of and proceed to find suitable lower
and upper bounds, respectively.
(3) Lower bound for L. Using twice the formula

20(x —y) = 2” + (x —y)* — ¢°, (50)
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and telescoping out the appropriate summands, the first two terms in the left-hand side of
can be rewritten as, respectively,

N
Z Tap U’Z?(Stu;;) ah +35 Z ah ah’
v "N G1)
1 1 1 1 1
2, (eodi i) = 4mﬁﬁw+5§]#WKMﬁW—5wfﬁw.
n=1 n=1

Using the above relation together with and ||V < £ llcr(z2(0yeys it is inferred that

1, N 1 1,1 1
gmm@h—;mmaﬁ~w/%mﬁ—fn“mw

1
METENCTERN)

d2
ch\£+m\’f\\cl 2y (52)

th —Dn H2

n=1

(4) Upper bound for R. For the first term in the right-hand side of , discrete integration
by parts in time yields

N N
Drlpn) = (FY up) = (% uh) = > (G f™ up Y, (53)
n=1 n=1

hence, using the Cauchy—Schwarz inequality, the discrete Korn’s inequality followed by to

estimate |u}|? < Czd“ HuhH for all 1 < n < N (with Cy := CZn/2), and Young’s inequality,
one has

N 1 1 XN

DTl < 3 (\N o7 Z Tuuz—l\g,h>

n=1 =1

C’
QMQ (\fN|2+ IF01% + 2t T5tf"|2> (54)
n=1
N 2
<3 ( u ah T o5 otr nZo u a,h> + THf”Cl(]ﬂ(Q)d)a

where we have used the classical bound | £V + | 012 + 2ty X0, 7]6: £7)? < Cg”f”cl L2()4)
to conclude. We proceed to estimate the second term in the right-hand side of (49} . by sphttmg
it into two contributions as follows (here, g" := (¢",1)):

=

N N
Z T(gnap;i) = Z T(gn)pz 2 7ph - ‘Il + ‘IQ' (55)
n=1 n=1

Using the Cauchy-Schwarz inequality, the bound Y 7]g"[? < tFHgH%,O(LQ(Q)) together
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with and Young’s inequality, it is inferred that

N 1/2 N 1/2
%] < {Z T|gn2} X {Z 7|k —p2|2}

n=1 n=1

1/2
200 n n
< trlglooiraa) { 12 3| f ||2+<2u+dx>|uh|§,h)} (56)

2 N

1 n
n=1

Owing the compatibility condition , To =0if ¢g = 0. If ¢g > 0, using the Cauchy—Schwarz
and Young’s inequalities, we have

v al 7o 1 X
_ 2 _ 1
o] < {tF 3 g g } x {t;;lrnco/zpm} < g llEone + g X Il s
(57)
Using , , and , we infer
1 N 1 N 1/ +2
2 1 2 2 F —112
R < g <|uh H h +tF nz:o ah> + ?71217_H th C() ngco([g(g))
1 CyCy

(5) Conclusion. Using , the fact that £ = R owing to , and , it is inferred that

N
1 _
[l 2+ 4Aleg"ph |2 + s ok =B 12 +8 3 7lphl2s <
(2p + dX)

n=1
Ci Cixh o
T rlhle s+ S Y Tl BRI + G (59)
F =0 F o=
where Cy := max(1,C) while, observing that Hcé/Qp?LH Hc/2 0| since 71'2 is a bounded oper-

ator, and recalling from that [up |2, < Cs(2p) " (d2 HfOH2 + Ip°)%),

_ 5C5 1 4¢3
C71G 1= 57 (dBIF1 + 15°1%) + 4817 + - glouaen)

2p
5 N 8C5C3
2(2p + dX)

+ 64C115 (2 + )| Eo 20y + ( al F 12 (12 ()0)-

Using Lemma (7)) with a® := |u}|? 5, oand a” = Hgﬁﬂgh + 4”03/2]72\]2 for1<n<N,d:=71
b0 := 0 and b" := Hpﬁ”? forl<n< N, K = (2uJ1rd>\) IpY —pY[?, and " = %‘, the desired
result follows. O

Owing linearity, the well-posedness of is an immediate consequence of Lemma
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4 Error analysis

In this section we carry out the error analysis of the method.

4.1 Projection

We consider the error with respect to the sequence of projections (@y, p})i1<n<n, of the exact
solution defined as follows: For 1 <n < N, pj € P,’f solves

cn(Drsan) = cn(®@™an)  VYan € P(Th), (60a)
with the closure condition SQ Py = SQ p". Once p} has been computed, uy, € QE,O solves

an(@y,vy,) = () — bp(vy, Br) Yo, e UF . (60b)

The well-posedness of problems and follow, respectively, from the coercivity of ¢y,
on P* (T,) and of aj;, on szo. The projection (uy,,py) is chosen so that a convergence rate
of (k ¥ 1) in space analogous to the one derived in [9] can be proved for the ||| 5-norm of
the displacement at final time tg. To this purpose, we also need in what follows the following
elliptic regularity, which holds, e.g., when 2 is convex: There is a real number Cq; > 0 only
depending on € such that, for all ¢ € L}(Q), with L§(Q) := {qe L*(Q) | (¢,1) = 0}, the
unique function ¢ € H*(Q) n L3(2) solution of the homogeneous Neumann problem

—V-(,kV({) =1 in Q, kV({n =0 on 09, (61)

is such that
Il 2Py < Cent™ 29| (62)

For further insight on the role of the choice and of the elliptic regularity assumption we
refer to Remark

Lemma 10 (Approximation properties for (uy,py)). Let a time step 1 < n < N be fized.
Assuming the reqularity p™ € H*1(Pq), it holds

17 = 2" len < PR D™ it () - (63)

Moreover, recalling the global reduction map I E defined by , further assuming the reqularity
u” € H2(Py)?, V-u™ € H*Y(Py), and provided that the elliptic regularity holds, one
has

D5 = 2" < B o2 10" e (. (64)

(20) " — "l S B (2pa” | grsapgya + MT-4" ey + 0210 s ry ) -
(65)

with global heterogeneity ratio p, = F/k.

Proof. (1) Proof of . By definition, we have that ||} — p"||c,n = infqheIP’;(Th) lan — p"le,n-
To prove , it suffices to take qp = ﬂ,lip” in the right-hand side of the previous expression
and use the approximation properties of W}’f .
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(2) Proof of (64). Let ¢ € H'(Q) solve with ¢» = p" — p}. From the consistency
property , it follows that

157 = "7 = —(V-(6VC), By — p") = en(C, DRy — P") = en(¢ — miC. By — p™)-

Then, using the Cauchy—Schwarz inequality, the estimate together with the approximation
properties of W}l, and elliptic regularity, it is inferred that

157 — 2" = en(C = mi¢, By — ") < ¢ = ThClle Bl — P e

< WRPIC b2 ey 19" a1y S BET 0L IBR — 21D k1

and follows.
(3) Proof of (65). We start by observing that
~ SN Ik n SN Ik n
i Doy = sup DL o, B Do) g
v, eUF\{0} lvpla,n v, eUF\{0} (1) P]|p en

where we have used the first inequality in . Recalling the definition of the linear form
I}, the fact that f* = —V.o(u) + Vp, and using (60al), it is inferred that

ap(@y — Ipu",vy,) = (o) — ap(Liu™, ;) — by(vy, Pan)

={ —an(Liu",v,) = (Voo (u"), o)} + {(VD",vn) — bn(vy, By) }-
Denote by T; and Ts the terms in braces. Using , it is readily inferred that
1l S B (2l g gy + ANV s ) ) 2] (68)

For the second term, performing an element-wise integration by parts on (Vp, vj) and recalling
the definition of b, and of Déﬁ with ¢ = p}}, it is inferred that

Ta| =

2 {(pmh —p", Voor)r+ Y, (B —p" (vr — UT)nTF)F}

TeTh FeFr
S hk-i- 1 ,0,1{/2

(69)

12" N w1 () ln s

where the conclusion follows from the Cauchy—Schwarz inequality together with . Plug-

ging — into @ we obtain . O

4.2 Error equations

We define the discrete error components as follows: For all 1 <n < N,

ey, i=up — Uy,  pj =Py —Dp- (70)
Owing to the choice of the initial condition detailed in Section the inital error (gg, pg) =
(gg — @2,p2 7332) is the null element in the product space Qio X P,]f. On the other hand, for
all 1 <n <N, (e}, p}) solves

an(€p; p) + ba(vy, py) = 0 Vv, € U}, (71a)
(codupf, an) — bu(Greh an) + cn(phan) = € (an),  Yan € Py, (71b)

with consistency error
& (an) = (9", an) — (codeDy» qn) — cn(Py, an) + bu(dety, qn). (72)
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4.3 Convergence

Theorem 11 (Estimate for the discrete errors). Let (u,p) denote the unique solution to (1)),
for which we assume the reqularity
u e C*(H' (P)?) n C'(H"*?(Pa)?),

pe CHHML(PY)). (73)

If co > 0 we further assume p € C?(L*(Q)). Define, for the sake of brevity the following
bounded quantities:

Ni = 2p+ AN [l o payn + led Pl

21 + d)\)"?
Ny e Gt dN)
2p

1
+ ||Co/2PHCO(Hk+1(PQ))-

<2MHUH01(H1€+2(PQ)¢1) + AV-ullor e py)) + p/1£/2’|pHCl(Hk+1(PQ))>

Then, assuming the elliptic regularity , it holds, letting py := (p}, 1),

lely

N
/2 N 1 N =N k 2
a1 ol P gy o =2 X rlohlZn  (rAG - BETAR) ()

n=1

Remark 12 (Error estimate in the incompressible case). In the incompressible case ¢ = 0,
the third term in the left-hand side of delivers an estimate on the L?>-norm of the pressure

since piy =0 (cf. (1) ).

Proof. Throughout the proof, C; with ¢ € N* will denote a generic positive constant indepen-
dent of h, 7, and of the physical parameters cg, A, y, and k.

(1) Basic error estimate. Using the inf-sup condition , equation followed by ,
and the second inequality in it is readily seen that

—ap(er, v

el < g sup on@mPh = P)
&h v, €U} ;\{0} v llen

< C*(2u+dN) "€} -
ol o) 1on

(75)
with Ci/2 = An"?. Adding (71a) with v, = 7d:e), to (71D) with g5 = 7p} and summing the
resulting equation over 1 < n < N, it is inferred that

N N N N
> ran(er, dier) + > (codipp, pp) + O, TloRlZn = D TER(PR). (76)
n=1 n=1 n=1 n=1

Proceeding as in point (3) of the proof of Lemma [8] and recalling that (€9, p9) = (0,0), we
arrive at the following error estimate:

N N
Lo N2 1 N N2, Loae N n2
- + + = + E < E EX(pD). 77
4H§h Ha,h 401(2//6 d)\) th Ph H 2”00 Ph H nZIT”thC,h nle h(ph) ( )

(2) Bound of the consistency error. Using g" = codp™ + V-(dsu™ — kVp"), the consistency
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property , and observing that, using the definition of ¢y, integration by parts together
with the homogeneous displacement boundary condition , and ,

cn(p" = Ph> o) + (V-(dew™), p1) + bu (61, pfy) = O,

we can decompose the right-hand side of as follows:

N
Z & () = 2 7(co(dep™ — 6tPh), p1) Z Ten(p™ — pr, pn — Pr)
n=1 n=1 n=1
N (78)
+ >, TAV(de™), pf; = B7) + bu (e, pft — 1)} = Tu A+ o+ T,
n=1

For the first term, inserting +d,p™ into the first factor and using the Cauchy-Schwarz inequality
followed by the approximation properties of ]32 (a consequence of ) and of Py, it is
inferred that

N 12 N /2
%] S {Co D [Idep™ = ep™ 7 + (8¢ (p™ —ﬁﬁ)m} X {2 T|C(1)/QPZ||2}

= n=1 (79)
1Y 1
< Oy (TN1 + hk+1N2> + 5 Z THCO/Q,OZHQ.
n=1
For the second term, the choice of the pressure projection readily yields
Ty = 0. (80)

For the last term, inserting +1 ﬁu" into the first argument of by, and using the commuting

property of Dé‘i, it is inferred that
= Z { Z [ (dt’un — 5tu"),p§f - EZ)T + (Dl%(st(ll%un - @Tfﬂ),pg — pz)T]} .
n=1 TeTh

Using the Cauchy-Schwarz inequality, the bound | D6, (Iku™ — @) |1 < |6:(T5u™ — @) er
valid for all T' € T, and the approximation properties and of @2 and uy,, respectively,
we obtain

N 1/2 N 1/2
T < {2 [ = 8o s g+ 61T — ) e,h]} x {2 1o - W}
(81)

n=1 n=1

k+1 2 1 - no__ on|2
< O30, (TN1 +h N2> + 10, 2n+dN) Z Tlpk —PrlI"
n=1

Using (79 . to bound the right-hand side of ., it is inferred

N
o 1
oY = 2N 1%+ 2leg”oN 1% + 4 Y 7lpRI2,

n=1

C1 (2 + dA)
N

N

1 _ 2 ny2

S S 2, Tloh = RIP 2 ) Tleg ohl? + G, (82)
C1(2p + dN) n; hPh n; 0 Fh
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with G = 4(0103 + () (TN1 + th./\/' )2. The conclusion follows using the discrete Gron-

wall’s inequality (45) with 6 = = el Hah’ = 0 and a" = mﬂpz — o2
2leq?pp[? for 1 <n < N, b" = 4\|phuch, and 7" = 1. O

Remark 13 (Role of the choice and of elliptic regularity). The choice for the
projection ensures that the term To in step (2) of the proof of Theorem vanishes. This
s a key point to obtain an order of convergence of (k + 1) in space. For a different choice,
say Dy = ﬂ'hp” this term would be of order k, and therefore yield a suboptimal estimate for
the terms in the left-hand side of . ) below (the estimate would not change and remain
optimal). This would also be the case if we removed the elliptic reqularity assumption.

Remark 14 (BDF2 time discretization). In the numerical test cases of Section [3, we have
used a BDF2 time discretization, which corresponds to the backward differencing operator

5(2) _ 3¢n+2 o 4(pn+1 + Spn
® - o0 )

used in place of . The analysis is essentially analogous to the backward Euler scheme, the
main difference being that formula 1s replaced by

2e(3z —4dy +2) =2 — 9+ 2x —y)? — 2y — 2)? + (x — 2y + 2)%.

2

As a result, the error scales as 7 instead of T.

Corollary 15 (Convergence). Under the assumptions of Theorem it holds that

, 1 N
20) | Ven(riul — u™)| + el — ™) + mﬂ(th —pV) =@y -1V

< TN+ RN, PR N s pyys (83)

N Yz
{ > TloR - p”ll?,h} < TN+ BFPING + BR[|l co e (). (84)

n=1
Proof. Using the triangular inequality, recalling the definition of ghN and ﬁhN and of
||la,n-norm, it is inferred that
) | Van(rhul — u™)| < e lun + 201 Vun(rhy, — rfLiu™)|
+(20) | Vs(rh i —uM),

N N N —N ~AN N
lpp, —p ( )H len —on Il + 2R —p7 |,
1 1 1 A~
led? N — o™ < lleg”oN | + e @Y — o).

To conclude, use (74) to estimate the left-most terms in the right-hand sides of the above
equations. Use and , the approximation properties of rﬁl k respectively, for the
right-most terms. This proves . A similar decomposition of the error yields . O

5 Numerical tests

In this section we provide numerical evidence to confirm the theoretical results.
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Figure 2: Triangular, Cartesian and hexagonal-dominant meshes for the numerical tests

5.1 Convergence

We first consider a manufactured regular exact solution to confirm the convergence rates
predicted in . Specifically, we solve the two-dimensional incompressible Biot problem
(co = 0) in the unit square domain Q = (0,1)? with tp = 1 and physical parameters p = 1,
A =1, and k = 1. The exact displacement u and exact pressure p are given by, respectively

u(x,t) = ( —sin(mt) cos(ray) cos(maz), sin(mt) sin(ray) sin(raz)),

p(x,t) = — cos(mt) sin(mzy) cos(mxe).
The volumetric load is given by
f(z,t) = 67°(sin(nt) + mcos(mt)) x ( — cos(mxy) cos(mr2), sin(rz1) sin(rzs)),

while g(a, t) = 0. Dirichlet boundary conditions for the displacement and Neumann boundary
conditions for the pressure are inferred from exact solutions to 0f2.
We consider the triangular, Cartesian and (predominantly) hexagonal mesh families de-

picted in Figure [2l The time discretization is based on the second order Backward Differenti-
(k+1)

ation Formula (BDF2); cf. . The time step 7 on the coarsest mesh is taken to be 0.1/2 2
for every choice of the spatial degree k, and it decreases with the mesh size h according to
the theoretical convergence rates, thus, if hy = hy/2, then 7 = 7y /Z(kgl). The implementa-
tion is based on the hho platformﬂ which relies on the linear algebra facilities provided by
the Eigen3 library [14]. Figure [3| displays convergence results for the various mesh families
and polynomial degree up to 3. The error measures are |ph — ﬂ'ﬁpN | for the pressure and
|lul — IfuN||,p for the displacement. Using the triangle inequality together with and
the approximation properties of 7'['}’3 and of (rﬁ o lﬁ), it is a simple matter to prove
that these quantities have the same convergence behaviour as the terms in the left-hand side
of . In all cases, the numerical results show asymptotic convergence rates that are in
agreement with theoretical predictions.

The convergence in time was also separately checked considering the method with spatial
degree k = 3 on the hexagonal mesh with mesh size h = 0.0172 and time step decreasing from
7 = 0.1 to 7 = 0.0125. Figure [4 confirms the second order convergence of the BDF2.

5.2 Barry and Mercer’s test case

A test case more representative of actual physical configurations is that of Barry and Mercer [1],
for which an exact solution is available (we refer to the cited paper and also to |20, Section 4.2.1]

'DL15105 Université de Montpellier
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Figure 4: Time convergence with BDF2, hexagonal mesh

for the its expression). We let Q = (0, 1)? and consider the following time-independent bound-
ary conditions on 0f2
u-T =0, nTVun =0, p =0,

where T denotes the tangent vector on d€2. The evolution of the displacement and pressure
fields is driven by a periodic pointwise source (mimicking a well) located at &y = (0.25,0.25):

g = (x — x) sin(f),

with normalized time £ := Bt for f := (A + 2u)k. As in |22,24], we use the following values
for the physical parameters:

co =0, E=1-10°, v=0.1, k=1-1072,

where F and v denote Young’s modulus and Poisson ratio, respectively, and

FEv E

A AT M aas)

In the injection phase € (0,7), we observe an inflation of the domain, which reaches its
maximum at £ = 7/2; cf. Figure In the extraction phase f € (7, 27), on the other hand, we
have a contraction of the domain which reaches its maximum at ¢ = 37/2; cf. Figure

The following results have been obtained with the lowest-order version of the method
corresponding to k = 1 (taking advantage of higher orders would require local mesh refinement,
which is out of the scope of the present work). In Figure |§| we plot the pressure profile at
normalized times { = 7/2 and £ = 37/2 along the diagonal (0,0)-(1,1) of the domain. We
consider two Cartesian meshes containing 1,024 and 4,096 elements, respectively, as well as
two (predominantly) hexagonal meshes containing 1,072 and 4,192 elements, respectively. In
all the cases, a time step 7 = (27/8) - 1072 is used. We note that the behaviour of the pressure
is well-captured even on the coarsest meshes. For the finest hexagonal mesh, the relative error
on the pressure in the L?-norm at times £ = 7/2 and £ = 37/2 is 2.85%.

To check the robustness of the method with respect to pressure oscillations for small
permeabilities combined with small time steps, we also show in Figure [7] the pressure profile
after one step with x = 1-107% and 7 = 1-107* on the Cartesian and hexagonal meshes
with 4,096 and 4,192 elements, respectively. This situation corresponds to the one considered
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Figure 5: Pressure field on the deformed domain at different times for the finest Cartesian mesh containing

4,192 elements
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Figure 6: Pressure profiles along the diagonal (0,0)—(1,1) of the domain for different normalized times # and

meshes (k = 1). The time step is here 7 = (27/5) - 1072,
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Figure 7: Pressure profiles along the diagonal (0,0)—(1,1) of the domain for x = 1-107° and time step
7 = 1-107* Small oscillations are present on the Cartesian mesh (left), whereas no sign of oscillations is
present on the hexagonal mesh (right).

in |24, Figure 5.10] to highlight the onset of spurious oscillations in the pressure. In our case,
small oscillations can be observed for the Cartesian mesh (cf. Figure , whereas no sign of
oscillations in present for the hexagonal mesh (cf. Figure . One possible conjecture is that
increasing the number of element faces contributes to the monotonicity of the scheme.
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