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1 Département d’Informatique (DIRO), Université de Montréal, H3C3J7, Canada
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Abstract

Gene trees inferred solely from multiple alignments of homologous sequences often contain weakly supported
and uncertain branches. Information for their full resolution may lie in the dependency between gene families
and their genomic context. Integrative methods, using species tree information in addition to sequence
information, have therefore been developed. They often rely on a computationally intensive tree space search
which forecloses an application to large genomic databases. We propose a new method, called ProfileNJ, that
takes a gene tree with statistical supports on its branches, and corrects its weakly supported parts by using a
combination of information from a species tree and a distance matrix. Its low running time enabled us to use
it on the whole Ensembl Compara database, for which we propose an alternative, arguably more plausible set
of gene trees. This allowed us to perform a genome-wide analysis of duplication and loss patterns on the
history of 63 eukaryote species, and predict ancestral gene content and order for all ancestors along the
phylogeny.
The code of ProfileNJ is available at:

https://github.com/UdeM-LBIT/profileNJ

and a web interface called RefineTree, including ProfileNJ as well as several published gene tree correction
methods based on synteny, which we also test on the Ensembl gene families, is available at:

http://www-ens.iro.umontreal.ca/~adbit/polytomysolver.html

Introduction 1

Several gene tree databases from whole genomes are available, including Ensembl Compara [1], Hogenom [2], 2

Phog [3], MetaPHOrs [4], PhylomeDB [5], Panther [6]. However they are known to contain many errors and 3

uncertainties, in particular for unstable families [7]. Their use for accurate ancestral genome inference, 4

orthology detection, or the study of genome dynamics could lead to erroneous results. For example Ensembl 5

Compara trees, when reconciled with a species tree to annotate gene duplications and losses, systematically 6

and unrealistically overestimate the number of genes in ancestral genomes, and lead to erroneous predictions 7

of ancestral chromosome structures [8]. It is a known artifact, and a substantial number of nodes in the 8

Ensembl gene trees are labeled as “dubious” [9]. 9

Reasons for errors in gene trees are numerous. If they are constructed from multiple sequence alignments 10

of homologous genes, they are dependent on gene annotations, gene family clustering or alignment quality, as 11

well as on the accuracy of the models and algorithms used. But above all, gene sequences often do not 12
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contain enough substitutions to resolve all the branches of a phylogeny, or alternatively, too many 13

substitutions such that the substitution history is saturated. Therefore sequence based methods, computing 14

gene trees from sequence information (e.g. PhyML [10], RAxML [11], MrBayes [12], PhyloBayes [13]), are 15

usually accompanied with measures of statistical support on their branches or a posteriori distributions of 16

likely trees. 17

Another category of methods, designated here as integrative methods, use a species tree, in addition to a 18

multiple sequence alignment, to model gene gains and losses inferred from the reconciliation between gene and 19

species trees (e.g. TreeBeST [14], TreeFix [15], Notung [16], BBCA [17], PhylDog [8], ALE [18], GSR [19,20], 20

SPIMAP [21], Giga [22], MowgliNNI [23]). They all report gene trees with better accuracy compared with 21

sequence based methods. But they leave a large space for improvement, both in terms of tree quality and 22

computing time. In terms of models, they often assume unrealistic loss/retention ratios [?]. In terms of 23

computation strategy, most of them use tree space exploration strategies based on small modifications or 24

local moves on branches (typically NNI, SPR, TBR), usually proposed at random. Moves are accepted or 25

rejected according to hill-climbing, Metropolis-like criteria, or other statistical or empirical arguments. Such 26

exploration methods are computationally intensive and do not scale well as databases grow in size. 27

Consequently, database construction pipelines such as TreeBeST (contructing the Ensembl Compara gene 28

trees [1]) have to adopt compromises, exploring limited subsets of tree spaces. Improving local exploration of 29

integrative methods can be done by using some correction techniques allowing to select directly the local 30

moves that improve the reconciliation (e.g. [16, 23–33]). But even with such improvements, it remains that 31

most local search strategies have no guarantee neither on running time, nor on the quality of the solution. 32

We propose here a new gene tree correction method, called ProfileNJ, which can be directly used as a fast 33

integrative method, without local search. It is a deterministic approach with a guaranteed time complexity. 34

ProfileNJ takes as input a starting tree with supports on its branches, typically constructed from a sequence 35

based method, and outputs a rooted binary tree containing all well-supported branches of the starting tree, 36

and minimizing the number of duplications and losses when reconciled with a species tree. Among all trees 37

with equal reconciliation cost, a choice is made with Neighbor-Joining (NJ) principles, based on a distance 38

matrix computed from gene sequences or from the starting tree. ProfileNJ extends a previous algorithm of 39

our group [31] by integrating NJ principles to choose among the numerous optimal solutions, and by allowing 40

different costs for duplications and losses, as well as unrooted trees as input. These extensions turn an 41

algorithmic principle into a workable method suited for constructing trees from biological data. 42

We compare ProfileNJ with TreeFix [15]. Among correction methods, TreeFix adopts the most similar 43

evaluation strategy, i.e. explores neighboring trees which are statistically equivalent according to the 44

sequences. Moreover, TreeFix is among the best available integrative methods, according to the quality of 45

the output trees and running time. On simulations, both algorithms achieve results of comparable quality, 46

but ProfileNJ is several times faster, which opens the way to using ProfileNJ on big datasets. 47

We ran ProfileNJ on the whole set of gene families from the Ensembl database, which is out of reach for 48

competing methods with comparable quality. The trees for the whole database were obtained in a few hours 49

on a desktop computer (not including the starting tree construction, performed with PhyML) and compare 50

very favorably with the trees stored in Ensembl. This set of trees and the reconstructed ancestral genomes are 51

made accessible. We also use the reconstructed trees and ancestral genomes to study genome evolution across 52

all the 63 eukaryotic species from the Ensembl database. A whole genome analysis of duplication patterns is 53

provided, pointing at certain branches which seem to show acceleration of duplication or loss processes. 54

ProfileNJ is integrated into a modular interface called RefineTree that contains two other gene tree 55

correction tools using information from extant and ancestral synteny [32,33]. We can thus evaluate the 56

results of a pipeline taking into account gene sequence, gene content and chromosome structure evolution on 57

the Ensembl database according to several criteria: (1) likelihood ratio based on the Ensembl alignments; (2) 58

ancestral genome sizes based on reconciliation with the species tree; (3) linearity of ancestral chromosomal 59

segments computed with DeCo [34]. We discuss the improvements brought by each type of method and the 60

distance of their output to “true” gene trees, in the light of incomplete lineage sorting and gene conversion. 61
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Description of ProfileNJ 62

The basic vocabulary of phylogenetic trees is taken from [35], and the reconciliation method between a 63

rooted binary gene tree G and a rooted binary species tree S is recalled in the Method section. Just note 64

that in a reconciled gene tree G, each node (representing an extant gene if at a leaf or an ancestral gene if at 65

an internal node) is mapped to the node of S corresponding to the genome the gene belongs to. Edges of G 66

are subdivided, adding extra vertices and pending edges so that the extremities of an edge map either to the 67

same node, or to two extremities of an edge of S. An internal node of G is a duplication if it maps to the 68

same node of S as one of its child. The number of genes in a species s ∈ V (S) induced by a reconciled gene 69

tree G is defined as the number of nodes x ∈ V (G) mapped to s, such that the parent of x does not map to s. 70

The reconciliation cost is either the number of duplications and losses, or a linear combination of the two if 71

different weights are given to the two kinds of events. Also note that when two trees G1 and G2 have the 72

same genes at their leaves, we can say that a branch of G1 is present in G2 if the bipartition of the leaves 73

induced by this branch in G1 is also induced by a branch of G2. 74

ProfileNJ is a gene tree correction algorithm that takes as input a gene tree (rooted or unrooted) G for a 75

given gene family with supports on its branches, and improves it according to the available information, 76

taken from a species tree, a distance matrix and a threshold number for statistical support. It can be viewed 77

as a generalization of three different standard algorithms designed for evolutionary studies: 78

• The Wagner parsimony method applied to the inference of ancestral gene contents from the extant 79

gene contents by minimizing a duplication and loss cost [36]; 80

• The Neighbor-Joining [37] (NJ) method which constructs a tree from a distance matrix D between taxa; 81

• The reconciliation of a gene tree G with a species tree S [38]. 82

Whereas these three methods do not have much in common a priori, they are all bricks of our solution 83

and each of them reduces to some particular case of our problem. ProfileNJ outputs a rooted binary gene tree 84

Gc on the same gene family as the input gene tree G, where all branches of G with a support above the 85

threshold are present in Gc. Among all such trees, ProfileNJ outputs those minimizing a duplication and loss 86

cost when reconciled with the species tree with respect to the NJ criterion. 87

ProfileNJ is an extension of PolytomySolver, a previous algorithm developed by our group [31]. We first 88

describe the principle of the latter and then describe the additions. 89

PolytomySolver: It takes as input a multifurcated rooted gene tree G (with non-binary nodes) and a 90

binary rooted species tree S. It outputs a binary rooted gene tree containing all branches of G, that 91

minimizes the number of duplications and losses when reconciled with S. It has been shown by [31] that each 92

polytomy (multifurcated node) of G can be considered independently. Therefore, in the following, we restrict 93

the presentation to a single polytomy P (s.f. polytomy P in Figure 1). 94

The algorithm, based on dynamic programming, computes a table M where, for each node (including 95

leaves) s of S and each integer k (limits on k are discussed in [31]), M(s, k) is the reconciliation cost of a 96

gene tree with k genes in species s before any duplication in s. For example, in Figure 1, P has three genes 97

belonging to genome b, and thus M(b, 1) = 2 as any solution having one gene in b before any duplication in b 98

means that two duplications must have occurred in b, while M(b, 4) = 1 as having four genes induces one 99

gene loss on b. 100

The final cost of a minimum refinement of the polytomy is given by M(r, 1), where r is the root of S. 101

Using a backtracking approach, PolytomySolver then outputs a count vector V containing the number of 102

genes per node of S. Notice that, by construction, two brother nodes of S (nodes with the same parent) have 103

the same count. Then a gene tree G of minimum cost M(r, 1) is found, such that in the reconciliation of G 104

with S there are exactly V [s] genes in each s ∈ V (S). For example, the final binary tree in Figure 1 has two 105

maximal trees rooted at b, as required by the count vector V . 106
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Figure 1. A species tree S and a multifurcated gene tree G. Each leaf xi or x of G represents a gene
belonging to genome x present as a leaf in S. Step (1) of ProfileNJ is PolytomySolver, which resolves each
polytomy P of G independently. A dynamic programming table M is constructed. Step (2) of ProfileNJ takes
as input a count vector V , here resulting from the backtracking path related by rectangles and arrows in
table M , and a distance matrix d for the considered genes. A Neighbor joining (NJ) based procedure
computes the gene tree in agreement with V that best reflects the distance matrix. The final completely
refined tree is given bottom right. Duplication nodes are indicated by squares.
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If the reconciliation cost is the number of duplications and losses (i.e. the same unit cost is attributed to 107

each duplication or loss), as it was initially published [31], the table M can be constructed in time linear in 108

the size of S [31], leading to a linear-time algorithm for finding one optimal refinement of the polytomy. 109

Moreover, we showed recently [39] that linearity can be extended to a whole gene tree involving multiple 110

polytomies. For weighted operations, i.e. different costs for duplications and losses, the algorithm runs in 111

quadratic time [39]. 112

Extensions: ProfileNJ consists in contracting branches with low support in G, which leads to polytomies, 113

and applying Polytomysolver. If G is not rooted, one node is chosen as the root. All nodes can be tried and 114

one minimizing the cost can be chosen. The first phases of Polytomysolver are applied, until the construction 115

of a count vector V . 116

Our main extension concerns a treatment of the multiplicity of solutions, as it can be exponential. Indeed, 117

the backtracking procedure mentioned above may lead to many optimal count vectors, and for each count 118

vector, there are possibly several gene trees in agreement with it. Therefore, exploring the set of optimal 119

trees requires exploring the set of all gene trees in agreement with each count vector. For example, the count 120

vector of Figure 1 induces two duplications in b. However this vector involves no information on which of the 121

three genes b1, b2, b3 should be joined first. Such information can be deduced from the pairwise alignment 122

distance between gene sequences. 123

Suppose that a pairwise distance matrix D is available for the gene family. Then the problem can be seen 124

as selecting, among all optimal solutions possibly output by PolytomySolver given a vector V , the one best 125

reflecting the distance matrix D. The problem of constructing a solution such that its induced distance is 126

close to D according to a standard measure of metric spaces comparison is NP-complete. But it is also 127

known to be empirically and, to a certain extent, theoretically, well approximated by Neighbor-Joining 128

(NJ) [37,40]. In ProfileNJ, we use such an NJ approach for choosing neighboring genes. 129

As in the NJ algorithm, a metric space E induced by D on the leaves of P , is progressively augmented 130

with newly created genes. The algorithm proceeds by successively joining pairs of nodes (points of E), 131

eventually leading to a full binary tree. For example, in Figure 1, the initial metric space E contains the 132

nodes {a1, a2, b1, b2, b3, c}. Joining the nodes b1 and b2 leads to the new set of nodes {a1, a2, b3, b4, c}. Nodes 133

to be joined are selected according to the NJ criterion, namely we select from a node set of size n, the couple 134

of genes x and y minimizing: 135

Q(x, y) = (n− 2)D(x, y)−
∑
t6=x

D(x, t)−
∑
t6=y

D(y, t). (1)

The metric space E is updated after each join r = (x, y) by removing x and y, adding a new node r, and 136

computing the distance between the newly created node r with each element t of E. When x and y are not 137

created artificially (i.e. they are not loss nodes created with the last instruction of Algorithm 1), this is done 138

using the NJ formula: 139

D(r, t) =
1

2
(D(x, t) +D(y, t)−D(x, y)) (2)

Otherwise, if x is a loss, we set D(r, t) = D(y, t) and if y is a loss, D(r, t) = D(x, t). 140

A full pseudo-code of the extension part of ProfileNJ is written as Algorithm 1. It works on one polytomy 141

P , assuming that all polytomies below have been resolved. It takes as input a count vector V , the species 142

tree S and a distance matrix D defining the metric space E. It outputs a refinement of P in agreement with 143

V , resulting from the performed joins on the nodes of E. Given a node s of S, denote by E(s) the subset of 144

E restricted to the genes belonging to s, and by m(s) = |E(s)| the multiplicity of s in E. The tree S is 145

processed bottom-up. For each internal node s, speciations are considered first by clustering, using the NJ 146

criterion, the genes from E(sl) with the genes from E(sr), where sl and sr are the two children of s. If the 147

obtained multiplicity m(s) of s is greater than the desired count V [s], then duplications are performed, again 148
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using the NJ criterion for choosing the gene pairs in E(s) to be joined. Otherwise, if m(s) is lower than the 149

desired count V [s] of gene copies, then losses are predicted. 150

Algorithm 1 ProfileNJ (S,P,V,D)

Let E be the metric space with nodes corresponding to the leaves of P ;
For each node s of S in a bottom-up traversal of S Do

If s is an internal node of S with chidren sl, sr Do
{By construction, V [sl] = V [sr] = n}
For i = 1 to n Do

Choose in E(sl)× E(sr) the gene pair (gl, gr) minimizing equation (1) and create
the node g = (gl, gr) ;
Remove gl and gr from E and add g;
Compute D(g, g′) for all g′ ∈ E using equation (2);

End For
End If
If m(s) > V [s] Do

For i = 1 to m(s)− V [s] Do
{Perform m(s)− V [s] duplications}
Choose in E(s)× E(s) the gene pair (g1, g2) minimizing equation (1), and create
the node g = (g1, g2);
Remove g1 and g2 from E and add g;
Compute D(g, g′) for all g′ ∈ E using equation (2)

End For
End If
Else If m(s) < V [s] Do
{Perform V [s]−m(s) losses}
Add V [s]−m(s) artificial genes to E(s), each with infinite distance to all elements of E;

End If
End For

Complexity: Let G be the solution output by the algorithm, and suppose that G has n leaves after the 151

inclusion of lost genes. Then exactly n− 1 NJ operations have been performed. Each join calculation is 152

restricted to a subset of the genes, and so the time required to perform these joins is bounded by the time 153

required to run the classical NJ algorithm on the n leaves of G, which is O(n3). Note that n can be as large 154

as |V (P )||V (S)|, making the worst case running time O(|V (P )|3|V (S)|3). However this worst case only 155

occurs when O(|V (S)|) losses are inserted on each branch of the solution. In practice n is in O(|V (P )|). 156

A Multi-functional algorithm: ProfileNJ is a phylogenetic tool that generalizes several usually 157

unrelated standard methods. Indeed, if G is a binary rooted tree, then ProfileNJ can be seen as a 158

reconciliation tool. If G is unrooted, then ProfileNJ can be used to choose an appropriate root according to 159

the induced reconciliation cost. On the other hand, various ways of contracting branches can be considered. 160

For example an exploration scheme contracting the branches one by one and applying ProfileNJ can be 161

considered, which would be equivalent to local modifications [27]. A more radical modification would be to 162

contract all branches, leading to a star tree. In this case, ProfileNJ can be seen as a tool for computing 163

ancestral gene content with Wagner parsimony, minimizing the cost of duplications and losses. If the star 164

tree has all its genes belonging to a single species, ProfileNJ returns an NJ tree. Other kinds of contraction 165

schemes can be imagined, as contracting branches around “Non Apparent Duplications” [41], or “Dubious 166

duplications” stored in the Ensembl trees. 167
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Notice finally that although we give the pseudo-code for a single output of ProfileNJ, it can be used to 168

output all solutions, which allows for example selecting the gene tree reflecting the best statistical support. 169

Efficiency of ProfileNJ 170

Efficiency of the NJ criterion 171

We ran ProfileNJ twice on the same data sets of 20519 trees (the Ensembl Compara gene families), except 172

that once the distance matrix was computed using the Ensembl nucleotide alignments with FastDist from the 173

FastPhylo package [42], and once the distance matrix was random. The starting tree was computed for every 174

family using PhyML on the nucleic alignments, and all branches with aLRT support < 0.95 were contracted. 175

In average 55% of the branches were contracted. A histogram of the full distribution is shown in the 176

supplementary information file SI1 (Figure S1). 177

Then we computed the likelihood of both trees for every family with PhyML. Among the trees for which 178

the likelihood was different (55% of all tested trees), 76% were in favor of the trees built with the FastDist 179

distance matrix, and the log likelihood differences were much larger for those trees, contributing 95% of the 180

total of log likelihood differences. 181

The comparisons are clearly in favour of the NJ criterion over no criterion at all, while quantitatively 182

there remains a small but non negligible part of the trees for which no criterion (the random distance matrix) 183

gives an unexplained slightly, but significantly, better likelihood. 184

Efficiency of the tree space exploration strategy on simulated gene trees 185

We compared ProfileNJ with TreeFix, the most closely related tool, on simulated data. The principle of 186

TreeFix is to randomly explore, by local moves, the space of trees that are statistically equivalent to the input 187

tree, and report the one with the best reconciliation cost. Instead, we take a deterministic and more targeted 188

approach by focusing on weakly supported branches of the tree, with a possibly deep modification of the tree. 189

The comparison with TreeFix is therefore intended to compare these two space exploration strategies. 190

In [15], TreeFix has been compared with NOTUNG [24] and SPIMAP [21], showing a better accuracy 191

than NOTUNG, and a higher speed than SPIMAP. We perform a similar comparison on the same simulated 192

dataset of 16 fungi. This dataset consists of simulated gene families generated under the SPIMAP model and 193

their corresponding nucleotide alignments, for four different rates of duplication and loss (DL) events: 194

(1× rD, 1× rL), (2× rD, 2× rL), (4× rD, 4× rL) and (4× rD, 1× rL), where rD and rL are respectively 195

the estimated duplication and loss rates for fungi. For instance, a (2× rD, 2× rL)-simulated gene family is 196

expected to have, on average, two times more duplications and losses than a real gene family in fungi. 197

Comparisons reported in this section are performed on 2575 simulated gene families randomly chosen from 198

the four fungi datasets with different DL rates. 199

An initial maximum likelihood (ML) tree is constructed for each simulated gene family with RAxML 200

v-8.1.2 [11], with the rapid bootstrap algorithm, under the GTR-Γ model and the majority rule consensus 201

tree as bootstopping criterion. A randomly rooted tree is then provided as input to TreeFix (as TreeFix 202

requires the input tree to be rooted), while a multifurcated unrooted tree obtained by contracting the 203

branches with support lower than 95% is provided as input to ProfileNJ. We used default parameters for both 204

programs. Among the set of all optimal binary trees output by ProfileNJ, the best statistically supported tree 205

was selected using RAxML under the GTR-Γ model of nucleotide substitution. 206

For RAxML, TreeFix and ProfileNJ trees, we measured the Robinson-Foulds (RF) distance to true trees, 207

compared the reconstructed tree with the true tree using site-wise likelihoods (see supplementary information 208

SI1, Figure S7), measured the accuracy of the duplication and loss scenarios (supplementary information SI1, 209

Figure S5), the sensitivity of the accuracy to gene family size (supplementary information SI1, Figure S6), 210

the sensitivity to species tree errors (supplementary information SI1, Figure S8), and the running time. 211
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Figure 2. Topology accuracy of RAxML, TreeFix and ProfileNJ trees, mesured by RF distance with the
true tree, on ∼ 2500 simulated trees from the fungal dataset. We use a sample of trees simulated under four
different DL rate : (1rD - 1rL), (2rD - 2rL), (4rD - 4rL) and (4rD - 1rL). Percentage of reconstructed trees
(y-axis) with a given RF distance (x-axis) to the true tree. TreeFix and ProfileNJ have a similar
reconstruction accuracy (75% of trees match the true trees) while the input trees (RAxML) have the lowest
accuracy. The graph is cut on the right, but contains more than 99% of the data.

Figure 2 illustrates the results for the RF distance. It shows that sequence-only does not contain enough 212

signal to lead to the true tree for our simulated dataset, and integrating additional information from the 213

species tree actually improves reconstruction. Indeed, TreeFix and ProfileNJ reconstruct around 75% of true 214

trees, compared with only 10% for RAxML. We investigated some cases where erroneous gene trees were 215

inferred, and found that often, the true scenario was not parsimonious in terms of duplications and losses, 216

while TreeFix and ProfileNJ chose duplications that are too recent in order to avoid losses. An example is 217

given in supplementary material (SI1, Figure S4). 218

The performances of TreeFix and ProfileNJ are similar in terms of distance to the true tree. As for 219

RAxML, it gives the best likelihood, which is not surprising as it is specifically designed for that. The 220

returned likelihood is even usually higher than the likelihood of the true tree, but not significantly according 221

to an AU test. TreeFix is designed to produce trees which are not significantly different than the ML tree, 222

which we could check: 1.36% of the trees fail the AU test against the ML tree at α = 0.05, while the 223

proportion jumps to 9.17% for ProfileNJ . It is noticeable that this has no visible consequence on the distance 224

to the true tree. 225

Figure 3 shows that ProfileNJ outperforms TreeFix in running-time, the gap between the two algorithms 226

increasing with tree size. This figure also shows that the most time-consuming step in ProfileNJ is tree 227

selection. For a tree of size 30, ProfileNJ is about four to seven times faster than TreeFix, and about 15 times 228

faster if we discard statistical support evaluation and tree selection step with RAxML. This includes the 229

construction of the distance matrix, but not the construction of the initial RAxML, as it is common to both 230

methods. 231

Other analyses, including the sensitivity to gene family size and the number of duplications and losses, 232

are reported in supplementary material SI1. They lead to the same conclusions: TreeFix and ProfileNJ have 233

similar performance on all measures except running time for which ProfileNJ is significantly better. 234
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Application on biological data 235

RefineTree 236

ProfileNJ is integrated in a new modular online software, called RefineTree, designed to combine a number of 237

correction techniques, with an easy-to-use interface (see Figure 4). The present version includes, in addition 238

to ProfileNJ, a tool called ParalogyCorrector [32] for correcting orthology relations. ParalogyCorrector takes 239

as input a gene tree and a set of known pairwise orthology relations between genes, which would typically be 240

derived from synteny comparisons, and constructs the tree which is the closest to the input tree according to 241

the RF distance, with the constraint that couples of putative orthologs must be orthologs in the 242

reconciliation (see Method section). 243

RefineTree can be used in a modular way, according to the user’s specifications. It has been designed to 244

be easily extensible to other tools. For example instead of asking the user to input his own orthology 245

relations, tools for inferring putative orthologs can be included. 246

Results on Ensembl gene trees 247

The contributions of ProfileNJ are the guarantee of optimality according to a well formulated problem, and 248

the low running time. In particular the low running time allows to run ProfileNJ on the largest databases as 249

Ensembl Compara, containing 63 eukaryotic whole genomes. Gene trees are constructed for 20519 families. 250

In order to quantify the contribution of ProfileNJ and the contribution of methods using other kinds of 251

information as synteny, we compared three sets of trees on the whole database. 252

• Ensembl trees: Trees stored in the Ensembl gene family database (see Method section); 253

• ProfileNJ trees: Trees output by ProfileNJ with unrooted PhyML trees as input (where branches with 254

aLRT support < 0.95 are contracted) and FastDist distance matrices. A single solution is retained for 255

the rooting leading to a minimum weighted reconciliation cost (see Method section); 256

9



Figure 4. RefineTree web interface. The input is a species tree (or by default the Ensembl species tree) and
a gene tree (or an Ensembl gene tree ID), gene sequences and additional options such as the branch
contraction threshold, the request to test all rootings, the maximum number of trees to be output by
ProfileNJ and sorted by likelihood, etc. The integrated algorithms are ProfileNJ and ParalogyCorrector.
Using this second algorithm requires, in addition, the input of a set of orthology constraints.
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• Synteny trees: Trees output by either ParalogyCorrector or Unduplicator [32] (the two are computed 257

and the most likely according to the sequence is chosen) with ProfileNJ trees as input, using 258

PhylDiag [43] and DeCo [34] to infer synteny constraints (see Method section and Figure 5) 259

We evaluated the resulting trees according to sequence likelihood, ancestral genome content and ancestral 260

chromosome linearity. The ancestral genome content metric is based on the assumption that the distribution 261

of ancestral gene content sizes should be close to that of extant genomes. Incorrect trees are known to 262

require additional duplications to be reconciled with the species tree, which tends to increase the number of 263

genes in ancestral genomes. The ancestral chromosome linearity metric is based on the assumption that the 264

linearity of ancestral genomes is expected to be as close as possible to that of the extant genomes, with each 265

gene having zero, one or two neighbors, with a peak at two (having genes with zero or one neighbor is usually 266

due to partially assembled genomes). 267

Results are given in Figure 6. ProfileNJ trees show a better behaviour than Ensembl trees according to 268

the three measures: more than 2/3 of the trees have a better likelihood than Ensembl trees, ancestral genome 269

content distribution is much closer to the extant one, and linearity of chromosomes is higher. Therefore this 270

set of trees, achieving better performance according to sequence evolution, gene content evolution and 271

chromosome evolution, is arguably a better dataset than the one stored in the Ensembl database. 272

However, results obtained when we include synteny information are less clear. Indeed, quality of synteny 273

trees drops in terms of likelihood (Figure 6 (A)), but jumps in terms of the stability of gene content and the 274

linearity of ancestral chromosomes (Figure 6 (B) and (C)). 275

Modes of evolution in eukaryotes 276

Partial patterns of duplications and losses in eukaryotes have been considered in previous studies, as for 277

example by [8] in mammals with a subset of gene families, or by [44] in vertebrates with a subset of species. 278

The ability of ProfileNJ to handle the whole Ensembl database allowed us to perform a more exhaustive 279

study. In addition to gene trees, we reconstructed all ancestral gene contents and organizations. Gene 280

content is computed according to reconciliation (see Methods), and genome organization, which consists in 281

sets of links between consecutive genes, is inferred with DeCo. Genes are not always clustered into full linear 282

genomes. Such non-linearity has diverse causes that we do not wish to mask with an ad-hoc linearization 283

method. An interesting property of DeCo is to highlight genes or groups of genes evolving together in parts 284

of the tree. For example 8488 blocks of co-duplicated genes are inferred by DeCo on the considered eukaryote 285

dataset. Most of them contain only a few number of genes (83% contain 2 genes). The largest blocks are 286

found in the terminal branches leading to Danio rerio and Caenorhabditis elegans. 287

Figure 7 shows the result for the full genomes of the full phylogeny of the 63 Ensembl species. As seen in 288

Figure 7, duplication rates are highly variable across branches of the phylogeny. Branches with a large 289

number of duplications (hot branches) are those leading to vertebrates, which is in agreement with the two 290

rounds of whole genome duplication hypothesis. Interestingly, the speciation event leading to Petromyzon 291

marinus, which is usually thought to have diverged after these events [45], preceeds the hot branches. This 292

may be in agreement with recent results based on the analysis of Hox clusters in the Japanese lamprey [46]. 293

Another hot branch leads to eutherian mammals, which was also found by two other studies [8, 44] with 294

partial data. These two hottest internal branches are exactly the ones found by Mahmudi et al [44] using a 295

probabilistic technique, but using only 9 species due to computational cost. Other hot branches are terminal, 296

the hottest being those leading to Caenorhabditis elegans and Danio rerio. This is possibly due to ongoing 297

dynamics of polymorphic copy number variations. The same tree showing the number of losses is provided in 298

supplementary material (SI1, Figure S10). 299

Discussion 300

ProfileNJ is a new gene tree correction method based on exploring a restricted tree space and choosing the 301
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Figure 5. A general view on RefineTree when run on the Ensembl Compara gene families. An example is
given for a species tree S of four fish species, a gene family of six genes (a gene is represented by the picture
of the species it belongs to, and two paralogs belonging to the same species are distinguished by a different
frame color), a rooted gene tree G (although it can be unrooted in general) with branch support, and a given
threshold for branch contraction. Data framed in black are the input and those framed in blue are the output
of the correction algorithm labeling the edge linking the considered frames. Black arrows depict the use we
make of RefineTree on the Ensembl gene trees. The green arrow and the green “or” are alternative uses
avoiding one or both of the correction tools ParalogyCorrector and Unduplicator. Any framed set of data can
be alternatively provided to the pipeline as input. For example, orthology constraints obtained from various
sources can be directly provided as input to ParalogyCorrector. The method for inferring orthology
constraints from synteny blocks is described in the text.
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Figure 6. Sequence likelihood, ancestral genome content and ancestral chromosome linearity for ProfileNJ,
Synteny and Ensembl trees: (A) Proportion of trees with a significantly better likelihood computed with
PhyML. AU tests were computed for the three trees for each family, and if the tree at the first rank was
significantly better than the second, it was stored as the best likelihood, and if not, it was stored as ”no
significant difference at the first rank”. (B) Gene content computed with DeCo. Gene content has one value
for each node of the phylogeny of 63 species, except for extant genomes, for which it has one value for each
leaf. (C) Genome linearity computed with DeCo. Genome linearity is represented by a graph, whose x axis
is the number of neighbors a gene can have, and the y axis shows the proportion of genes having this number
of neighbors. Parameters from extant genomes are given as a reference in (B) and (C). Statistics for
ancestral genomes are assumed better when close to the extant ones.
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Figure 7. Numbers of duplications in the eukaryote phylogeny, estimated with reconciled ProfileNJ trees
from PhyML starting trees on the whole Ensembl Compara database, version 73. Drawn with Figtree [47].
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most likely tree according to a species tree and a distance matrix on gene sequences. It is shown to be 302

accurate and it outperforms in running time the most comparable existing correction methods. Efficiency in 303

running time allowed us to apply ProfileNJ to the entire Ensembl database. 304

Trees obtained by correcting PhyML trees with ProfileNJ are arguably better than gene trees stored in 305

Ensembl, according to sequence likelihood, ancestral genome content and ancestral chromosome linearity. We 306

also corrected directly the Ensembl trees and the results (not shown) were similar, ProfileNJ giving better 307

ancestral genomes and more likely trees than the starting trees. Based on such accurate trees, we have been 308

able to perform an exhaustive study of the patterns of duplication and loss on the phylogeny of the 63 309

Eukaryote species included in Ensembl. 310

Accounting for synteny 311

In addition to sequence and phylogeny, we also used synteny information and orthology relations as 312

correction criteria. As gene trees contain the most complete information about a gene family history, 313

detecting orthologs or studying gene repertoire evolution should be achieved by interpreting trees. But due 314

to the rate of errors in the current trees stored in databases, orthology is often assessed with a series of 315

techniques including synteny [48] and Reciprocal Best Hits, while the evolution of gene repertoires is often 316

studied with phyletic profile techniques [49]. What we presented here is a way of integrating those diverse 317

techniques into a phylogenetic framework. 318

Unfortunately, integrating synteny information results in a drop of gene tree quality in terms of likelihood. 319

One interpretation is that achieving orthology constraints may require breaking well supported branches. 320

Part of the likelihood drop could also be interpreted as an inadequacy of the sequence evolution models to 321

appropriately account for gene families with a high rate of duplications. Further, as observed in our 322

simulations, the true tree is not necessarily the ML tree. Finally, the likelihood is computed with an 323

alignment that usually results from a guiding tree, estimated using fast but crude approaches, and often 324

different from the tested tree. Some synteny trees might therefore be better trees even in cases where 325

sequence likelihood disagrees, because sequence likelihood can be incorrect. 326

However there is a third interpretation. Synteny information describes the history of loci [50], while 327

phylogenetic models describe the evolution of sequences. Loci and sequences often have the same history, but 328

they may differ following gene conversion or incomplete lineage sorting (ILS). 329

In case of ILS or gene conversion, two different true versions of the gene history are concurrent. In Figure 330

8 the gene as a locus has a history depicted by the right tree, while the gene as a sequence has a history 331

depicted by the left tree. None of the two are wrong, but they are significantly different. They highlight the 332

ambiguity of the definition of a gene, which yields an ambiguity in its history. Sequence trees will have a 333

high likelihood and mediocre results for gene contents and synteny when constructed from duplication and 334

loss scenarios, while it is the opposite for locus trees. A probabilistic model that incorporates ILS in sequence 335

and duplications and losses in loci has been proposed [50]. However, no model is currently able to handle 336

conversion. 337

Not only the gene trees 338

Using genome evolution in the construction of the gene trees, we get ancestral genomes as a byproduct. They 339

are made of genes and sets of gene adjacencies. They are still too big (in terms of gene number) and too non 340

linear to be fully trusted. This is partly due to incorrect gene trees in our output, or incorrect inferences 341

from DeCo, but also to problems in sequencing, assembling, annotating genomes, clustering families or 342

inferring the species tree. Good methods for finding linear structures from a set of adjacencies exist [51]. 343

Here we rather used non-linearity as a testimony of the flaws of the data and methods used to reconstruct 344

genome evolution. 345

Although gene trees are “better” with our correction, they still could be improved. The likelihood drop 346

for synteny correction is indeed surprising, as these corrections lead to ancestral genomes that are closer to 347
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Figure 8. A probable example of ILS visible on a subtree of an ensembl gene family. The monophyly of the
chimpanze and gorilla genes (ENSPTRP00000033018 and ENSGGOP00000011432) is well supported by the
sequences (left tree, constructed by PhyML, with aLRT supports), while synteny argues for orthology of both
with the human genes (ENSP00000414208 and ENSP00000378687) (right tree, constructed by ProfileNJ
followed by ParalogyCorrector), so that a scenario of duplications and losses compatible with the left tree is
unlikely.

gene content and gene neighborhoods of extant genomes. We would need better exploration schemes with 348

integrated models to really trust gene trees on a whole genome database within a deep phylogeny. 349

Methods 350

Families, alignments and trees were taken from Ensembl Compara release 73, sept 2013. They were computed 351

with a pipeline called TreeBest, but we simply call them the “Ensembl trees”. Trees are rooted and available 352

with branch support and annotation. There are 20529 trees, each corresponding to a gene family, for a total 353

of 1091891 genes taken from 63 species. Information on gene position on chromosomes, scaffolds or contigs is 354

available at ftp://ftp.ensembl.org/pub/release-73/emf/ensembl-compara/homologies/. 355

Use of ProfileNJ on Ensembl 356

PhyML was used with default parameters to compute maximum likelihood trees from the protein multiple 357

alignments taken from Ensembl. An aLRT support was computed, and all branches with aLRT < 0.95 were 358

contracted. FastDist was run on DNA alignments to provide a distance matrix. Then ProfileNJ was run with 359

the command (an example is given for the first family). 360

ProfileNJ -s Compara.73.species_tree \\ 361

-g data/famille_1.start_tree \\ 362

-d data/famille_1.dist \\ 363

-o data/famille_1.tree \\ 364

-n -r best -c nj --slimit 1 \\ 365

--plimit 1 --firstbest --cost 1 0.99999 366

We tested the sensitivity of the method to the choice of the threshold parameter for contracting 367

unsupported branches. The threshold is a trade-off between the amount of change in a tree and the 368
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probability that the resulting tree is rejected. Values that are too high would avoid exploring a large space 369

around the starting tree while small values would lead to low likelihood trees. It has to be settled empirically. 370

For example .80 was considered an acceptable threshold in some genomic studies [52]. 371

Ancestral Genomes (gene content and order) from the LCA Reconciliation 372

For a rooted binary gene tree G, we suppose there is a mapping m from its leaves to the leaves of a rooted 373

binary species tree S. The reconciliation of G with S consists in extending m to the internal nodes v of G by 374

letting m(v) = lca(m(L(Gv))), where Gv is the subtree of G rooted at v, L(Gv) is its leaves, m(L(Gv))) is 375

the set of leaves of S associated to L(Gv) by m, and lca is their lowest common ancestor in S. In addition an 376

event is associated to each internal node v of G: it is a duplication if v has a child which also maps to m(v) 377

by m, and it is a speciation otherwise. For any branch ab (suppose a is an ancestor of b) of G with 378

m(a) 6= m(b), let m(a), s1, . . . , sl,m(b) be the path joining m(a) and m(b) in S. Subdivide the branch ab by 379

adding l nodes, respectively mapped to s1, . . . , sl by m. If a is a duplication, add an additional node between 380

a and its direct descendant (s1 if it exists or b), mapped to m(a). 381

Then we can define the number of duplications induced by G, which is the number of duplication nodes, 382

the number of losses, which is the number of nodes with one descendant, and the genes in s ∈ S: each node 383

mapped to s but whose parent is not mapped to s is considered as a gene. 384

Testing the linearity of ancestral genomes with DeCo 385

DeCo [34] computes ancestral gene neighborhoods that are highly dependant on both the shape of the 386

considered gene tree and extant gene neighborhoods. Indeed, adjacencies in extant genomes, i.e. the 387

immediate proximity of two consecutive genes, are taken as input and putative adjacencies in ancestral 388

genomes are constructed by a parsimony principle minimizing the number of gains and losses of adjacencies. 389

As two contemporaneous adjacencies are supposed to evolve independently one from the other, the linearity 390

of extant genomes, i.e. the property that one gene never has more than two neighbors linked by an 391

adjacency, does not guarantee the linearity of ancestral ones. 392

The apparent weakness of this feature is in fact a strength to evaluate the quality of gene trees. Indeed, a 393

high part of the non linearity of ancestral genomes is not due to the inadequacy of the software itself, but to 394

the quality of the input data. It has been remarked that a significant improvement in the linearity of 395

ancestral genomes was obtained by constructing gene trees according to more integrative models [8, 53]. 396

Note that in extant genomes, no gene can have more than two neighbors, and most genes have two. But 397

many genes have 1 or 0, because of the poor assembly of some genomes, many contigs contain one or a few 398

genes. 399

Information from extant synteny 400

Orthology constraints are inferred as follows. If several genes are found consecutive in one genome, and their 401

homologs are also found consecutive in the other genome, the common linear arrangement was in the 402

ancestor and the homologous genes are probably orthologous. This hypothesis is incorrect in at least three 403

cases : (1) if the whole block of genes was duplicated, (2) if there is a tandem duplication of a gene followed 404

by a differential loss in the two species, or (3) if a gene is converted by a paralog. To handle these cases, we 405

require that (1) the majority of the homologous genes are indeed predicted as orthologs by phylogeny, (2) the 406

common ancestor of two homologous genes does not lead to two paralogous descendants placed in tandem in 407

one species. In case (3), we are in a situation where the loci are orthologous but not the sequences. In that 408

case we construct the “locus tree” [50] and trust syntenic information over gene sequence information. 409

First we ran PhylDiag as follows, for each pair of genomes. Files genome 1, genome 2 and ancestral genes 410

respectively contain the ordered list of genes from each genome, and the list of families clustering the genes 411

as in the Ensembl database. 412
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phylDiag.py genome_1 genome_2 ancestral_genes \\ 413

-gapMax=2 -pThreshold=0.00000005 \\ 414

-filterType=InBothSpecies -multiprocess \\ 415

-minChromLength=2 >syntenyblocks_1_2 416

The statistical threshold is calculated in order to minimize the number of false positives, taking into 417

account the number (2211) of comparisons between pairs of species and the expected number (500) of 418

synteny blocks for each comparison (0.05/(2211 ∗ 500) ≈ 5e− 8). 419

For each synteny block found by PhylDiag, we kept only the genes that had one single exemplar in the 420

two blocks from both species. We counted the number of such pairs of genes, and refered to an LCA 421

reconciliation of the output trees of ProfileNJ to check that most pairs are orthologs (their common ancestor 422

is labeled by a speciation). We discarded the blocks that did not fit this condition. This discards possible 423

block duplications. 424

For the remaining blocks, and for each couple of uniquely represented genes a and b, we required that the 425

LCA node X of a and b in the reconciled ProfileNJ tree is not a supported duplication: let X1 and X2 be the 426

two children of the node X labeled as a duplication (so X1 and X2 are in the same species as X), the genes 427

a and b are not kept as putative orthologs if one of the branches XX1 and XX2 has a high support (> 0.95), 428

and there are two genes, x1 and x2, which respectively descend from X1 and X2, which are located on the 429

same genome. This discards possible tandem duplications in the block, followed by differential losses of 430

copies. 431

The output trees from ProfileNJ as well as the filtered pairs of putative orthologs were given as input to 432

ParalogyCorrector, which finds the tree that is as close as possible to the input tree in terms of RF distance, 433

such that in an LCA reconciliation, all pairs of putative orthologs have an LCA node annotated as a 434

speciation. 435

Information from ancestral synteny 436

From the results of DeCo on the output gene trees produced by ProfileNJ, we used an “unduplication” 437

principle as in [33] everytime we found that an ancestral gene x had three neighbors a, b, c, two of them (say 438

a, b) arising from a duplication node d in a single gene tree. In that case, we rearranged the four grand 439

children of d so that the clade under d has an LCA which is annotated as a speciation in the LCA 440

reconciliation. See an insight into its functionning in Figure 9. 441

Likelihood ratio tests 442

We computed the likelihood of all trees according to the HKY85 model with PhyML on nucleotide alignments. 443

To test the significance of a likelihood difference, we computed the AU (Appoximately unbiased) tests with 444

RAxML. They consist in bootstraping the sites of an alignment, each site having a likelihood according to 445

several trees. Then a probability is associated to each tree from this bootstrap, according to the number of 446

replicates which place it above the others in terms of the bootstrapped likelihood. Unless otherwise stated, 447

we use ”significantly” better for a likelihood with a AU value > 0.95. Tests were ran with Consel [54]. 448

Data access 449

The 2575 simulated gene families used for our simulation represent a subset of the original SPIMAP 450

simulated fungi datasets (see http://compbio.mit.edu/spimap/). Those data and the RAxML trees 451

constructed from sequence alignment are available. We also provide the two sets of 20529 trees, as an output 452

from ProfileNJ and with the additional synteny-aware corrections. All software are freely accessible for 453

academic purpose, under a GPL license. 454
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Figure 9. The unduplication principle (figure redrawn from [33]). A non linearity is detected in an
ancestral genome (gene g has three neighbors). Two of its neighbors g1 and g2 are issued from a possibly
dubious duplication labeled node. The tree is rearranged so that its root is labeled with a speciation instead
of a duplication. In the resulting configuration g′1 and g′2 are in two different species, so that g can have only
one neighbor in this family, and linearity is recovered.
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