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Abstract

Motivations

Gene trees inferred solely from multiple alignments of homologous sequences often contain

weakly supported and uncertain branches. Information for their full resolution may lie in the

dependency between gene families and their genomic context. Integrative methods, using

species tree information in addition to sequence information, often rely on a computationally

intensive tree space search which forecloses an application to large genomic databases.

Results

We propose a new method, called ProfileNJ, that takes a gene tree with statistical supports

on its branches, and corrects its weakly supported parts by using a combination of informa-

tion from a species tree and a distance matrix. Its low running time enabled us to use it on

the whole Ensembl Compara database, for which we propose an alternative, arguably more

plausible set of gene trees. This allowed us to perform a genome-wide analysis of duplica-

tion and loss patterns on the history of 63 eukaryote species, and predict ancestral gene

content and order for all ancestors along the phylogeny.

Availability

A web interface called RefineTree, including ProfileNJ as well as a other gene tree correc-

tion methods, which we also test on the Ensembl gene families, is available at: http://www-

ens.iro.umontreal.ca/*adbit/polytomysolver.html. The code of ProfileNJ as well as the set

of gene trees corrected by ProfileNJ from Ensembl Compara version 73 families are also

made available.
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Introduction
Several gene tree databases from whole genomes are available, including Ensembl Compara
[1], Hogenom [2], Phog [3], MetaPHOrs [4], PhylomeDB [5], Panther [6]. However they are
known to contain many errors and uncertainties, in particular for unstable families [7]. Their
use for accurate ancestral genome inference, orthology detection, or the study of genome
dynamics could lead to erroneous results. For example Ensembl Compara trees, when recon-
ciled with a species tree to annotate gene duplications and losses, systematically and unrealisti-
cally overestimate the number of genes in ancestral genomes, and lead to erroneous
predictions of ancestral chromosome structures [8]. It is a known artifact, and a substantial
number of nodes in the Ensembl gene trees are labeled as “dubious” [9].

Reasons for errors in gene trees are numerous. When constructed from multiple sequence
alignments of homologous genes, they are dependent on gene annotations, gene family cluster-
ing or alignment quality, as well as on the accuracy of the models and algorithms used. But
above all, gene sequences often do not contain enough substitutions to resolve all the branches
of a phylogeny, or alternatively, too many such that the substitution history is saturated. There-
fore sequence based methods, computing gene trees from sequence information (e.g. PhyML
[10], RAxML [11], MrBayes [12], PhyloBayes [13]), are usually accompanied with measures of
statistical support on their branches or a posteriori distributions of likely trees.

Another category of methods, designated here as integrative methods, use a species tree, in
addition to a multiple sequence alignment, to model gene gains and losses inferred from the
reconciliation between gene and species trees (e.g. TreeBeST [14], TreeFix [15], NOTUNG
[16], PhylDog [8], ALE [17], GSR [18, 19], SPIMAP [20], Giga [21], MowgliNNI [22]). They
all report gene trees with better accuracy compared with sequence based methods. But they
leave a large space for improvement, both on tree quality and on computing time. In terms of
models, they often assume unrealistic loss/retention ratios [23]. In terms of computation strat-
egy, most of them use tree space exploration based on small modifications or local moves on
branches (typically NNI, SPR, TBR), usually proposed at random. Moves are accepted or
rejected according to hill-climbing, Metropolis-like criteria, or other statistical or empirical
arguments. Such exploration methods are computationally intensive and do not scale well as
databases grow in size. Consequently, database construction pipelines such as TreeBeST (con-
structing the Ensembl Compara gene trees [1]) have to adopt compromises, exploring a limited
tree space. Improving local exploration can be done by using some correction techniques, most
of them based on the idea of selecting local moves reducing the cost of reconciliation with a
species tree (e.g. [16, 22, 24–33]). But even with such improvements, it remains that most local
search strategies have no guarantee, neither on running time, nor on the quality of the
solution.

In this paper, we propose a new gene tree correction method, called ProfileNJ, which can be
directly used as a fast integrative method, without local search. It is a deterministic approach
with a guaranteed time complexity. ProfileNJ takes as input a starting tree with supports on its
branches, and outputs a set of rooted binary trees containing all well-supported branches of the
starting tree, and minimizing the number of duplications and losses when reconciled with a
given species tree. It is based on PolytomySolver, a previous algorithm developed by our group
[31] for resolving a non-binary tree in a way minimizing a reconciliation cost. Its theoretical
complexity has been shown to outperform previous algorithms for the same problem, namely
NOTUNG [16] and Zheng and Zhang’s algorithm [34]. ProfileNJ extends PolytomySolver by
integrating Neighbor-Joining (NJ) principles to choose among the numerous optimal solu-
tions. Among all trees with equal reconciliation cost exhibiting the same gene count on
branches, a choice is made with NJ principles, based on a distance matrix computed from gene
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sequences. Other extensions are considered such as allowing different costs for duplications
and losses, as well as non rooted trees as input. These extensions turn an algorithmic principle
into a workable method suited for constructing trees from biological data.

We compare ProfileNJ with TreeFix [15]. Indeed, among all correction methods, TreeFix
adopts the most similar evaluation strategy, by exploring neighboring trees which are statisti-
cally equivalent according to the sequences. Moreover, TreeFix is among the best available inte-
grative methods, according to the quality of the output trees and running time. On
simulations, both algorithms achieve results of comparable quality, but ProfileNJ is several
times faster. We also ran ProfileNJ on the whole set of gene families from the Ensembl data-
base, which is out of reach for competing methods with comparable quality. The trees for the
whole database were processed by ProfileNJ in less than 48h sequential time. In the same
amount of time, 0.5% of the database was corrected by TreeFix. The trees we propose compare
very favorably with the trees stored in Ensembl. We then used the reconstructed trees to study
genome evolution across the 63 eukaryotic species from the Ensembl database (release 73). A
whole genome analysis of duplication patterns is provided, pointing at certain branches which
seem to show acceleration of duplication or loss processes.

ProfileNJ is integrated into a modular interface called RefineTree that contains two other
gene tree correction tools using information on extant and ancestral synteny [32, 33]. We
could thus evaluate the results of a pipeline taking into account gene sequence, gene content
and chromosome structure evolution on the Ensembl database according to several criteria: (1)
likelihood ratio based on the Ensembl alignments; (2) ancestral genome sizes based on recon-
ciliation with the species tree; (3) linearity of ancestral chromosomal segments computed with
DeCo [35]. We discuss the improvements brought by each type of method and the distance of
their output to “true” gene trees, in the light of incomplete lineage sorting and gene conversion.

Description of ProfileNJ
The basic vocabulary of phylogenetic trees is taken from [36], and the reconciliation method
between a rooted binary gene tree G and a rooted binary species tree S is recalled in the
Method section. Just note that in a reconciled gene tree G, each node (representing an extant
gene if at a leaf or an ancestral gene if at an internal node) is mapped to the node of S corre-
sponding to the genome the gene belongs to. Edges of G are subdivided, adding extra vertices
and pending edges so that the extremities of an edge map either to the same node, or to two
extremities of an edge of S. An internal node of G is a duplication if it maps to the same node
of S as one of its child. The number of genes in a species s 2 V(S) induced by a reconciled
gene tree G is defined as the number of nodes x 2 V(G) mapped to s, such that the parent of x
does not map to s. The reconciliation cost is either the number of duplications and losses, or
a linear combination of the two if different weights are given to the two kinds of events. Also
note that when two trees G1 and G2 have the same genes at their leaves, we can say that a
branch of G1 is present in G2 if the bipartition of the leaves induced by this branch in G1 is
also induced by a branch of G2.

ProfileNJ is a gene tree correction algorithm that takes as input a gene tree (rooted or non
rooted) G for a given gene family with supports on its branches, and improves it according to
the available information, taken from a species tree, a distance matrix and a threshold number
for statistical support. It can be viewed as a generalization of three different standard algo-
rithms designed for evolutionary studies:

• The Wagner parsimony method applied to the inference of ancestral gene contents from the
extant gene contents by minimizing a duplication and loss cost [37];

Efficient Gene Tree Correction Guided by Genome Evolution

PLOS ONE | DOI:10.1371/journal.pone.0159559 August 11, 2016 3 / 22



• The Neighbor-Joining [38] (NJ) method which constructs a tree from a distance matrix D
between taxa;

• The reconciliation of a gene tree G with a species tree S [39].

Whereas these three methods do not have much in common a priori, they are all bricks of
our solution and each of them reduces to some particular case of our problem. ProfileNJ out-
puts a rooted binary gene tree Gc on the same gene family as the input gene tree G, where all
branches of G with a support above the threshold are present in Gc. Among all such trees, Pro-
fileNJ outputs those minimizing a duplication and loss cost when reconciled with the species
tree with respect to the NJ criterion.

ProfileNJ is an extension of PolytomySolver, a previous algorithm developed by our group
[31]. We first describe the principle of the latter and then describe the additions.

PolytomySolver: It takes as input a multifurcated rooted gene tree G (with non-binary
nodes) and a binary rooted species tree S. It outputs a binary rooted gene tree containing all
branches of G, that minimizes the number of duplications and losses when reconciled with S. It
has been shown by [31] that each polytomy (multifurcated node) of G can be considered inde-
pendently. Therefore, in the following, we restrict the presentation to a single polytomy P (s.f.
polytomy P in Fig 1).

The algorithm, based on dynamic programming, computes a tableM where, for each node
(including leaves) s of S and each integer k (limits on k are discussed in [31]),M(s, k) is the rec-
onciliation cost of a gene tree with k genes in species s before any duplication in s. For example,
in Fig 1, P has three genes belonging to genome b, and thusM(b, 1) = 2 as any solution having
one gene in b before any duplication in bmeans that two duplications must have occurred in b,
whileM(b, 4) = 1 as having four genes induces one gene loss on b.

The final cost of a minimum refinement of the polytomy is given byM(r, 1), where r is the
root of S. Using a backtracking approach, PolytomySolver then outputs a count vector V con-
taining the number of genes per node of S. Notice that, by construction, two brother nodes of S
(nodes with the same parent) have the same count. Then a gene tree G of minimum costM(r,
1) is found, such that in the reconciliation of G with S there are exactly V[s] genes in each s 2 V
(S). For example, the final binary tree in Fig 1 has two maximal trees rooted at b, as required by
the count vector V.

If the reconciliation cost is the number of duplications and losses (i.e. the same unit cost is
attributed to each duplication or loss), as it was initially published [31], the tableM can be con-
structed in time linear in the size of S [31], leading to a linear-time algorithm for finding one
optimal refinement of the polytomy. Moreover, we showed recently [40] that linearity can be
extended to a whole gene tree involving multiple polytomies. For weighted operations, i.e. dif-
ferent costs for duplications and losses, the algorithm runs in quadratic time [40].

Extensions: ProfileNJ consists in contracting branches with low support in G, which leads
to polytomies, and applying Polytomysolver. If G is not rooted, one node is chosen as the root.
All nodes can be tried and one minimizing the cost can be chosen. The first phases of Polyto-
mysolver are applied, until the construction of a count vector V.

Our main extension concerns a treatment of the multiplicity of solutions, as it can be expo-
nential. Indeed, the backtracking procedure mentioned above may lead to many optimal count
vectors, and for each count vector, there are possibly several gene trees in agreement with it.
Therefore, exploring the set of optimal trees requires exploring the set of all gene trees in agree-
ment with each count vector. For example, the count vector of Fig 1 induces two duplications
in b. However this vector involves no information on which of the three genes b1, b2, b3 should
be joined first. Such information can be deduced from the pairwise alignment distance between
gene sequences.
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Suppose that a pairwise distance matrix D is available for the gene family. Then the problem
can be seen as selecting, among all optimal solutions possibly output by PolytomySolver given
a vector V, the one best reflecting the distance matrix D. The problem of constructing a solu-
tion such that its induced distance is close to D according to a standard measure of metric
spaces comparison is NP-complete. But it is also known to be empirically and, to a certain
extent, theoretically, well approximated by Neighbor-Joining (NJ) [38, 41]. In ProfileNJ, we use
such an NJ approach for choosing neighboring genes.

As in the NJ algorithm, a metric space E induced by D on the leaves of P, is progressively
augmented with newly created genes. The algorithm proceeds by successively joining pairs of
nodes (points of E), eventually leading to a full binary tree. For example, in Fig 1, the initial
metric space E contains the nodes {a1, a2, b1, b2, b3, c}. Joining the nodes b1 and b2 leads to the

Fig 1. A species tree S and a multifurcated gene treeG. Each leaf xi or x ofG represents a gene belonging to genome x present as a leaf in S. Step (1) of
ProfileNJ is PolytomySolver, which resolves each polytomy P ofG independently. A dynamic programming tableM is constructed. Step (2) of ProfileNJ
takes as input a count vector V, here resulting from the backtracking path related by rectangles and arrows in tableM, and a distance matrix d for the
considered genes. A Neighbor joining (NJ) based procedure computes the gene tree in agreement with V that best reflects the distance matrix. The final
completely refined tree is given bottom right. Duplication nodes are indicated by squares.

doi:10.1371/journal.pone.0159559.g001
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new set of nodes {a1, a2, b3, b4, c}. Nodes to be joined are selected according to the NJ criterion,
namely we select from a node set of size n, the couple of genes x and yminimizing:

Qðx; yÞ ¼ ðn� 2ÞDðx; yÞ �
X

t 6¼x

Dðx; tÞ �
X

t 6¼y

Dðy; tÞ: ð1Þ

The metric space E is updated after each join r = (x, y) by removing x and y, adding a new
node r, and computing the distance between the newly created node r with each element t of E.
When x and y are not created artificially (i.e. they are not loss nodes created with the last
instruction of Algorithm 1), this is done using the NJ formula:

Dðr; tÞ ¼ 1

2
ðDðx; tÞ þ Dðy; tÞ � Dðx; yÞÞ ð2Þ

Otherwise, if x is a loss, we set D(r, t) = D(y, t) and if y is a loss, D(r, t) = D(x, t).
A full pseudo-code of the extension part of ProfileNJ is written as Algorithm 1. It works on

one polytomy P, assuming that all polytomies below have been resolved. It takes as input a
count vector V, the species tree S and a distance matrix D defining the metric space E. It out-
puts a refinement of P in agreement with V, resulting from the performed joins on the nodes of
E. Given a node s of S, denote by E(s) the subset of E restricted to the genes belonging to s, and
bym(s) = |E(s)| the multiplicity of s in E. The tree S is processed bottom-up. For each internal
node s, speciations are considered first by clustering, using the NJ criterion, the genes from E
(sl) with the genes from E(sr), where sl and sr are the two children of s. If the obtained multiplic-
itym(s) of s is greater than the desired count V[s], then duplications are performed, again
using the NJ criterion for choosing the gene pairs in E(s) to be joined. Otherwise, ifm(s) is
lower than the desired count V[s] of gene copies, then losses are predicted.

Algorithm 1 ProfileNJ (S,P,V,D)

Let E be the metric space with nodes corresponding to the leaves of P;
For each node s of S in a bottom-up traversal of S Do

If s is an internal node of S with chidren sl, sr Do
{By construction, V [sl ] = V [sr ] = n }
For i = 1 to n Do

Choose in E(sl) × E(sr) the gene pair (gl, gr) minimizing Eq (1) and create
the node g = (gl, gr);
Remove gl and gr from E and add g;
Compute D(g, g0) for all g0 2 E using Eq (2);

End For
End If
If m(s)>V [s] Do
For i = 1 to m(s) − V [s] Do

{Perform m(s) − V [s] duplications}
Choose in E(s) × E(s) the gene pair (g1, g2) minimizing Eq (1), and create
the node g = (g1, g2);
Remove g1 and g2 from E and add g;
Compute D(g, g0) for all g0 2 E using Eq (2)

End For
End If
Else If m(s)<V [s] Do
{Perform V [s] − m(s) losses}
Add V [s] − m(s) artificial genes to E(s), each with infinite distance to

all elements of E;
End If

End For
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Complexity: Let G be the solution output by the algorithm, and suppose that G has n leaves
after the inclusion of lost genes. Then exactly n − 1 NJ operations have been performed. Each
join calculation is restricted to a subset of the genes, and so the time required to perform these
joins is bounded by the time required to run the classical NJ algorithm on the n leaves of G,
which is O(n3). Note that n can be as large as |V(P)||V(S)|, making the worst case running time
O(|V(P)|3|V(S)|3). However this worst case only occurs when O(|V(S)|) losses are inserted on
each branch of the solution. In practice n is in O(|V(P)|).

AMulti-functional algorithm: ProfileNJ is a phylogenetic tool that generalizes several usu-
ally unrelated standard methods. Indeed, if G is a binary rooted tree, then ProfileNJ can be seen
as a reconciliation tool. If G is unrooted, then ProfileNJ can be used to choose an appropriate
root according to the induced reconciliation cost. On the other hand, various ways of contract-
ing branches can be considered. For example an exploration scheme contracting the branches
one by one and applying ProfileNJ can be considered, which would be equivalent to local mod-
ifications [27]. A more radical modification would be to contract all branches, leading to a star
tree. In this case, ProfileNJ can be seen as a tool for computing ancestral gene content with
Wagner parsimony, minimizing the cost of duplications and losses. If the star tree has all its
genes belonging to a single species, ProfileNJ returns an NJ tree. Other kinds of contraction
schemes can be imagined, as contracting branches around “Non Apparent Duplications” [42],
or “Dubious duplications” stored in the Ensembl trees.

Notice that the pseudo-code for ProfileNJ has been given for a single count vector. For a full
exploration of the tree space, all count vectors should be considered. This is what we do in the
simulation section.

Efficiency of ProfileNJ

Efficiency of the NJ criterion
We ran ProfileNJ twice on the same data set of 20519 trees (the Ensembl Compara gene fami-
lies), except that once the distance matrix was computed using the Ensembl nucleotide align-
ments with FastDist from the FastPhylo package [43], and once the distance matrix was
random. The starting tree was computed for every family using PhyML on the nucleic align-
ments, and all branches with aLRT support<0.95 were contracted. In average 55% of the
branches were contracted. A histogram of the full distribution is shown in Fig A in S1 File.

Then we computed the likelihood of both trees for every family with PhyML. Among the
trees for which the likelihood was different (55% of all tested trees), 76% were in favor of the
trees built with the FastDist distance matrix. These 76% of trees account for 95% of the total
sum of likelihood differences on all trees.

The comparisons are clearly in favor of the NJ criterion over no criterion at all, while quan-
titatively there remains a small but non negligible part of the trees for which no criterion (the
random distance matrix) gives an unexplained slightly, but significantly, better likelihood.

Efficiency of the tree space exploration strategy on simulated gene trees
We compared ProfileNJ with TreeFix, the most closely related tool, on simulated data. The
principle of TreeFix is to randomly explore, by local moves, the space of trees that are statisti-
cally equivalent to the input tree, and report the one with the best reconciliation cost. Instead,
we take a deterministic and more targeted approach by focusing on weakly supported branches
of the tree, with a possibly deep modification of the tree. The comparison with TreeFix is there-
fore intended to compare these two space exploration strategies.

Efficient Gene Tree Correction Guided by Genome Evolution
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In [15], TreeFix has been compared with NOTUNG [16] and SPIMAP [20], showing a bet-
ter accuracy than NOTUNG, and a higher speed than SPIMAP. We perform a similar compar-
ison on the same simulated dataset of 16 fungi. This dataset consists of simulated gene families
generated under the SPIMAP model and their corresponding nucleotide alignments, for four
different rates of duplication and loss (DL) events: (1 × rD, 1 × rL), (2 × rD, 2 × rL), (4 × rD, 4 ×
rL) and (4 × rD, 1 × rL), where rD and rL are respectively the estimated duplication and loss rates
for fungi. For instance, a (2 × rD, 2 × rL)-simulated gene family is expected to have, on average,
two times more duplications and losses than a real gene family in fungi. Comparisons reported
in this section are performed on 2575 simulated gene families randomly chosen from the four
fungi datasets with different DL rates.

An initial maximum likelihood (ML) tree is constructed for each simulated gene family
with RAxML v-8.1.2 [11], with the rapid bootstrap algorithm, under the GTR-Γmodel and
the majority rule consensus tree as bootstopping criterion. A randomly rooted tree is then
provided as input to TreeFix (as TreeFix requires the input tree to be rooted), while a multi-
furcated non rooted tree obtained by contracting the branches with support lower than 95%
is provided as input to ProfileNJ. We used default parameters for both programs. Among the
set of all binary trees output by ProfileNJ (one for each count vector), the best statistically
supported tree was selected using RAxML under the GTR-Γmodel of nucleotide
substitution.

For RAxML, TreeFix and ProfileNJ trees, we measured the Robinson-Foulds (RF) distance
to true trees, compared the reconstructed tree with the true tree using site-wise likelihoods (see
Fig G in S1 File), measured the accuracy of the duplication and loss scenarios (Fig E in S1 File),
the sensitivity of the accuracy to gene family size (Fig F in S1 File), the sensitivity to species tree
errors (Fig H in S1 File), and the running time.

Fig 2 illustrates the results for the RF distance. It shows that sequence-only does not contain
enough signal to lead to the true tree for our simulated dataset, and integrating additional
information from the species tree actually improves reconstruction. Indeed, TreeFix and Profi-
leNJ reconstruct around 75% of true trees, compared with only 10% for RAxML. We investi-
gated some cases where erroneous gene trees were inferred, and found that often, the true
scenario was not parsimonious in terms of duplications and losses, while TreeFix and ProfileNJ
chose duplications that are too recent in order to avoid losses. An example is given in Fig D in
S1 File.

The performances of TreeFix and ProfileNJ are similar in terms of distance to the true tree.
As for RAxML, it gives the best likelihood, which is not surprising as it is specifically designed
for that. The returned likelihood is even usually higher than the likelihood of the true tree, but
not significantly according to an AU test (Approximately unbiased [44], see Fig G in S1 File).
TreeFix is designed to produce trees which are not significantly different than the ML tree,
which we could check: 1.36% of the trees fail the AU test against the ML tree at α = 0.05, while
the proportion jumps to 9.17% for ProfileNJ. It is noticeable that this has no visible conse-
quence on the distance to the true tree (Fig C in S1 File).

Fig 3 shows that ProfileNJ outperforms TreeFix in running-time, the gap between the two
algorithms increasing with tree size. This figure also shows that the most time-consuming step
in ProfileNJ is tree selection. For a tree of size 30, ProfileNJ is about four to seven times faster
than TreeFix, and about 15 times faster if we discard statistical support evaluation and tree
selection step with RAxML. This includes the construction of the distance matrix, but not the
construction of the initial RAxML, as it is common to both methods.

Other analyses, including the sensitivity to gene family size and the number of duplications
and losses, are reported in S1 File. They lead to the same conclusions: TreeFix and ProfileNJ
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have similar performance on all measures except running time for which ProfileNJ is signifi-
cantly better.

Application on biological data

Software: RefineTree
ProfileNJ is integrated in a new modular online software, called RefineTree, designed to com-
bine a number of correction techniques, with an easy-to-use interface (see Fig 4). The present
version includes, in addition to ProfileNJ, a tool called ParalogyCorrector [32] for correcting
orthology relations. ParalogyCorrector takes as input a gene tree and a set of known pairwise
orthology relations between genes, which would typically be derived from synteny compari-
sons, and constructs the tree which is the closest to the input tree according to the RF distance,
with the constraint that couples of putative orthologs must be orthologs in the reconciliation
(see Method section).

RefineTree can be used in a modular way, according to the user’s specifications. It has been
designed to be easily extensible to other tools. For example instead of asking the user to input
his own orthology relations, tools for inferring putative orthologs can be included.

Fig 2. Topology accuracy of RAxML, TreeFix and ProfileNJ trees, measured by RF distance with the true tree, on* 2500 simulated trees from
the fungal dataset.We use a sample of trees simulated under four different DL rate: (1rD—1rL), (2rD—2rL), (4rD—4rL) and (4rD—1rL). Percentage of
reconstructed trees (y-axis) with a given RF distance (x-axis) to the true tree. TreeFix and ProfileNJ have a similar reconstruction accuracy (75% of
trees match the true trees) while the input trees (RAxML) have the lowest accuracy. The graph is cut on the right, but contains more than 99% of the
data.

doi:10.1371/journal.pone.0159559.g002
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Protocol
The low running time of ProfileNJ makes it possible to run it on large databases. Here, we
exhaustively use ProfileNJ to correct all trees of the Ensembl Compara database, containing 63
eukaryotic whole genomes. Gene trees are constructed for 20519 families. In order to quantify
the contribution of ProfileNJ and the contribution of methods using other kinds of information
as synteny, we compared three sets of trees on the whole database.

• Ensembl trees: Trees stored in the Ensembl gene family database (see Method section);

• ProfileNJ trees: Trees output by ProfileNJ with unrooted PhyML trees as input (where
branches with aLRT support<0.95 are contracted) and FastDist distance matrices. A single
solution is retained for the rooting leading to a minimum weighted reconciliation cost (see
Method section);

• Synteny trees: Trees output by either ParalogyCorrector or Unduplicator [32] (the two are
computed and the most likely according to the sequence is chosen) with ProfileNJ trees as
input, using PhylDiag [45] and DeCo [35] to infer synteny constraints (see Method section
and Fig 5)

Fig 3. Run time of TreeFix and ProfileNJ for increasing size of gene tree.

doi:10.1371/journal.pone.0159559.g003
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Results on Ensembl gene trees
The PhyML trees for the 20519 gene families were processed by ProfileNJ in less than 48h
sequential time. In the same amount of time, 0.5% of the database was corrected by TreeFix.

We evaluated the resulting trees (all made available at the web page indicated in the
abstract) according to sequence likelihood, ancestral genome content and ancestral chromo-
some linearity. The ancestral genome content metric is based on the assumption that the distri-
bution of ancestral gene content sizes should be close to that of extant genomes. Incorrect trees
are known to require additional duplications to be reconciled with the species tree, which tends
to increase the number of genes in ancestral genomes. The ancestral chromosome linearity
metric is based on the assumption that the linearity of ancestral genomes is expected to be as
close as possible to that of the extant genomes, with each gene having zero, one or two neigh-
bors, with a peak at two (having genes with zero or one neighbor is usually due to partially
assembled genomes).

Results are given in Fig 6. ProfileNJ trees show a better behavior than Ensembl trees accord-
ing to the three measures: more than 2/3 of the trees have a better likelihood than Ensembl
trees, ancestral genome content distribution is much closer to the extant one, and linearity of
chromosomes is higher. Therefore this set of trees, achieving better performance according to
sequence evolution, gene content evolution and chromosome evolution, is arguably a better
dataset than the one stored in the Ensembl database.

Fig 4. RefineTree web interface. The input is a species tree (or by default the Ensembl species tree) and a gene tree (or an Ensembl gene tree ID), gene
sequences and additional options such as the branch contraction threshold, the request to test all roots, the maximum number of trees to be output by
ProfileNJ and sorted by likelihood, etc. The integrated algorithms are ProfileNJ and ParalogyCorrector. Using this second algorithm requires, in addition, the
input of a set of orthology constraints.

doi:10.1371/journal.pone.0159559.g004
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However, results obtained when we include synteny information are less clear. Indeed, qual-
ity of synteny trees drops in terms of likelihood (Fig 6(A)), but jumps in terms of the stability
of gene content and the linearity of ancestral chromosomes (Fig 6(B) and 6(C)).

Results on duplication and loss history in Eukaryotes
Partial patterns of duplications and losses in eukaryotes have been considered in previous stud-
ies, as for example by [8] in mammals with a subset of gene families, or by [46] in vertebrates

Fig 5. A general view on RefineTree when run on the Ensembl Compara gene families. An example is given for a species tree S of four fish
species, a gene family of six genes (a gene is represented by the picture of the species it belongs to, and two paralogs belonging to the same species
are distinguished by a different frame color), a rooted gene treeG (although it can be non rooted in general) with branch support, and a given
threshold for branch contraction. Data framed in black are the input and those framed in blue are the output of the correction algorithm labeling the
edge linking the considered frames. Black arrows depict the use we make of RefineTree on the Ensembl gene trees. The green arrow and the green
“or” are alternative uses avoiding one or both of the correction tools ParalogyCorrector and Unduplicator. Any framed set of data can be alternatively
provided to the pipeline as input. For example, orthology constraints obtained from various sources can be directly provided as input to
ParalogyCorrector. The method for inferring orthology constraints from synteny blocks is described in the text.

doi:10.1371/journal.pone.0159559.g005
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with a subset of species. The ability of ProfileNJ to handle the whole Ensembl database allowed
us to perform a more exhaustive study. In addition to gene trees, we reconstructed all ancestral
gene contents and organizations. Gene content is computed according to reconciliation (see
Methods), and genome organization, which consists in sets of links between consecutive genes,
is inferred with DeCo. Genes are not always clustered into full linear genomes. Such non-lin-
earity has diverse causes that we do not wish to mask with an ad-hoc linearization method. An
interesting property of DeCo is to highlight genes or groups of genes evolving together in parts
of the tree. For example 8488 blocks of co-duplicated genes are inferred by DeCo on the con-
sidered eukaryote dataset. Most of them contain only a few number of genes (83% contain 2

Fig 6. Sequence likelihood, ancestral genome content and ancestral chromosome linearity for ProfileNJ, Synteny and Ensembl trees. (A)
Proportion of trees with a significantly better likelihood computed with PhyML. AU tests were computed for the three trees for each family, and if the tree at
the first rank was significantly better than the second, it was stored as the best likelihood, and if not, it was stored as “no significant difference at the first
rank”. (B)Gene content computed with DeCo. Gene content has one value for each node of the phylogeny of 63 species, except for extant genomes, for
which it has one value for each leaf. (C)Genome linearity computed with DeCo. Genome linearity is represented by a graph, whose x axis is the number of
neighbors a gene can have, and the y axis shows the proportion of genes having this number of neighbors. Parameters from extant genomes are given as
a reference in (B) and (C). Statistics for ancestral genomes are assumed better when close to the extant ones.

doi:10.1371/journal.pone.0159559.g006
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genes). The largest blocks are found in the terminal branches leading to Danio rerio and Cae-
norhabditis elegans.

Fig 7 shows the result for the full genomes of the full phylogeny of the 63 Ensembl species.
As seen in Fig 7, duplication rates are highly variable across branches of the phylogeny.
Branches with a large number of duplications (hot branches) are those leading to vertebrates,
which is in agreement with the two rounds of whole genome duplication hypothesis. Interest-
ingly, the speciation event leading to Petromyzon marinus, which is usually thought to have
diverged after these events [47], precedes the hot branches. This may be in agreement with
recent results based on the analysis of Hox clusters in the Japanese lamprey [48]. Another hot
branch leads to eutherian mammals, which was also found by two other studies [8, 46] with
partial data. These two hottest internal branches are exactly the ones found by Mahmudi et al
[46] using a probabilistic technique, but using only 9 species due to computational cost. Other
hot branches are terminal, the hottest being those leading to Caenorhabditis elegans and Danio
rerio. This is possibly due to ongoing dynamics of polymorphic copy number variations. The
same tree showing the number of losses is provided in Fig I in S1 File.

Discussion
ProfileNJ is a new gene tree correction method based on exploring a restricted tree space and
choosing the most likely tree according to a species tree and a distance matrix on gene
sequences. It is shown to be accurate and it outperforms in running time the most comparable
existing correction methods. Efficiency in running time allowed us to apply ProfileNJ to the
entire Ensembl database.

Trees obtained by correcting PhyML trees with ProfileNJ are arguably better than gene trees
stored in Ensembl, according to sequence likelihood, ancestral genome content and ancestral
chromosome linearity. We also corrected directly the Ensembl trees and the results (not
shown) were similar, ProfileNJ giving better ancestral genomes and more likely trees than the
starting trees. Based on such accurate trees, we have been able to perform an exhaustive study
of the patterns of duplication and loss on the phylogeny of the 63 Eukaryote species included
in Ensembl.

Accounting for synteny
In addition to sequence and phylogeny, we also used synteny information and orthology rela-
tions as correction criteria. As gene trees contain the most complete information about a gene
family history, detecting orthologs or studying gene repertoire evolution should be achieved by
interpreting trees. But due to the rate of errors in the current trees stored in databases, orthol-
ogy is often assessed with a series of techniques including synteny [50] and Reciprocal Best
Hits, while the evolution of gene repertoires is often studied with phyletic profile techniques
[51]. What we presented here is a way of integrating those diverse techniques into a phyloge-
netic framework.

Unfortunately, integrating synteny information results in a drop of gene tree quality in
terms of likelihood. One interpretation is that achieving orthology constraints may require
breaking well supported branches. Part of the likelihood drop could also be interpreted as an
inadequacy of the sequence evolution models to appropriately account for gene families with a
high rate of duplications. Further, as observed in our simulations, the true tree is not necessar-
ily the ML tree. Finally, the likelihood is computed with an alignment that usually results from
a guiding tree, estimated using fast but crude approaches, and often different from the tested
tree. Some synteny trees might therefore be better trees even in cases where sequence likelihood
disagrees, because sequence likelihood can be incorrect.
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Fig 7. Numbers of duplications in the eukaryote phylogeny, estimated with reconciled ProfileNJ trees from
PhyML starting trees on the whole Ensembl Compara database, version 73. Drawn with Figtree [49].

doi:10.1371/journal.pone.0159559.g007
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However there is a third interpretation. Synteny information describes the history of loci
[52], while phylogenetic models describe the evolution of sequences. Loci and sequences often
have the same history, but they may differ following gene conversion or incomplete lineage
sorting (ILS).

In case of ILS or gene conversion, two different true versions of the gene history are concur-
rent. In Fig 8 the gene as a locus has a history depicted by the right tree, while the gene as a
sequence has a history depicted by the left tree. None of the two are wrong, but they are signifi-
cantly different. They highlight the ambiguity of the definition of a gene, which yields an ambi-
guity in its history. Sequence trees will have a high likelihood and mediocre results for gene
contents and synteny when constructed from duplication and loss scenarios, while it is the
opposite for locus trees. A probabilistic model that incorporates ILS in sequence and duplica-
tions and losses in loci has been proposed [52]. However, no model is currently able to handle
conversion.

Not only the gene trees
Using genome evolution in the construction of the gene trees, we get ancestral genomes as a
byproduct. They are made of genes and sets of gene adjacencies. They are still too big (in terms
of gene number) and too non linear to be fully trusted. This is partly due to incorrect gene trees
in our output, or incorrect inferences from DeCo, but also to problems in sequencing, assem-
bling, annotating genomes, clustering families or inferring the species tree. Good methods for
finding linear structures from a set of adjacencies exist [53]. Here we rather used non-linearity
as a testimony of the flaws of the data and methods used to reconstruct genome evolution.

Although gene trees are “better” with our correction, they still could be improved. The likeli-
hood drop for synteny correction is indeed surprising, as these corrections lead to ancestral
genomes that are closer to gene content and gene neighborhoods of extant genomes. We would

Fig 8. A probable example of ILS visible on a subtree of an Ensembl gene family. The monophyly of the chimpanzee and gorilla genes
(ENSPTRP00000033018 and ENSGGOP00000011432) is well supported by the sequences (left tree, constructed by PhyML, with aLRT supports), while
synteny argues for orthology of both with the human genes (ENSP00000414208 and ENSP00000378687) (right tree, constructed by ProfileNJ followed by
ParalogyCorrector), so that a scenario of duplications and losses compatible with the left tree is unlikely.

doi:10.1371/journal.pone.0159559.g008
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need better exploration schemes with integrated models to really trust gene trees on a whole
genome database within a deep phylogeny.

Methods
Families, alignments and trees were taken from Ensembl Compara release 73, sept 2013. They
were computed with a pipeline called TreeBest, but we simply call them the “Ensembl trees”.
There are 20529 rooted trees, each corresponding to a gene family, for a total of 1091891 genes
taken from 63 species. 13128 of these trees have 3 leaves or more, and are thus treated by our
phylogenetic study. Information on gene position on chromosomes, scaffolds or contigs is
available at ftp://ftp.ensembl.org/pub/release-73/emf/ensembl-compara/homologies/.

Use of ProfileNJ on Ensembl
PhyML was used with default parameters to compute maximum likelihood trees from the pro-
tein multiple alignments taken from Ensembl, for families with 4 sequences or more. An aLRT
support was computed, and only branches with support�0.95 were preserved by ProfileNJ.
FastDist was run on DNA alignments to provide a distance matrix. Then ProfileNJ was run
with the command (an example is given for the first family).

ProfileNJ -s Compara.73.species_tree \\
-g data/famille_1.start_tree \\
-d data/famille_1.dist \\
-o data/famille_1.tree \\
-n -r best -c nj --slimit 1 \\
--plimit 1 --firstbest --cost 1 0.99999

We tested the sensitivity of the method to the choice of the threshold parameter for con-
tracting unsupported branches. The threshold is a trade-off between the amount of change in a
tree and the probability that the resulting tree is rejected. Values that are too high would avoid
exploring a large space around the starting tree while small values would lead to low likelihood
trees. It has to be settled empirically. For example.80 bootstrap threshold was considered an
acceptable threshold in some genomic studies [54].

Ancestral genes and genomes with DeCo
DeCo [35] computes ancestral genes and gene neighborhoods from gene trees and extant gene
neighborhoods. It was used to compare ancestral gene contents and orders with different sets
of gene trees for the same set of gene families to generate Fig 6. It takes as input rooted gene
trees and adjacencies, i.e. couples of extant genes that are consecutive on a chromosomes.
Ancestral adjacencies are constructed according to a parsimony principle minimizing the num-
ber of gains and losses of adjacencies.

Adjacencies at different loci on chromosomes are supposed to evolve independently one
from the other. As a consequence, although an extant gene should belong to at most two adja-
cencies (zero or one is frequent because of low assembly quality of some genomes), it is not
necessarily the case for ancestral genes. As a consequence ancestral genomes are not necessarily
linear arrangements of genes. It might be seen as a weakness of this ancestral genome recon-
struction method, but for us it is a criterion to evaluate the quality of gene trees. Indeed, a high
part of the non linearity of ancestral genomes is not due to the inadequacy of the software itself,
but to the quality of the input data. It has been remarked that a significant improvement in the
linearity of ancestral genomes was obtained by constructing gene trees according to more inte-
grative models [8, 55].
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Information from extant synteny
Orthology constraints for synteny trees are inferred as follows. If several genes are found conse-
cutive in one genome, and their homologs are also found consecutive in the other genome, the
common linear arrangement was in the ancestor and the homologous genes are probably
orthologous. This hypothesis is incorrect in at least three cases: (1) if the whole block of genes
was duplicated, (2) if there is a tandem duplication of a gene followed by a differential loss in
the two species, or (3) if a gene is converted by a paralog. To handle these cases, we require that
(1) the majority of the homologous genes are indeed predicted as orthologs by phylogeny, (2)
the common ancestor of two homologous genes does not lead to two paralogous descendants
placed in tandem in one species. In case (3), we are in a situation where the loci are orthologous
but not the sequences. In that case we construct the “locus tree” [52] and trust syntenic infor-
mation over gene sequence information.

First we ran PhylDiag as follows, for each pair of genomes. Files genome_1, genome_2 and
ancestral_genes respectively contain the ordered list of genes from each genome, and the list of
families clustering the genes as in the Ensembl database.

phylDiag.py genome_1 genome_2 ancestral_genes \\
-gapMax = 2 -pThreshold = 0.00000005 \\
-filterType = InBothSpecies -multiprocess \\
-minChromLength = 2 >syntenyblocks_1_2

The statistical threshold is calculated in order to minimize the number of false positives, tak-
ing into account the number (2211) of comparisons between pairs of species and an expected
number (500, as an approximate average of the number of found synteny blocks) of synteny
blocks for each comparison (0.05/(2211�500)� 5e − 8).

For each synteny block found by PhylDiag, we kept only the genes that had one single exem-
plar in the two blocks from both species. We counted the number of such pairs of genes, and
referred to an LCA reconciliation of the output trees of ProfileNJ to check that most pairs are
orthologs (their common ancestor is labeled by a speciation). We discarded the blocks that did
not fit this condition. This discards possible block duplications.

For the remaining blocks, and for each couple of uniquely represented genes a and b, we
required that the LCA node X of a and b in the reconciled ProfileNJ tree is not a supported
duplication: let X1 and X2 be the two children of the node X labeled as a duplication (so X1 and
X2 are in the same species as X), the genes a and b are not kept as putative orthologs if one of
the branches XX1 and XX2 has a high support (>0.95), and there are two genes, x1 and x2,
which respectively descend from X1 and X2, which are located on the same genome. This dis-
cards possible tandem duplications in the block, followed by differential losses of copies.

The output trees from ProfileNJ as well as the filtered pairs of putative orthologs were given
as input to ParalogyCorrector, which finds the tree that is as close as possible to the input tree
in terms of RF distance, such that in an LCA reconciliation, all pairs of putative orthologs have
an LCA node annotated as a speciation.

Information from ancestral synteny
From the results of DeCo on the output gene trees produced by ProfileNJ, we used an “undu-
plication” principle as in [33] every time we found that an ancestral gene x had three neighbors
a, b, c, two of them (say a, b) arising from a duplication node d in a single gene tree. In that
case, we rearranged the four grand children of d so that the clade under d has an LCA which is
annotated as a speciation in the LCA reconciliation. See an insight into its functioning in Fig 9.
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Likelihood ratio tests
We computed the likelihood of all trees according to the HKY85 model with PhyML on nucle-
otide alignments. To test the significance of a likelihood difference, we computed the AU tests
(Approximately unbiased, [44] with RAxML and Consel [56]. Unless otherwise stated, we use
“significantly” better for a tree with a AU value>0.95.

Supporting Information
S1 File. Additional validity and robustness tests of ProfileNJ, followed by a representation
of the number of losses along a phylogeny inferred from ProfileNJ trees. Figs A to I are
included in S1 File.
(PDF)

Fig 9. The unduplication principle (figure redrawn from [33]). A non linearity is detected in an ancestral genome (gene g has three neighbors). Two of its
neighbors g1 and g2 are issued from a possibly dubious duplication labeled node. The tree is rearranged so that its root is labeled with a speciation instead of
a duplication. In the resulting configuration g0

1 and g0
2 are in two different species, so that g can have only one neighbor in this family, and linearity is

recovered.

doi:10.1371/journal.pone.0159559.g009

Efficient Gene Tree Correction Guided by Genome Evolution

PLOS ONE | DOI:10.1371/journal.pone.0159559 August 11, 2016 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159559.s001


Author Contributions

Conceived and designed the experiments: BB ET MS ML EN NE.

Performed the experiments: EN MS ML JS.

Analyzed the data: BB ET MS NE LG.

Wrote the paper: EN ML BB ETMS NE.

References
1. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E. EnsemblCompara gene trees: Com-

plete, duplication-aware phylogenetic trees in vertebrates. Genome Research. 2009; 19:327–335. doi:
10.1101/gr.073585.107 PMID: 19029536

2. Penel S, Arigon AM, Dufayard JF, Sertier AS, Daubin V, Duret L, et al. Databases of homologous gene
families for comparative genomics. BMC Bioinformatics. 2009; 10 Suppl 6:S3. doi: 10.1186/1471-2105-
10-S6-S3 PMID: 19534752

3. Datta RS, MeachamC, Samad B, Neyer C, Sjölander K. Berkeley PHOG: PhyloFacts orthology group
prediction web server. Nucleic Acids Research. 2009; 37:W84–W89. doi: 10.1093/nar/gkp373 PMID:
19435885

4. Pryszcz LP, Huerta-Cepas J, Gabaldón T. MetaPhOrs: orthology nd paralogy predictions frommultiple
phylogenetic evidence using a consistency-based confidence score. Nucleic Acids Research. 2011;
39:e32. doi: 10.1093/nar/gkq953 PMID: 21149260

5. Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, Marcet-Houben M, et al. Phy-
lomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-
based orthology and paralogy predictions. Nucleic Acids Research. 2011; 39:D556–D560. doi: 10.
1093/nar/gkq1109 PMID: 21075798

6. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and
other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research. 2012; 41:D377–
D386. doi: 10.1093/nar/gks1118 PMID: 23193289

7. Boeckmann B, Robinson-Rechavi M, Xenarios I, Dessimoz C. Conceptual framework and pilot study to
benchmark phylogenomic databases based on reference gene trees. Brief Bioinform. 2011; 12(5):423–
435. doi: 10.1093/bib/bbr034 PMID: 21737420

8. Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V. Genome-scale coestimation of species
and gene trees. Genome Research. 2013; 23:323–330. doi: 10.1101/gr.141978.112 PMID: 23132911

9. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2014. Nucleic Acids Research.
2014; 42(Database issue):D749–D755. doi: 10.1093/nar/gkt1196 PMID: 24316576

10. Guindon S, Gascuel O. A simple, fast and accurate algorithm to estimate large phylogenies bymaximum
likelihood. Systematic Biology. 2003; 52:696–704. doi: 10.1080/10635150390235520 PMID: 14530136

11. Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analysis with thousands of
taxa and mixed models. Bioinformatics. 2006; 22:2688–2690. doi: 10.1093/bioinformatics/btl446 PMID:
16928733

12. Ronquist F, Huelsenbeck JP. MrBayes3: Bayesian phylogenetic inference under mixed models. Bioin-
formatics. 2003; 19:1572–1574. doi: 10.1093/bioinformatics/btg180 PMID: 12912839

13. Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid
replacement process. Molecular Biology and Evolution. 2004; 21(6):1095–1109. doi: 10.1093/molbev/
msh112 PMID: 15014145

14. Schreiber F, Patricio M, Muffato M, Pignatelli M, Bateman A. TreeFam v9: a new website, more species
and orthology-on-the-fly. Nucleic Acids Research. 2013;.

15. Wu YC, Rasmussen MD, Bansal MS, Kellis M. TreeFix: Statistically informed gene tree error correction
using species trees. Systematic Biology. 2013; 62(1):110–120. doi: 10.1093/sysbio/sys076 PMID:
22949484

16. Chen K, Durand D, Farach-Colton M. Notung: Dating Gene Duplications using Gene Family Trees.
Journal of Computational Biology. 2000; 7:429–447. doi: 10.1089/106652700750050871 PMID:
11108472

17. Szöllősi GJ, RosikiewiczW, Boussau B, Tannier E, Daubin V. Efficient exploration of the space of rec-
onciled gene trees. Systematic Biology. 2013; 62(6):901–912. doi: 10.1093/sysbio/syt054 PMID:
23925510

Efficient Gene Tree Correction Guided by Genome Evolution

PLOS ONE | DOI:10.1371/journal.pone.0159559 August 11, 2016 20 / 22

http://dx.doi.org/10.1101/gr.073585.107
http://www.ncbi.nlm.nih.gov/pubmed/19029536
http://dx.doi.org/10.1186/1471-2105-10-S6-S3
http://dx.doi.org/10.1186/1471-2105-10-S6-S3
http://www.ncbi.nlm.nih.gov/pubmed/19534752
http://dx.doi.org/10.1093/nar/gkp373
http://www.ncbi.nlm.nih.gov/pubmed/19435885
http://dx.doi.org/10.1093/nar/gkq953
http://www.ncbi.nlm.nih.gov/pubmed/21149260
http://dx.doi.org/10.1093/nar/gkq1109
http://dx.doi.org/10.1093/nar/gkq1109
http://www.ncbi.nlm.nih.gov/pubmed/21075798
http://dx.doi.org/10.1093/nar/gks1118
http://www.ncbi.nlm.nih.gov/pubmed/23193289
http://dx.doi.org/10.1093/bib/bbr034
http://www.ncbi.nlm.nih.gov/pubmed/21737420
http://dx.doi.org/10.1101/gr.141978.112
http://www.ncbi.nlm.nih.gov/pubmed/23132911
http://dx.doi.org/10.1093/nar/gkt1196
http://www.ncbi.nlm.nih.gov/pubmed/24316576
http://dx.doi.org/10.1080/10635150390235520
http://www.ncbi.nlm.nih.gov/pubmed/14530136
http://dx.doi.org/10.1093/bioinformatics/btl446
http://www.ncbi.nlm.nih.gov/pubmed/16928733
http://dx.doi.org/10.1093/bioinformatics/btg180
http://www.ncbi.nlm.nih.gov/pubmed/12912839
http://dx.doi.org/10.1093/molbev/msh112
http://dx.doi.org/10.1093/molbev/msh112
http://www.ncbi.nlm.nih.gov/pubmed/15014145
http://dx.doi.org/10.1093/sysbio/sys076
http://www.ncbi.nlm.nih.gov/pubmed/22949484
http://dx.doi.org/10.1089/106652700750050871
http://www.ncbi.nlm.nih.gov/pubmed/11108472
http://dx.doi.org/10.1093/sysbio/syt054
http://www.ncbi.nlm.nih.gov/pubmed/23925510


18. Akerborg O, Sennblad B, Arvestad L, Lagergren J. Simultaneous Bayesian gene tree reconstruction
and reconciliation analysis. Proceedings of the National Academy of Sciences USA. 2009; 106
(14):5714–5719. doi: 10.1073/pnas.0806251106

19. Arvestad L, Berglund AC, Lagergren J, Sennblad B. Gene tree reconstruction and orthology analysis
based on an integrated model for duplications and sequence evolution. In: RECOMB; 2004. p. 326–
335.

20. Rasmussen MD, Kellis M. A bayesian approach for fast and accurate gene tree reconstruction. Molecu-
lar Biology and Evolution. 2011; 28(1):273–290. doi: 10.1093/molbev/msq189 PMID: 20660489

21. Thomas PD. GIGA: a simple, efficient algorithm for gene tree inference in the genomic age. BMC Bioin-
formatics. 2010; 11:312. doi: 10.1186/1471-2105-11-312 PMID: 20534164

22. Nguyen TH, Ranwez V, Pointet S, Chifolleau AMA, Doyon JP, Berry V. Reconciliation and local gene
tree rearrangement can be of mutual profit. Algorithms for Molecular Biology. 2013; 8(1):12. doi: 10.
1186/1748-7188-8-12 PMID: 23566548

23. Konrad A, Teufel AI, Grahnen JA, Liberles DA. Toward a general model for the evolutionary dynamics
of gene duplicates. Genome Biology and Evolution. 2011; 3:1197–1209. doi: 10.1093/gbe/evr093
PMID: 21920903

24. Durand D, Haldórsson BV, Vernot B. A hybrid micro-macroevolutionary approach to gene tree recon-
struction. Journal of Computational Biology. 2006; 13:320–335. doi: 10.1089/cmb.2006.13.320 PMID:
16597243

25. Gorecki P, Eulenstein O. A linear-time algorithm for error-corrected reconciliation of unrooted gene
trees. In: ISBRA. vol. 6674 of LNBI. Springer-Verlag; 2011. p. 148–159.

26. Gorecki P, Eulenstein O. Algorithms: simultaneous error-correction and rooting for gene tree reconcilia-
tion and the gene duplication problem. BMC Bioinformatics. 2011; 13(Supp 10):S14.

27. Chaudhary R, Burleigh JG, Eulenstein O. Efficient error correction algorithms for gene tree reconcilia-
tion based on duplication, duplication and loss, and deep coalescence. BMC Bioinformatics. 2011; 13
(Supp.10):S11.

28. Berglund-Sonnhammer AC, Steffansson P, Betts MJ, Liberles DA. Optimal gene trees from sequences
and species trees using a soft interpretation of parsimony. Journal of Molecular Evolution. 2006;
63:240–250. doi: 10.1007/s00239-005-0096-1 PMID: 16830091

29. Doroftei A, El-Mabrouk N. Removing Noise from Gene Trees. In: WABI. vol. 6833 of LNBI/LNBI; 2011.
p. 76–91.

30. Swenson KM, Doroftei A, El-Mabrouk N. Gene Tree Correction for Reconciliation and Species Tree
Inference. Algorithms for Molecular Biology. 2012; 7(1):31. doi: 10.1186/1748-7188-7-31 PMID:
23167951

31. Lafond M, Swenson KM, El-Mabrouk N. An Optimal Reconciliation Algorithm for Gene Trees with Poly-
tomies. In: LNCS. vol. 7534 of WABI; 2012. p. 106–122.

32. Lafond M, Semeria M, Swenson KM, Tannier E, El-Mabrouk N. Gene tree correction guided by orthol-
ogy. BMC Bioinformatics. 2013; 14 (supp 15)(S5). doi: 10.1186/1471-2105-14-S15-S5 PMID:
24564227

33. Chauve C, El-Mabrouk N, Guéguen L, Semeria M, Tannier E. Duplication, Rearrangement and Recon-
ciliation: A Follow-Up 13 Years Later. In: Chauve C, El-Mabrouk N, Tannier E, editors. Models and
Algorithms for Genome Evolution. London: Springer; 2013. p. 47–62.

34. Zheng Y, Zhang L. Reconciliation with Non-binary Gene Trees Revisited. In: Lecture Notes in Com-
puter Science. vol. 8394; 2014. p. 418–432.

35. Bérard S, Gallien C, Boussau B, Szöllősi GJ, Daubin V, Tannier E. Evolution of gene neighborhoods
within reconciled phylogenies. Bioinformatics. 2012; 28(18):i382–i388. doi: 10.1093/bioinformatics/
bts374 PMID: 22962456

36. Semple C, Steel M. Phylogenetics. Oxford Univ Press; 2003.

37. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool. 1969; 18:1–32. doi:
10.2307/2412407

38. Saitou N, Nei M. The neighbor-joining method: a newmethod for reconstructing phylogenetic trees.
Molecular Biology and Evolution. 1987; 4:406–425. PMID: 3447015

39. MaddisonWP. Gene trees in species trees. Syst Biol. 1997; 46:523–536. doi: 10.1093/sysbio/46.3.523

40. Lafond M, Noutahi E, El-Mabrouk N. Efficient Non-binary Gene Tree resolution with Weighted Reconcil-
iation Cost; 2016.

41. Gascuel O, Steel M. Neighbor-joining revealed. Mol Biol Evol. 2006; 23(11):1997–2000. doi: 10.1093/
molbev/msl072 PMID: 16877499

Efficient Gene Tree Correction Guided by Genome Evolution

PLOS ONE | DOI:10.1371/journal.pone.0159559 August 11, 2016 21 / 22

http://dx.doi.org/10.1073/pnas.0806251106
http://dx.doi.org/10.1093/molbev/msq189
http://www.ncbi.nlm.nih.gov/pubmed/20660489
http://dx.doi.org/10.1186/1471-2105-11-312
http://www.ncbi.nlm.nih.gov/pubmed/20534164
http://dx.doi.org/10.1186/1748-7188-8-12
http://dx.doi.org/10.1186/1748-7188-8-12
http://www.ncbi.nlm.nih.gov/pubmed/23566548
http://dx.doi.org/10.1093/gbe/evr093
http://www.ncbi.nlm.nih.gov/pubmed/21920903
http://dx.doi.org/10.1089/cmb.2006.13.320
http://www.ncbi.nlm.nih.gov/pubmed/16597243
http://dx.doi.org/10.1007/s00239-005-0096-1
http://www.ncbi.nlm.nih.gov/pubmed/16830091
http://dx.doi.org/10.1186/1748-7188-7-31
http://www.ncbi.nlm.nih.gov/pubmed/23167951
http://dx.doi.org/10.1186/1471-2105-14-S15-S5
http://www.ncbi.nlm.nih.gov/pubmed/24564227
http://dx.doi.org/10.1093/bioinformatics/bts374
http://dx.doi.org/10.1093/bioinformatics/bts374
http://www.ncbi.nlm.nih.gov/pubmed/22962456
http://dx.doi.org/10.2307/2412407
http://www.ncbi.nlm.nih.gov/pubmed/3447015
http://dx.doi.org/10.1093/sysbio/46.3.523
http://dx.doi.org/10.1093/molbev/msl072
http://dx.doi.org/10.1093/molbev/msl072
http://www.ncbi.nlm.nih.gov/pubmed/16877499


42. Lafond M, Chauve C, Dondi R, El-Mabrouk N. Polytomy refinement for the correction of dubious dupli-
cations in gene trees. Bioinformatics. 2014; 30(17):i519–i526. doi: 10.1093/bioinformatics/btu463
PMID: 25161242

43. Khan MA, Elias I, Sjölund E, Nylander K, Guimera RV, Schobesberger R, et al. Fastphylo: fast tools for
phylogenetics. BMC Bioinformatics. 2013; 14:334. doi: 10.1186/1471-2105-14-334 PMID: 24255987

44. Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002; 51
(3):492–508. doi: 10.1080/10635150290069913 PMID: 12079646

45. Lucas JM, Muffato M, Roest Crollius H. PhylDiag: identifying complex synteny blocks that include tan-
dem duplications using phylogenetic gene trees. BMC Bioinformatics. 2014; 15(1):268. doi: 10.1186/
1471-2105-15-268 PMID: 25103980

46. Mahmudi O, Sjöstrand J, Sennblad B, Lagergren J. Genome-wide probabilistic reconciliation analysis
across vertebrates. BMC Bioinformatics. 2013; 14 Suppl 15:S10. doi: 10.1186/1471-2105-14-S15-S10
PMID: 24564421

47. Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, et al. Sequencing of the sea
lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature genetics.
2013; 45(4):415–421. doi: 10.1038/ng.2568 PMID: 23435085

48. Mehta TK, Ravi V, Yamasaki S, Lee AP, Lian MM, Tay BH, et al. Evidence for at least six Hox clusters
in the Japanese lamprey (Lethenteron japonicum). Proceedings of the National Academy of Sciences.
2013; 110(40):16044–16049. doi: 10.1073/pnas.1315760110

49. Rambaut A. Figtree; 2006. http://tree.bio.ed.ac.uk/software/figtree/

50. Sonnhammer ELL, Gabaldón T, Sousa da Silva AW, Martin M, Robinson-Rechavi M, Boeckmann B,
et al. Big data and other challenges in the quest for orthologs. Bioinformatics. 2014; p. btu492.

51. Cohen O, Ashkenazy H, Burstein D, Pupko T. Uncovering the co-evolutionary network among prokary-
otic genes. Bioinformatics. 2012; 28(18):i389–i394. doi: 10.1093/bioinformatics/bts396 PMID:
22962457

52. Rasmussen MD, Kellis M. Unified modeling of gene duplication, loss, and coalescence using a locus
tree. Genome Research. 2012; 22(4):755–765. doi: 10.1101/gr.123901.111 PMID: 22271778

53. Ma�nuch J, Patterson M, Wittler R, Chauve C, Tannier E. Linearization of ancestral multichromosomal
genomes. BMC Bioinformatics. 2012; 13 Suppl 19:S11. doi: 10.1186/1471-2105-13-S19-S11 PMID:
23281593

54. Abby SS, Tannier E, Gouy M, Daubin V. Lateral gene transfer as a support for the tree of life. Proceed-
ings of the National Academy of Sciences USA. 2012; 109(13):4962–4967. doi: 10.1073/pnas.
1116871109

55. Patterson M, Szöllősi G, Daubin V, Tannier E. Lateral gene transfer, rearrangement, reconciliation.
BMC Bioinformatics. 2013; 14 Suppl 15:S4. doi: 10.1186/1471-2105-14-S15-S4 PMID: 24564205

56. Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection.
Bioinformatics. 2001; 17(12):1246–1247. doi: 10.1093/bioinformatics/17.12.1246 PMID: 11751242

Efficient Gene Tree Correction Guided by Genome Evolution

PLOS ONE | DOI:10.1371/journal.pone.0159559 August 11, 2016 22 / 22

http://dx.doi.org/10.1093/bioinformatics/btu463
http://www.ncbi.nlm.nih.gov/pubmed/25161242
http://dx.doi.org/10.1186/1471-2105-14-334
http://www.ncbi.nlm.nih.gov/pubmed/24255987
http://dx.doi.org/10.1080/10635150290069913
http://www.ncbi.nlm.nih.gov/pubmed/12079646
http://dx.doi.org/10.1186/1471-2105-15-268
http://dx.doi.org/10.1186/1471-2105-15-268
http://www.ncbi.nlm.nih.gov/pubmed/25103980
http://dx.doi.org/10.1186/1471-2105-14-S15-S10
http://www.ncbi.nlm.nih.gov/pubmed/24564421
http://dx.doi.org/10.1038/ng.2568
http://www.ncbi.nlm.nih.gov/pubmed/23435085
http://dx.doi.org/10.1073/pnas.1315760110
http://tree.bio.ed.ac.uk/software/figtree/
http://dx.doi.org/10.1093/bioinformatics/bts396
http://www.ncbi.nlm.nih.gov/pubmed/22962457
http://dx.doi.org/10.1101/gr.123901.111
http://www.ncbi.nlm.nih.gov/pubmed/22271778
http://dx.doi.org/10.1186/1471-2105-13-S19-S11
http://www.ncbi.nlm.nih.gov/pubmed/23281593
http://dx.doi.org/10.1073/pnas.1116871109
http://dx.doi.org/10.1073/pnas.1116871109
http://dx.doi.org/10.1186/1471-2105-14-S15-S4
http://www.ncbi.nlm.nih.gov/pubmed/24564205
http://dx.doi.org/10.1093/bioinformatics/17.12.1246
http://www.ncbi.nlm.nih.gov/pubmed/11751242

