
HAL Id: hal-01162929
https://hal.science/hal-01162929

Submitted on 11 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PAXQuery: Efficient Parallel Processing of Complex
XQuery

Jesús Camacho-Rodríguez, Dario Colazzo, Ioana Manolescu

To cite this version:
Jesús Camacho-Rodríguez, Dario Colazzo, Ioana Manolescu. PAXQuery: Efficient Parallel Processing
of Complex XQuery. IEEE Transactions on Knowledge and Data Engineering, 2015, 27 (7), pp.1977
- 1991. �10.1109/TKDE.2015.2391110�. �hal-01162929�

https://hal.science/hal-01162929
https://hal.archives-ouvertes.fr

1

PAXQuery: Efficient Parallel Processing of
Complex XQuery

Jesús Camacho-Rodrı́guez, Dario Colazzo, and Ioana Manolescu

Abstract—Increasing volumes of data are being produced and exchanged over the Web, in particular in tree-structured formats such
as XML or JSON. This leads to a need of highly scalable algorithms and tools for processing such data, capable to take advantage of
massively parallel processing platforms.
This work considers the problem of efficiently parallelizing the execution of complex nested data processing, expressed in XQuery. We
provide novel algorithms showing how to translate such queries into PACT, a recent framework generalizing MapReduce in particular
by supporting many-input tasks. We present the first formal translation of complex XQuery algebraic expressions into PACT plans, and
demonstrate experimentally the efficiency and scalability of our approach.

Index Terms—XQuery processing, XQuery parallelization, XML data management.

F

1 INTRODUCTION
To scale data processing up to very large data volumes,
platforms are increasingly relying on implicit parallel frame-
works [9], [20], [51]. The main advantage of using such
frameworks is that processing is distributed across many
sites without the application having to explicitly handle data
fragmentation, fragment placement etc.

By far the most widely adopted framework, MapRe-
duce [20] features a very simple processing model consisting
of two operations, Map which distributes processing over sets
of (key, value) pairs, and Reduce which processes the sets of
results computed by Map for each distinct key. However, the
simplicity of this processing model makes complex compu-
tations hard to express. Therefore, high-level data analytics
languages such as Pig [39], Hive [48] or Jaql [12], that
are translated (compiled) into MapReduce programs, have
emerged. Still, complex processing translates to large and com-
plex MapReduce programs, which may miss parallelization
opportunities and thus execute inefficiently.

Recently, more powerful abstractions for implicitly parallel
data processing have emerged, such as the Resilient Dis-
tributed Datasets [51] or Parallelization Contracts [9] (PACT,
in short). In particular, PACT pushes the idea of MapReduce
further by (i) manipulating records with any number of fields,
instead of (key, value) pairs, (ii) enabling the definition of
custom parallel operators by means of second-order func-
tions, and (iii) allowing one parallel operator to receive as
input the outputs of several other such operators. Due to its
declarative nature, a PACT program can have multiple physical

• Jesús Camacho-Rodrı́guez is with Hortonworks Inc. 5470 Great America
Parkway, Santa Clara, CA 95054, USA.
E-mail: jcamachorodriguez@hortonworks.com.

• Dario Colazzo is with Université Paris-Dauphine. Place du Maréchal de
Lattre de Tassigny, 75775 Paris Cedex, France.
E-mail: dario.colazzo@dauphine.fr.

• Ioana Manolescu is with Inria and Université Paris-Sud. Bâtiment 650
(PCRI), 91405 Orsay Cedex, France.
E-mail: ioana.manolescu@inria.fr.

execution plans with varying performance. At compile time,
the compiler choses an optimal strategy (plan) that maximizes
parallelisation opportunities, and thus efficiency. The PACT
model lies at the core of the Stratosphere platform [47], which
can read data from and write data to the Hadoop Distributed
File System (HDFS) [3].

In this work, we are interested in the implicit parallelization
of XQuery [43], the W3C’s standard query language for XML
data. The language has been recently enhanced with features
geared towards XML analytics [22], such as explicit group-
ing. Given a very large collection of documents, evaluating
an XQuery query that navigates over these documents and
also joins results from different documents raises performance
challenges, which may be addressed by parallelism. In contrast
with prior work [13], [19], [29], we are interested in implicit
parallelism, which does not require the application (or the
user) to partition the XML input nor the query across many
nodes.

The contributions of this work are the following:
1) We present a novel methodology for massively parallel

evaluation of XQuery, based on PACT and previous
research in algebraic XQuery optimization.

2) We provide a translation algorithm from the algebraic
operators required by a large powerful fragment of
XQuery into operators of the PACT parallel frame-
work. This enables parallel XQuery evaluation without
requiring data or query partitioning effort from the
application.
Toward this goal, we first map XML data instances into
PACT nested records, to ensure XML query results are
returned after the PACT manipulations of nested records.
Second, we bridge the gap between the XQuery algebra,
and in particular, many flavors of joins [21], [34], [35]
going beyond simple conjunctive equality joins, and
PACT operators which (like MapReduce) are fundamen-
tally designed around the equality of key values in their
inputs.
Our translation of complex joins is of interest beyond

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

the XQuery context, as it may enable compiling other
high-level languages [12], [39], [48] into PACT and
other models, and thus, their efficient parallelization by
platforms such as Stratosphere [47] or Spark [4].

3) We fully implemented our translation technique into our
PAXQuery platform. We present experiments demon-
strating that our translation approach (i) effectively
parallelizes XQuery evaluation taking advantage of the
PACT framework, and (ii) scales well beyond alternative
approaches for implicitly parallel XQuery evaluation, in
particular as soon as joins across documents are present
in the workload.

It is worth observing that, thanks to XML flexibility, PAX-
Query can be exploited for efficiently processing large amount
of heterogeneous data, going from relational to JSON data.
While JSON data can be easily and efficiently encoded into
XML data in a streaming fashion, well established techniques
exist to efficiently map rational data into XML data (e.g.,
[24], [32]); actually, a basic encoding of tables to flat XML
files would suffice, as PAXQuery is able to efficiently perform
various kind of joins, in order to recombine data coming from
XML documents corresponding to different tables.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the problem by means of an example.
Section 3 provides background on XML, XQuery, and the
PACT model. Section 4 overviews our complete solution and
characterizes the XQuery algebras targeted by our translation.
Section 5 presents the translation algorithm from XQuery
plans to PACT, at the core of this work. Section 6 describes
our experimental evaluation. Section 7 discusses related work
and then we conclude.

2 MOTIVATION
Example 1. Consider the following XQuery that extracts the
name of users, and the items of their auctions (if any):
let $pc := collection(‘ people ’),

$cc := collection(‘ c losed auct ions ’)
for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name

let $r :=

for $c in $cc//closed_auction,

$b in $c/buyer/@person,

$s in $c/seller/@person

let $a := $c/itemref

where $i = $b or $i = $s

return $a

return <res>{$n,$r}</res>

⇧

We would like to evaluate this query over two large col-
lections of documents (concerning people, respectively closed
auctions) stored in HDFS. Evaluating the query in a massively
parallel fashion as previously proposed e.g. in [29] requires
the programmer to explicitly insert parallelization primitives
in the query, which requires time and advanced expertise.
Alternatively, one could partition the XML data, as in [13],
[19], and run the query as such. This also requires human input
(potentially different for each query); moreover, for complex
XQuery queries like the one in Example 1, it also requires
manual decomposition of the query into (i) ”embarrassingly
parallel” subqueries which can be directly run in parallel over
many documents, and (ii) a ”recomposition” query that applies
the remaining query operations.

xmlwrite

reduce(post)

cogroup($i=$b) cogroup($i=$s)

map(navigation1) map(navigation2)

xmlscan(‘people’) xmlscan(‘closed auctions’)

Fig. 1. Outline of the PACT program generated by PAX-
Query for the XQuery in Example 1.

In contrast, given this query, PAXQuery generates in a fully
automated fashion the PACT program shown in Figure 1. We
outline here its functioning while on purpose omitting details,
which will be introduced later on. The xmlscan(‘people’)
and xmlscan(‘closed auctions’) operators scan (in parallel) the
respective collections and transform each document into a
record. Next, the map operators navigate in parallel within
the records thus obtained, following the query’s XPath expres-
sions, and bind the query variables. The next operators in the
PACT plan (cogroup) go beyond MapReduce. In a nutshell,
a cogroup can be seen as a reduce operator on multiple
inputs: it groups together records from all inputs sharing the
same key value, and then it applies a user-defined function on
each group. In this example, the functions are actually quite
complex (we explain them in Section 5). The difficulty they
have to solve is to correctly express (i) the disjunction in the
where clause of the query, and (ii) the outerjoin semantics
frequent in XQuery: in this example, a <res> element must
be output even for people with no auctions. The output of both
cogroup operators is received by the reduce, which builds
join results between people and closed auctions, while the last
xmlstore builds and returns XML results.

This approach enables us to take advantage of the Strato-
sphere platform [47] in order to automatically parallelize com-
plex XML processing, expressed in a rich dialect of XQuery. In
contrast, state-of-the-art solutions require partitioning, among
nodes and by hand, the query and/or the data. Moreover,
using PACT gives PAXQuery a performance advantage over
MapReduce-based systems, because PACT’s more expressive
massively parallel operators allow more efficient query imple-
mentations.

3 BACKGROUND
In the following, we provide background on the XML data
model and XQuery dialect we target (Section 3.1), and the
PACT programming model used by Stratosphere (Section 3.2).

3.1 XML and XQuery fragment
XML data. We view XML data as a forest of ordered, node-
labeled, unranked trees, as outlined by the simple grammar:

Tree d ::= si | li[f]
Forest f ::= () | f,f | d

A tree d is either a text node (s
i

), or an element node having
the label l

i

and a forest of children; in accordance with the
W3C’s XML data model, each node is endowed with a unique
identity, which we materialize through the

i

index. A forest f

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Q1
let $ic := collection(‘ i tems ’)
let $i := $ic/site/regions//item

return count($i)

Q2

let $ic := collection(‘ i tems ’)
for $i in $ic/site/regions//item

let $l := $i/location/text()

group by $l

return <res><name>{$l}</name>

<num>{count($i)}</num></res>

Q3

let $pc := collection(‘ people ’),
$cc := collection(‘ c losed auct ions ’)

for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name/text()

let $a :=

for $t in $cc/site/closed_auctions/closed_auction,

$b in $t/buyer/@person

where $b = $i

return $t

return <item person="{$n}">{count($a)}</item>

Fig. 2. Sample queries expressed in our XQuery gram-
mar.

is a sequence of XML trees; () denotes the empty forest. For
the sake of presentation we omitted attributes in our grammar.
XQuery dialect. We consider a representative subset of the
XQuery 3.0 language [43]. Our goal was to cover (i) the
main navigating features of XQuery, and (ii) key constructs
to express analytical style queries e.g. aggregation, explicit
grouping, or rich comparison predicates. However, extensions
to support other XQuery constructs e.g. if or switch expres-
sions, can be integrated into our proposal in a straightforward
manner. The full presentation of our XQuery dialect, including
the grammar, can be found in Appendix A.

Figure 2 provides three sample queries. A path starts from
the root of each document in a collection found at URI Uri ,
or from the root of one document at URI Uri , or from the
bindings of a previously introduced variable. The path expres-
sion dialect Path belongs to the XPath{/,//,[]} language [37].
We support two different types of comparators in predicates:
(ValCmp) to compare atomic values, and (NodeCmp) to
compare nodes by their identity. Finally, the group by clause
groups tuples based on variable values.

In Figure 2, queries Q1 and Q2 use only one collection of
documents while query Q3 joins two collections. Further, Q2

and Q3 construct new XML elements while Q1 returns the
result of an aggregation over nodes from the input documents.

3.2 PACT framework
The PACT model [9] is a generalization of MapReduce,
based on the concept of parallel data processing operators.
PACT plans are DAGs of implicit parallel operators, that are
optimized and translated into explicit parallel data flows by
Stratosphere.

We introduce below the PACT data model and formalize
the semantics of its operators.
Data model. PACT plans manipulate records of the form:

r = ((f1, f2, . . . , fn), (i1, i2, . . . , ik))
where 1 k n and:

• (f1, f2, . . . , fn) is a list of fields f

i

. In turn, a field f

i

is
either an atomic value (string) or a list (r01, . . . , r0m) of
records.

• (i1, i2, . . . , ik) is a possibly empty list of record positions
in [1 . . . n] indicating the key fields for the record. Each
of the key fields must be an atomic value.

Operator

 User function (UF)
Parallelization

contract

Annotations
Compiler hints DataData

Fig. 3. PACT operator outline.

The key of a record r, denoted by r.key , is the list of all the
key fields (f

i1 , fi2 , . . . , fik). We denote by r[i] the field i of
record r. A ?-record is a record whose fields consist of null
(?) values. Finally, R denotes the infinite domain of records.
Path indexes are needed to describe navigation through
records. A path index pi obeys the grammar pi := j.pi | ✏,
with j � 0. Navigation through r along a path index j.pi first
selects r[j]. If pi is empty (✏), then we are at the target field.
Otherwise, if r[j] is a list of records (the field at position j is
nested), pi navigation is performed on each record.
Data sources and sinks are, respectively, the starting and
terminal nodes of a PACT plan. The input data is stored
in files; the function parameterizing data source operators
specifies how to structure the data into records. In turn, data
is output into files, with the destination and format similarly
controlled by an output function.
Semantics. Operators are data processing nodes in a PACT
plan. Each operator manipulates bags of records; we write
{{r1, r2, . . . , rn}} to indicate a bag of n records. From now
on, for simplicity, we will call a PACT operator simply a
PACT, whenever this does not cause confusion. As Figure 3
shows, a PACT consists of (i) a parallelization contract, (ii) a
user function (UF in short) and (iii) optional annotations and
compiler hints characterizing the UF behaviour. We describe
these next.

1) Parallelization contract. A PACT can have k � 1
inputs, each of which is a finite bag of records. The
contract determines how input records are organized into
groups.

2) User function. The UF is executed independently over
each bag of records created by the parallelization con-
tract, therefore these executions can take place in paral-
lel. For each input bag of records, the UF returns a bag
of records.

3) Annotations and/or compiler hints may be used to enable
optimizations (with no impact on the semantics), thus we
do not discuss them further.

The semantics of the PACT op given as input k bags of
records I1, . . . , Ik, with I

i

⇢ R, 1 i k, and having the
parallelization contract c and the user function f is:

op(I1, . . . , Ik) =
S

s2c(I1,...,Ik)

f(s)

In the above, c builds bags of records by grouping the input
records belonging to bags I1, . . . , Ik; f is invoked on each bag
produced by c, and the resulting bags are unioned.
Predefined contracts. Although the PACT model allows
creating custom parallelization contracts, a set of them for
the most common cases is built-in:

• Map has a single input, and builds a singleton for each
input record. Formally, given the bag I1 ⇢ R of records,
Map is defined as:

cmp(I1) = {{{r} | r 2 I1}}

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

XML algebra
expression

Extended XQuery
Data Model (EXDM)

PACT plan PACT Data Model

Stratosphere
system

XQuery XQuery Data
Model (XDM)

XQuery
results

XML
documents

Fig. 4. Translation process overview.

• Reduce also has a single input and groups together all
records that share the same key. Given a bag of input
records I1:
crd(I1) = {s = {{r1, r2, . . . , rm}} | r1, r2, . . . , rm 2 I1

and r1.key = r2.key = . . . = r

m

.key and
6 9r0 2 I1 \ s such that (r0.key = r1.key)}

• Cross builds the cartesian product of two inputs.
• Match builds all pairs of records from its two inputs,

which share the same key. Thus, given I1, I2 ⇢ R:
cmt(I1, I2) = {{(r1, r2) | r1 2 I1, r2 2 I2 and

r1.key = r2.key}}
• CoGroup can be seen as a “Reduce on two inputs”; it

groups the records from the both inputs, sharing the same
key value. Formally, given I1, I2 ⇢ R:
ccg(I1, I2) = {s = {{r11, . . . , r1m, r21, . . . , r2j}} |

r11, . . . , r1m 2 I1 and r21, . . . , r2j 2 I2

and 8r, r0 2 s : r.key = r

0
.key

and 6 9r00 2 (I1 [I2) \ s
such that r00.key = r11.key}

4 OUTLINE
Our approach for implicit parallel XQuery evaluation is to
translate XQuery into PACT plans as depicted in Figure 4.
The central vertical stack traces the query translation steps
from the top to the bottom, while at the right of each step we
show the data models manipulated by that step.

First, the XQuery query is represented as an algebraic
expression, on which multiple optimizations can be applied.
XQuery translation into different algebra formalisms and the
subsequent optimization of resulting expressions have been
extensively studied [10], [15], [42], [52]. In Section 4.1,
we characterize the class of XML algebras over which our
translation technique can be applied, while we present the
nested-tuple data model and algebra used by our work in
Section 4.2.

Second, the XQuery logical expression is translated into a
PACT plan; we explain this step in detail in Section 5.

Finally, the Stratosphere platform receives the PACT plan,
optimizes it, and turns it into a data flow that is evaluated in
parallel; these steps are explained in [9].

4.1 Assumptions on the XQuery algebra
Numerous logical algebras have been proposed for
XQuery [10], [21], [34], [42]. While the language has
a functional flavor, most algebras decompose the processing

of a query into operators, such as: navigation (or tree pattern
matching), which given a path (or tree pattern) query, extracts
from a document tuples of nodes matching it; selection;
projection; join etc.

A significant source of XQuery complexity comes from
nesting: an XQuery expression can be nested in almost any
position within another. In particular, nested queries challenge
the optimizer, as straightforward translation into nested plans
leads to very poor performance. For instance, in Figure 2, Q3

contains a nested subquery for $t ... return $t (shown
indented in the figure); let us call it Q4 and write Q3 = e(Q4).
A naı̈ve algebraic expression of such a query would evaluate
Q4 once per result of e in order to compute Q3 results, which
is typically inefficient.

Efficient optimization techniques translate nested XQuery
into unnested plans relying on joining and grouping [7], [21],
[35]. Thus, a smarter method to represent such query is to
connect the sub-plans of Q4 and e with a join in the plan of
Q3; the join condition in this example is $b=$i. Depending
on the query shape, such decorrelating joins may be nested
and/or outer.

Our goal is to complement existing engines, which translate
from XQuery to an internal algebra, by an efficient compilation
of this algebra into an implicit parallel framework such as
PACT. This enables plugging a highly parallel back-end to an
XQuery engine to improve its scalability. Accordingly, we aim
to adapt to any XML query algebra satisfying the following
two assumptions:

• The algebra is tuple-oriented (potentially using nested
tuples).

• The algebra is rich enough to support decorrelated
(unnested) plans even for nested XQuery; in particular
we consider that the query plan has been unnested before
we start translating it into PACT.

Three observations are of order here.
First, to express complex queries without nesting, the al-

gebra may include any type of joins (conjunctive/disjunctive,
value or identity-based, possibly nested, possibly outer), as
well as grouping; accordingly, we must be able to translate all
such operators into PACT.

Second, a tuple-based algebra for XQuery provides border
operators for (i) creating tuples from XML trees, in leaf
operators of the algebraic plan; (ii) constructing XML trees
out of tuples, at the top of the algebraic plan, so that XML
results can be returned.

Finally, we require no optimization but unnesting [35] to
be applied on the XML algebraic plan before translating it to
PACT; however, any optimization may be applied before (and
orthogonal to) our translation.

4.2 Algebra and data model
In the sequel, we present our work based on the algebra in [34].
We describe the nested tuple data model manipulated by this
algebra, then present its operators.
Nested tuples data model for XML. The data model extends
the W3C’s XPath/XQuery data model with nested tuples to
facilitate describing algebraic operations.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

e1 $pc:*

site

people

$p: person

$i: @id $n: name

n: $t

e2 $cc:*

$c: closed auction

buyer

$b: @person

seller

$s: @person

$a: itemref

n: $u

construct

L

nojoin

l

$i=$b_$i=$s

nav

e1 nav

e2

scan(‘people’) scan(‘closed auctions’)

S1:=($pc)

S2:=($pc, $p, $i, $t{$n})

S3:=($cc)

S4:=($cc, $c, $b, $s, $u{$a})

S5:=($pc, $p, $i, $t{$n},
$r{$cc, $c, $b, $s, $u{$a}})

Fig. 5. Sample logical plan for the query in Example 1.

Formally, a tuple t is a set of variable-value pairs:
{($V 1, v1), ($V 2, v2), . . . , ($V k

, v

k

)}
where the variable names $V

i

are all distinct, and each value
v

i

is either (i) an item, which can be an XML node, atomic
value or ?, or (ii) an homogeneous collection of tuples (see
below).

Three flavours of collections are considered, namely: lists,
bags and sets, denoted as (t1, t2, . . . , tn), {{t1, t2, . . . , tn}},
and {t1, t2, . . . , tn}, respectively.

Tuple schemas are needed for our discussion. The schema
S of a tuple t is a set of pairs {($V 1, S1), . . . , ($V n

, S

n

)}
where each S

i

is the schema of the value of the variable $V
i

.
We use val to denote the type of (any) atomic value, and
node to denote an XML node type. Further, a collection of
values has the schema C{S} where C is list, bag, or set,
depending on the kind of collection, and S is the schema of
all values in the collection i.e., only homogeneous collections
are considered.

The tuple resulting from the concatenation of the lists of
fields of two tuples t1 and t2 is denoted by t1+t2.
Algebraic representation of XQuery. In the following, we
introduce the translation process and the main operators by
example. A methodology for translating our XQuery dialect
into the algebra we consider was described in [7], and de-
tailed through examples in [33]. The complete list of algebra
operators and their semantics can be found in Appendix B.

Example 1 (continuation). The algebraic plan corresponding
to the XQuery introduced in Section 2 is shown in Figure 5.
For simplicity, we omit the variable types in the operators
schema and only show the variable names. We discuss the
operators starting from the leaves.

The XML scan operators take as input the ‘people’ (respec-
tively ‘closed auctions’) XML forests and create a tuple out of
each tree in them. XML scan is one of the border operators.

XPath and XQuery may perform navigation, which, in
a nutshell, binds variables to the result of path traversals.
Navigation is commonly represented through tree patterns,
whose nodes carry the labels appearing in the paths, and
where some target nodes are also annotated with names of
variables to be bound, e.g. $pc, $i etc. The algebra we

consider allows to consolidate as many navigation operations
from the same query as possible within a single navigation
tree pattern, and in particular navigation performed outside
of the for clauses [7], [21], [36]. Large navigation patterns
lead to more efficient query execution, since patterns can be
matched very efficiently against XML documents; for instance,
if the pattern only uses child and descendant edges, it can be
matched in a single pass over the input [17]. In the spirit of
generalized tree patterns [18], annotated tree patterns [40],
or XML access modules [6], we assume a navigation (nav)
operator parameterized by an extended tree pattern (ETP)
supporting multiple returning nodes, child and descendant
axis, and nested and optional edges.

Consider the ETP e1 in Figure 5. The node labeled $n:name
is (i) optional and (ii) nested with respect to its parent node
$p:person, since by XQuery semantics: (i) if a given $p lacks
a name, it will still contribute to the query result; (ii) if a given
$p has several names, let binds them all into a single node
collection. The operator nav

e1 concatenates each input tuple
successively with all @id attributes (variable $i) and name

elements (variable $n) resulting from the embeddings of e1

in the value bound to $pc. Observe that variable $n is nested
into variable $t, which did not appear in the original query;
in fact, $t is created by the XQuery to algebra translation
to hold the nested collection with values bound to $n. The
operator nav

e2 is generated in a similar fashion. Therefore, in
the previous query, ETPs e1 and e2 correspond to the following
fragment:
for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name

let $r :=

for $c in $cc//closed_auction,

$b in $c/buyer/@person,

$s in $c/seller/@person

let $a := $c/itemref

Above the nav operators in Figure 5, we find a nested join
(nojoin l

⇢

) on a disjunctive predicate ⇢, which selects those
people that appear as buyers or sellers in an auction.

Finally, the XML construction (construct
L

) is the border
operator responsible for transforming a collection of tuples
to XML forests [25], [46]. The information on how to build
the XML forest is specified by a list L of construction tree
patterns (CTPs in short), attached to the construct operator.
For each tuple in its input, construct

L

builds one XML tree
for each CTP in L [34]. In our example, L contains a single
CTP that generates for each tuple an XML tree consisting
of elements of the form <res>{$n,$r}</res>. We omit
further details here; the interested reader may find them in
Appendix B. ⇧

Full operator set. We briefly comment below on the rest of
operators that are handled by our translation.

The rest of unary operators are very close to their known
counterparts in nested relational algebra. These are flatten
(flat

p

) which unnests tuples, selection (sel
⇢

) based on a predi-
cate ⇢, projection (proj

V

), aggregation (agg
p,a,$r) computing

the usual aggregates over (nested) records, and value-based
duplicate elimination (dupelim

V

). One operator that is slightly
different is group-by (grp

G

id

,Gv,$r). In order to conform to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

vi ! ri i = 1 . . . n

(($V 1, v1), . . . ($V n, vn)) ! r1+ . . .+rn
(TUPLE)

v ::node

v ! (id(v), v)
(XMLNODE)

v ::val

v ! (v)
(ATOMICVALUE)

v :: C{S} v ⌘ [t1, t2, . . . , tm]
ti ! ri i = 1 . . .m

v ! ((r1, . . . , rm))
(COLLVALUE)

Fig. 6. Data model translation rules.

XML semantics, the operator may group by identity based
on the variables in G

id

, and/or by value on the variables in
G

v

[21], [34].
Binary operators include the usual cartesian product (prod),

join (join
⇢

), outer join (ojoin l

⇢

) and nested outer join
(nojoin l

⇢

).

5 XML ALGEBRA TO PACT
Within the global approach depicted in Figure 4, this section
describes our contribution: translating (i) from the Extended
XQuery Data Model (or EXDM, in short) into the PACT Data
Model (Section 5.1) and (ii) from algebraic expressions into
PACT plans (Section 5.2). The most complex technical issues
are raised by the latter.

XQuery algebraic plans are translated into PACT plans
recursively, operator by operator; for each XQuery operator,
the translation outputs one or several PACT operators for
which we need to choose (i) the parallelization contract
(and possibly its corresponding key fields), and (ii) the user
function, which together determine the PACT behavior. The
hardest to translate are those algebraic operators whose input
cannot be fragmented based on conjunctive key equalities
(e.g., disjunctive joins) . This is because all massively parallel
operators in PACT are based on key equality comparisons [9].
Translation rules. As in [42], we use deduction rules to
specify our translation. In a nutshell, a deduction rule describes
how the translation is performed when some conditions are
met over the input. Our rules rely on translation judgments,
noted as J, J

i

, and are of the form:
cond J1 . . . J

n

J

stating that the translation J (conclusion) is recursively made
in terms of translations J1 . . . J

n

(premises) when the
(optional) condition cond holds. The translation judgments J

i

are optional; their absence denotes that the rule handles the
“fixpoint” (start of the recursive translation).

5.1 Translating XML tuples into PACT records
Rules for translating instances of EXDM into those of PACT
rely on translation judgments of the form t ! r , or: “the
EXDM instance t translates into the PACT record r”.

The translation rules appear in Figure 6, where + denotes
record concatenation. Rules produce records whose key fields

TABLE 1
Auxiliary functions details.

Signature Description

S;V 7!id F

Given the variable paths V bound to XML
nodes according to S, returns the index
path positions F in S-records correspond-
ing to the XML node IDs.

S;V 7!v F

Given a list of variable paths V bound to
XML nodes, atomic values or collections,
according to S, returns the index path
positions F of the values of those variables
in S-records.

S;V 7!id,v F “Union” of the two previous functions.

S;L 7! L0
Given a list of CTPs L, returns the CTPs
L0 where variables are replaced with cor-
responding fields in S-records.

S; e 7! e0
Given an ETP e whose root is a variable
in S, builds a new ETP e0 rooted with the
corresponding field position in S-records.

S; ⇢ 7! ⇢0 As above (replace ETPs with predicates).

S1, S2; ⇢ 7! ⇢0
Given a predicate ⇢ referencing variables
in tuples in S1 and S2, generates a new
predicate ⇢0 referencing field positions in
S1- and S2-records.

are not set yet; as we will see in Section 5.2, the keys are
filled in by the translation.

Rule (TUPLE) produces a record from a tuple: it translates
each tuple value, and then builds the output record r by
concatenating the results according to tuple order.

There are three rules that can be triggered by rule (TUPLE).
First, rule (XMLNODE) translates an XML node into a record
with two fields: the first one contains the XML ID, while
the second is the text serialization of the XML tree rooted at
the node. In turn, rule (ATOMICVALUE) translates an XML
value. Finally, rule (COLLVALUE) translates a tuple collection
into a single-field record that contains the nested collection of
records corresponding to the tuples in the input.

5.2 Translating algebraic expressions to PACT
Rules for translating an algebraic expression into a PACT
plan are based on judgments of the form A) P , or:
“A translates into a PACT plan P”. All rules are defined
recursively over the structure of their input A; for instance,
the translation of A = sel

⇢

(A0) relies on the PACT plan P 0

resulting from the translation of the smaller expression A0,
and so on.

The specific behavior of each rule is encoded in the choice
of the parallelization contracts (and corresponding keys) and
the user functions, so this is what we comment on below.
Preliminaries. In the translation, we denote a PACT operator
by its parallelization contract c, user function f and the list
K of key field positions in the PACT input. In particular:

• a unary PACT is of the form c

K

f

; if K=;, for simplicity
we omit it and use just c

f

.
• a binary PACT is of the form c

K1,K2

f

, assuming that the
key of the left input records consists of the fields K1 and
that of the right input records of K2, respectively.

To keep track of attribute position through the translation,
we use a set of helper functions associating to variables

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

A) P SA;L 7! L0

constructL(A)) xmlwriteL0(P)
(CONSTRUCTION)

scan(f)) xmlscan(f)
(SCAN)

Fig. 7. Border operators translation rules.

A) P SA; e 7! e0 f := nav(e0)

nave(A)) mpf (P)
(NAVIGATION)

A) P
SA;G

id

7!
id

G0
id

SA;G
v

7!v G0
v

K := G0
id

+G0
v f := grp(K)

grpG
id

,Gv,$r
(A)) rdKf (P)

(GROUP-BY)

A) P SA; p 7!v pi f := flat(pi)

flatp(A)) mpf (P)
(FLATTEN)

A) P SA; ⇢ 7! ⇢0 f := sel(⇢0)

sel⇢(A)) mpf (P)
(SELECTION)

A) P SA;V 7!id,v V 0 f := proj (V 0)

proj V (A)) mpf (P)
(PROJECTION)

A) P SA; p 7!v pi

if p.length 6= 1
then f := aggn(pi , a) U := mpf
else K := ; f := agg(pi , a) U := rdKf

aggp,a,$r(A)) U(P)
(AGGREGATION)

A) P SA;V 7!v K f := dupelim

dupelimV (A)) rdKf (P)
(DUPLELIM)

Fig. 8. Unary operators translation rules.

from S, the index positions of the corresponding fields in
the PACT records. These functions are outlined in Table 1;
we use the term S-records as a shortcut for records obtained
by translating tuples that conform to schema S. The helper
functions implementation details are quite straightforward.

5.2.1 Border operators translation
Figure 7 outlines the translation of border operators.

Rule (CONSTRUCTION) translates the logical construct

L

operator into a data sink that uses our output function
xmlwrite . For each input record from P , xmlwrite generates
XML content using the list of construction patterns in L

0 and
writes the results to a file.

Rule (SCAN) translates the logical operator scan

f

into a
data source built up by means of our input function xmlscan .
For each XML document in f , xmlscan returns a single-field
record holding the content of the document.

5.2.2 Unary operators translation
Unary operators are translated by the rules in Figure 8.

Rule (NAVIGATION) uses an auxiliary judgment that trans-
lates the input ETP e into e

0 using SA. Navigation is applied
over each record independently, and thus we use a PACT with
a Map contract. The UF is nav , which generates new records

a) construct

L

grp;,{$o},$s

nav

e

scan(‘people’)

S3:=($o, $s{$pc, $p, $r{$n}})

S2:=($pc, $p, $o, $r{$n})

S1:=($pc)

e $pc:*

people

$p: person

watches

watch

$o: @open auction

$n: name

n: $r

b)
xmlscan(‘people’) mp

nav(e0) rd

grp(K) xmlwrite

L

0

K:=(#5)

Fig. 9. Logical expression (a) and corresponding PACT
plan (b) for the query in Example 2.

$pc $p $o $r
$n

id($pc)
#0

v($pc) id($p) v($p) id($o) v($o) $r

id($n) v($n)

#1 #2 #3 #4 #5 #6

#0 #1
EXDM PACT Data

Model

Fig. 10. Example of tuple representation in PACT.

from the (possibly partial) embeddings of e

0 in each input
record.

Rule (GROUP-BY) translates a group-by expression into
a PACT with a Reduce contract, as the records need to be
partitioned by the value of their grouping fields. The fields
in K, which form the key used by the Reduce contract, are
obtained appending G

0
v

to G

0
id

. K is also handed to the grp

UF, which creates one record from each input collection of
records. The new record contains the values for each field in
K, and a new field which is the collection of the input records
themselves.

Example 2. The following XQuery groups together the peo-
ple that share interest in the same auctions:
let $pc := collection(‘ people ’)
for $p in $pc//people/person,

$o in $p/watches/watch/@open_auction

let $n := $p/name

group by $o

return <res><a>{$o}{$n}</res>

The XML algebraic expression generated from this query is
shown in Figure 9a. Using the judgments in Figure 8, the ex-
pression is translated into the PACT plan of Figure 9b. Observe
that the grouping variable $o is translated into field position
#5, since: i) two record fields are created for each of the
first variables $pc and $p (rules (TUPLE) and (XMLNODE)
in Figure 6) and ii) the subsequent two fields correspond to
the id-value pair for $o; the mapping of S2 tuples into PACT
records is shown in Figure 10 (the key field is highlighted).
The same holds for the encoding of fields used in other figures.
⇧

Rule (FLATTEN) translates a flatten expression into a Map
PACT, that applies the flattening UF flat on each input record
independently. The path pi to the nested collection is obtained
from p using SA.

Rule (SELECTION) produces a Map PACT that applies the
selection to each record produced by P . Selection is performed
by the sel UF, which uses the filtering condition ⇢

0 obtained
from ⇢ and SA.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

A1) P1 A2) P2 f := concat

prod(A1,A2)) crf (P1,P2)
(CARTESIANPRODUCT)

A1) P1 A2) P2 SA1 , SA2 ; ⇢ 7! ⇢0

⇢0 *l K1 ⇢0 *r K2 f := concat

join⇢(A1,A2)) mtK1,K2
f (P1,P2)

(^ JOIN=)

A1) P1 A2) P2 SA1 , SA2 ; ⇢ 7! ⇢0

⇢0 *l K1 ⇢0 *r K2 f := oconcat l

ojoin

l
⇢(A1,A2)) cgK1,K2

f (P1,P2)
(LO ^ JOIN=)

A1) P1 A2) P2 SA1 , SA2 ; ⇢ 7! ⇢0

⇢0 *l K1 ⇢0 *r K2 f := noconcat l

nojoin

l
⇢(A1,A2)) cgK1,K2

f (P1,P2)
(NLO ^ JOIN=)

Fig. 11. Cartesian product and conjunctive equi-join trans-
lation rules.

Rule (PROJECTION) translates a projection expression into
a PACT using a Map contract. The positions V

0 of the fields
that should be kept by the projection are obtained from V

using the schema SA.
The translation of (AGGREGATION) is interesting as it can

use one PACT or another, depending on the path p to the
variable being aggregated. If the variable is contained in a
nested collection, i.e., p.length 6= 1, we produce a PACT with
a Map contract; for each input record, the agg

n

UF executes
the aggregation operation a over the field pointed by pi and
outputs a record with the aggregation results.

Otherwise, if the aggregation is executed on the complete
input collection, we use a Reduce contract wrapping the input
in a single group. The agg UF creates an output record having
(i) a field with a nested collection of all input records and (ii) a
field with the result of executing the aggregation a over the
field pointed by pi .

Finally, rule (DUPLELIM) translates a duplicate elimination
expression into a PACT with a Reduce contract. Each group
handed to the UF holds the bag of records containing the same
values in the fields pointed by K; the duplicate elimination UF,
denoted by dupelim , outputs only one record from the group.

5.2.3 Binary operators translation
The rules are depicted in Figure 11; we assume that the inputs
A1 and A2 of the algebraic binary operator translate into the
PACT plans P1 and P2.
a) Cartesian product. This operator requires the simple
concatenation UF, taking as input a pair of records, and
outputting their concatenation: concat(r1, r2) = r1+r2.

Rule (CARTESIANPRODUCT) translates a cartesian product
into a Cross PACT with a concat UF.
b) Joins with conjunctive equality predicates. This family
comprises joins on equality predicates, which can be simple
(natural) equi-joins, or outer joins (without loss of generality
we focus on left outer joins).
b.1) Conjunctive equi-join. The conjunctive equi-join oper-
ator is translated by rule (^ JOIN=), as follows. First, the
predicate ⇢ over A1 and A2 translates into a predicate ⇢

0

over records produced by P1 and P2. Then, the list of fields

pointed by the left (*
l

), resp. right (*
r

) of the condition
⇢

0 are extracted, and finally they are used as the keys of the
generated Match PACT.
b.2) Left outer conjunctive equi-join. In the rule (LO
^ JOIN=), the output PACT is a CoGroup whose keys are
taken from the fields of the translated join predicate ⇢

0. The
CoGroup contract groups the records produced by P1 and P2

sharing the same key. Then, the oconcat

l

UF that we describe
next is applied over each group, to produce the expected result.

Definition 1 (oconcat
l

): The left outer concatenation UF,
oconcat

l

, of two record bags {{r1, . . . , rx}} and {{r01, . . . , r0y}}
is defined as:

• If y 6= 0, the cartesian product of the two bags.
• Otherwise, {{r1+ ?0

, . . . , r

x

+ ?0}} i.e., concatenate
each left input record with a ?-record having the schema
(structure) of the right records. ⇧

b.3) Nested left outer conjunctive equi-join. Similar to the
non-nested case, rule (NLO ^ JOIN=) translates the nested
left outer conjunctive equi-join into a CoGroup PACT whose
key is extracted from ⇢

0. However, we need a different UF in
order to generate the desired right-hand side nested records,
and we define it below.

Definition 2 (noconcat
l

): The nested left outer con-
catenation UF, noconcat

l

, of the bags {{r1, . . . , rx}} and
{{r01, . . . , r0y}} is defined as:

• If y 6= 0, {{r1+(r01, . . . , r
0
y

), . . . , r
x

+(r01, . . . , r
0
y

)}} i.e.,
nest the right set as a new field concatenated to each
record from the left.

• Otherwise, {{r1+(?0), . . . , r
x

+(?0)}} i.e., add to each
left record a field with a list containing a ?-record
conforming to the schema of the right records. ⇧

Example 3. The following XQuery extracts the name of users
and the items that they bought (if any):
let $pc := collection(‘ people ’),

$cc := collection(‘ c losed auct ions ’)
for $p in $pc/site/people/person, $i in $p/@id

let $n := $p/name

let $r :=

for $c in $cc//closed_auction,

$b in $c/buyer/@person

let $a := $c/itemref

where $i = $b

return $a

return <res>{$n,$r}</res>

The query translates into the algebraic expression depicted
in Figure 12a, while the corresponding PACT plan is shown
in Figure 12b.

Rule (NLO ^ JOIN=) translates the nested left outer con-
junctive equi-join into a PACT with a CoGroup contract that
groups together all records having the same values in the
fields corresponding to $i (K1) and $b (K2), and applies our
noconcat

l

UF on them. ⇧

c) Joins with disjunctive equality predicates. Translating
joins with disjunctive equality predicates is harder. The reason
is that PACT contracts are centered around equality of record
fields, and thus inherently not suited to disjunctive semantics.
To solve this mismatch, our translation relies on using more

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

a)
e1 $pc:*

site

people

$p: person

$i: @id $n: name

n: $t

e2 $cc:*

$c: closed auction

buyer

$b: @person

$a: itemref
n: $u

construct

L

nojoin

l

$i=$b

nav

e1 nav

e2

scan(‘people’) scan(‘closed auctions’)

S1:=($pc)

S2:=($pc, $p, $i, $t{$n})

S3:=($cc)

S4:=($cc, $c, $b, $u{$a})

S5:=($pc, $p, $i, $t{$n}, $r{$cc, $c, $b, $u{$a}})

b)
xmlwrite

L

0

cg

noconcatl

mp

nav(e01)
mp

nav(e02)

xmlscan(‘people’) xmlscan(‘closed auctions’)

K1:=(#5) K2:=(#5)

Fig. 12. Logical expression (a) and corresponding PACT
plan (b) for the query in Example 3.

A1) P1 A2) P2

SA1 , SA2 ; ⇢ 7! ⇢0 ⇢0 ⌘ ⇢01 _ . . . _ ⇢0n
⇢0k *l K1k ⇢0k *r K2k

fk := pnjoin(⇢0, k�1) k = 1 . . . n
U := {mtK11,K21

f1
, . . . , mtK1n,K2n

fn
}

join⇢(A1,A2)) U(P1,P2)
(_ JOIN=)

A1) P1 A2) P2

SA1 , SA2 ; ⇢ 7! ⇢0 ⇢0 ⌘ ⇢01 _ . . . _ ⇢0n
⇢0k *l K1k ⇢0k *r K2k

fk := nopnjoinl(⇢
0, k�1) k = 1 . . . n

U := {cgK11,K21
f1

, . . . , cgK1n,K2n
fn

}
SA1 K f 0 := opost l_

ojoin

l
⇢(A1,A2)) rdKf 0(U(P1,P2))

(LO _ JOIN=)

A1) P1 A2) P2

SA1 , SA2 ; ⇢ 7! ⇢0 ⇢0 ⌘ ⇢01 _ . . . _ ⇢0n
⇢0k *l K1k ⇢0k *r K2k

fk := nopnjoinl(⇢
0, k�1) k = 1 . . . n

U := {cgK11,K21
f1

, . . . , cgK1n,K2n
fn

}
SA1 K f 0 := nopost l_

nojoin

l
⇢(A1,A2)) rdKf 0(U(P1,P2))

(NLO _ JOIN=)

Fig. 13. Disjunctive equi-join translation rules.

than one PACT for each operator, as we explain below. The
rules are depicted in Figure 13
c.1) Disjunctive equi-join. In rule (_ JOIN=), the predicate
⇢

0 is generated from ⇢ using SA1 and SA2 . Then, for each
conjunctive predicate ⇢

0
k

in ⇢

0, we create a Match whose
keys are the fields participating in ⇢

0
k

. Observe that the UFs
of these Match operators should guarantee that no erroneous
duplicates are generated when the evaluation of more than
one conjunctive predicates ⇢

0
i

, ⇢

0
j

, i 6= j is true for a certain

a)
e1 $pc:*

site

people

$p: person

$i: @id $n: name

n: $r

e2 $cc:*

$c: closed auction

buyer

$b: @person

seller

$s: @person

construct

L

join$i=$b_$i=$s

nav

e1 nav

e2

scan(‘people’) scan(‘closed auctions’)

S1:=($pc)

S2:=($pc, $p, $i, $r{$n})

S3:=($cc)

S4:=($cc, $c, $b, $s)

S5:=($pc, $p, $i, $r{$n}, $cc, $c, $b, $s)

b)
K11 := (#5)
K12 := (#5)
K21 := (#5)
K22 := (#7)
⇢0 := (#5=#5)_

(#5=#7)

xmlwrite

L

0

mt

pnjoin(⇢0
,0) mt

pnjoin(⇢0
,1)

mp

nav(e01)
mp

nav(e02)

xmlscan(‘people’) xmlscan(‘closed auctions’)

K11

K21K12

K22

Fig. 14. Logical expression (a) and corresponding PACT
plan (b) for the query in Example 4.

record. To that purpose, we define the new UF pnjoin below,
parameterized by k and performing a partial negative join.

Definition 3 (pnjoin): Let ⇢0 = ⇢

0
1 _ ⇢

0
2 _ . . . _ ⇢

0
n

and k

be an integer, with 0 k < n. Given two records r1, r2, the
pnjoin(⇢0, k) UF evaluates ⇢

0
1 _ ⇢

0
2 _ . . ._ ⇢

0
k

over r1, r2, and
outputs r1+r2 if they evaluate to false. ⇧

Note that the UF ensures correct multiplicity of each record
in the result.

Example 4. The following XQuery extracts the names of
users involved in at least one auction, either as buyers or
sellers:
let $pc := collection(‘ people ’),

$cc := collection(‘ c losed auct ions ’)
for $p in $pc/site/people/person, $i in $p/@id,

$c in $cc//closed_auction,

$b in $c/buyer/@person,

$s in $c/seller/@person

let $n := $p/name

where $i = $b or $i = $s

return <res>{$n}</res>

Figure 14a shows the equivalent algebraic expression, while
the corresponding PACT plan is shown in Figure 14b.

Rule (_ JOIN=) translates the disjunctive equi-join into two
PACTs with Match contracts, one per disjunction. Observe that
two distinct values (0 and 1) of k are used in the pnjoin UFs
to prevent spurious duplicates, one for the predicate $i=$b

and one for $i=$s. ⇧

c.2) (Nested) left outer disjunctive equi-join. The translation
of the plain and nested variants of the outer disjunctive equi-
join, described by the (LO _ JOIN=) and (NLO _ JOIN=)
rules respectively, are very similar; as illustrated next, the main
difference resides in the different post-processing operations
they adopt. The translation of these two operators is chal-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

lenging because we want to ensure parallel evaluation of each
conjunctive join predicate in the disjunction, and at the same
time we need to:

1) Avoid the generation of duplicate records. We adopt a
non trivial variation of the technique used previously for
disjunctive equi-join.

2) Recognise records generated by the left hand-side ex-
pression which do not join any record coming from
the right-hand side expression. We use the XML node
identifiers in each left hand-side record to identify it
uniquely, so that, after the parallel evaluation of each
conjunction, a Reduce post-processing PACT groups all
resulting combinations having the same left hand-side
record; if none of such combinations exists, the left
hand-side record representing a group is concatenated
to a (nested) ?-record conforming to the right input
schema, and the resulting record is output; otherwise the
output record(s) are generated from the combinations.

In the first step, we must evaluate in parallel the joins related
to predicates ⇢

0
i

. A PACT with a CoGroup contract is built
for each conjunctive predicate ⇢

0
k

. Each such PACT groups
together all records that share the same value in the fields
pointed by ⇢

0
k

, then applies the nopnjoin

l

UF (see below) on
each group, with the goal of avoiding erroneous duplicates in
the result; the UF is more complex than pnjoin though, as
it has to handle the disjunction and the nesting. nopnjoin

l

is
parameterized by k, as we will use it once for each conjunction
⇢

0
k

. Furthermore, nopnjoin
l

takes as input two bags of records
and is defined as follows, along the lines of pnjoin .

Definition 4 (nopnjoin
l

): Let ⇢0 = ⇢

0
1 _ ⇢

0
2 _ . . . _ ⇢

0
n

be a
predicate where each ⇢

0
i

is conjunctive. Given two input bags
{{r1, . . . , rx}} and {{r01, . . . , r0y}}, the nopnjoin

l

(⇢0, k) UF is
defined as follows:

• If the second input is empty (y = 0), return {{r1+(?0

), . . . , r
x

+(?0)}} i.e., concatenate every left input record
with a field containing a nested list of one ?-record
conforming to the schema of the right input.

• Otherwise, for each left input record r

i

:
1) create an empty list c

i

;
2) for each r

0
j,1jy

, evaluate ⇢

0
1 _ ⇢

0
2 _ . . . _ ⇢

0
k

over
r

i

and r

0
j

, and add r

0
j

to c

i

if the result is false;
3) if c

i

is empty, then insert into c

i

a ?-record with
the schema of the right input;

4) output r
i

concatenated with a new field whose value
is c

i

. ⇧

The second PACT produced by the (LO _ JOIN=) and
(NLO _ JOIN=) rules uses a Reduce contract, taking as input
the outputs of all the CoGroup operators; its key consists of
the XML node identifiers in each left hand-side record (we
denote by the extraction of these fields from the schema).
This amounts to grouping together the records originated from
the same left input record.

Depending on the join flavor though, this last PACT uses a
different UF. For the plain (non-nested) join (LO _ JOIN=),
we use the opost

l_ UF producing records with an unnested
right side. For the nested join (NLO _ JOIN=), on the other

K11 := (#5)
K12 := (#5)
K21 := (#5)
K22 := (#7)
⇢0 := #5=#5_

#5=#7
K := (#0,#2,#4)

xmlwrite

L

0

rd

nopostl_

cg

nopnjoinl(⇢
0
,0) cg

nopnjoinl(⇢
0
,1)

mp

nav(e01)
mp

nav(e02)

xmlscan(‘people’) xmlscan(‘closed auctions’)

K11

K21K12
K22

K K

Fig. 15. PACT plan corresponding to the logical expres-
sion in Figure 5.

hand, the nopost

l_ UF is used to produce nested records. Due
to space constraints, we omit the definition of these UFs here
and delegate their details to Appendix C.

Example 1 (continuation). Our algorithms translate the al-
gebraic expression shown in Figure 5 into the PACT plan
depicted in Figure 15; observe that it is the same PACT plan
that was shown in less detail in Figure 1.

Rule (NLO _ JOIN=) translates the nested left outer dis-
junctive equi-join into (i) two PACTs with CoGroup contracts,
one for each disjunction, and (ii) a PACT with a Reduce
contract that groups together records originating from the same
left-hand side record, i.e., K holds field positions #0,#2,#4,
which contain the XML node identifiers of $pc, $p, $i, respec-
tively. ⇧

d) Joins on inequalities. Our XQuery subset also supports
joins with inequality conditions. In this case, the translation
uses Cross contracts. Further, just like for joins with disjunc-
tive predicates, the non-nested and nested outer variants of
the ✓-join require more than one PACT. The corresponding
translation rules can be found in Appendix D.
Syntactically complex translation vs. performance Clearly,
complex joins such as those considered in c) could be trans-
lated into a single Cross PACT over the pairs of records as
in d). However, this would be less efficient and scale poorly
(number of comparisons quadratic in the input size), as our
experiments will demonstrate.

6 EXPERIMENTAL EVALUATION
We implemented our PAXQuery translation approach in Java
1.6, and relied on the Stratosphere platform [47] supporting
PACT. We first describe the experimental setup, and then
present our results.
Experimental setup. The experiments run in a cluster of 8
nodes on an 1GB Ethernet. Each node has 2 ⇥ 2.93GHz Quad
Core Xeon CPUs, 16GB RAM and two 600GB SATA hard
disks and runs Linux CentOS 6.4. PAXQuery is built on top
of Stratosphere 0.2.1; it stores the XML data in HDFS 1.1.2.
The reported results are averaged over three runs.
XML data. We used XMark [45] data; to study queries joining
several documents, we used the split option of the XMark
generator to create four collections of XML documents, each
containing a specific type of XMark subtrees: users (10% of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

TABLE 2
Query details.

Query Collections Algebra operators (#) Parallelization
contracts (#)

q1 � q3 users Navigation (1) Map (1)
q4, q5 closed auct. Navigation (1) Map (1)
q6 users Navigation (1) Map (1)
q7 closed auct. Navigation (1) Map (2)

Aggregation (2) Reduce (1)
q8 items Navigation (1) Map (2)

Aggregation (2) Reduce (1)
q9 users Navigation (2) Map (3)

closed auct. Projection (1) Reduce (1)
Group-by/aggregation (1) Match (1)
Conj. equi-join (1)

q10 users Navigation (3) Map (5)
items Projection (2) CoGroup (2)
closed auct. NLO conj. equi-join (2)

q11 users Navigation (2) Map (3)
Projection (1) Reduce (1)
Dup. elim. (1) CoGroup (1)
NLO conj. equi-join (1)

q12 users Navigation (2) Map (3)
closed auct. Projection (1) CoGroup (1)

NLO conj. equi-join/
aggregation (1)

q13 users Navigation (2) Map (3)
closed auct. Projection (1) Reduce (2)

NLO disj. equi-join (1) CoGroup (2)
q14 users Navigation (2) Map (3)

open auct. Projection (1) Reduce (2)
NLO ✓-join (1) Cross (1)

the dataset size), items (50%), open auctions (25%) and closed
auctions (15%).

All documents are simply stored in HDFS (which replicates
them three times), that is, we do not control the distribution/al-
location of documents over the nodes.
XML queries. We used a subset of XMark queries from our
XQuery fragment, and added queries with features supported
by our dialect but absent from the original XMark, e.g.
joins on disjunctive predicates; all queries are detailed in
Appendix E.

Table 2 outlines the queries: the collection(s) that each query
carries over, the corresponding algebraic operators and their
numbers of occurrences, and the parallelization contracts used
in the plan generated by our translation framework. Queries
q9-q14 all involve value joins, which carry over thousands of
documents arbitrarily distributed across the HDFS nodes.

6.1 PAXQuery scalability
Our first goal is to check that PAXQuery brings to XQuery
evaluation the desired benefits of implicit parallelism. For this,
we fixed a set of queries, generated 11.000 documents (34GB)
per node, and varied the number of nodes from 1 to 2, 4, 8
respectively; the total dataset size increases accordingly in a
linear fashion, up to 272GB.

Figure 16 shows the response times for each query. Queries
q1-q6 navigate in the input document according to a given
navigation pattern of 5 to 14 nodes; each translates into a
Map PACT, thus their response time follows the the size of

0!

100!

200!

300!

400!

500!

600!

700!

q1! q2! q3! q4! q5! q6! q7! q8! q9! q10!q11!q12!q13!q14!

Ex
ec

ut
io

n
tim

e
(s

)!

1 node, 34 GB!
2 nodes, 68 GB!
4 nodes, 136 GB!
8 nodes, 272 GB!

Fig. 16. PAXQuery scalability evaluation.

the input. These queries scale up well; we see a moderate
overhead in Figure 16 as the data volume and number of nodes
increases.

Queries q7 and q8 apply an aggregation over all the records
generated by a navigation. For both queries, the navigation
generates nested records and the aggregation consists on two
steps. The first step goes over the nested fields in each input
record, and thus it uses a Map contract. The second step is
executed over the results of the first. Therefore, a Reduce
contract that groups together all records coming from the
previous operator is used. Since the running time is dominated
by the Map PACTs which parallelize very well, q7 and q8 also
scale up well.

Queries q9-q12 involve conjunctive equi-joins over the col-
lections. Query q13 executes a NLO disjunctive equi-join,
while q14 applies a NLO ✓-join. We notice a very good scaleup
for q9-q13, whose joins are translated in many PACTs (recall
the rules in Figure 13). In contrast, q14, which translates into
a Cross PACT, scales noticeably less well. This validates the
interest of translating disjunctive equi-joins into many PACTs
(as our rules do), rather than into a single Cross, since, despite
parallelization, it fundamentally does not scale.

6.2 Comparison against other processors
To evaluate the performance of our processor against existing
alternatives, we started by comparing it on a single node with
other popular centralized XQuery processors. The purpose
is to validate our choice of an XML algebra as outlined
in Section 4.2 as input to our translation, by demonstrating
that single-site query evaluation based on such an algebra
is efficient. For this, we compare our processor with BaseX
7.7 [8], Saxon-PE 9.4 [44] and Qizx/open 4.1 [41], on a dataset
of 11000 XML documents (34GB).

Table 3 shows the response times for each query and
processor; the shortest time is shown in bold, while OOM
stands for out of memory, and TO for timeout (above 2 hours).
In Table 3, we identify two query groups. First, q1-q8 do not
feature joins; while the performance varies across systems,
only BaseX and PAXQuery are able to run all these queries.
PAXQuery outperforms other systems because, compiled in
PACT, it is able to exploit the multicore architecture.

In the second group, queries q9-q14 join across the docu-
ments. None of the competing XQuery processors completes
their evaluation, while PAXQuery executes them quite fast. For
these, the usage of outer joins and multicore parallelization are
key to this good performance behavior.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

TABLE 3
Query evaluation time (1 node, 34GB).

Query Evaluation time (seconds)
BaseX Saxon-PE Qizx/open PAXQuery

q1 206 145 90 72
q2 629 OOM OOM 125
q3 600 OOM OOM 120
q4 189 OOM 84 51
q5 183 125 183 51
q6 233 162 109 70
q7 181 111 88 54
q8 599 OOM OOM 126
q9 TO OOM OOM 94
q10 OOM OOM OOM 229
q11 TO TO TO 236
q12 TO OOM OOM 113
q13 TO OOM OOM 424
q14 OOM OOM OOM 331

We next compare our system with other alternatives for
implicitly parallel evaluation of XQuery. As explained in the
Introduction, no comparable system is available yet. Therefore,
for our comparison, we picked the BaseX centralized system
(the best performing in the experiment above) and used
Hadoop-MapReduce on one hand, and Stratosphere-PACT on
the other hand, to parallelize its execution.

We compare PAXQuery, relying on the XML algebra-to-
PACT translation we described, with the following alternative
architecture. We deployed BaseX on each node, and paral-
lelized XQuery execution as follows:

1) Manually decompose each query into a set of leaf sub-
queries performing just tree pattern navigation, followed
by a recomposition subquery which applies (possibly
nested, outer) joins over the results of the leaf sub-
queries;

2) Parallelize the evaluation of the leaf subqueries through
one Map over all the documents, followed by one
Reduce to union all the results. Moreover, if the recom-
position query is not empty, start a new MapReduce
job running the recomposition XQuery query over all
the results thus obtained, in order to compute complete
query results.

This alternative architecture is in-between ChuQL [29],
where the query writer explicitly controls the choice of Map
and Reduce keys, i.e., MapReduce is visible at the query
level, and PAXQuery where parallelism is completely hidden.
In this architecture, q1-q8 translate to one Map and one
Reduce, whereas q9-q14 feature joins which translates into a
recomposition query and thus a second job.

Table 4 shows the response times when running the query
on the 8 nodes and 272GB; the shortest time is in bold. First,
we notice that BaseX runs 2 to 5 times faster on Stratosphere
than on Hadoop. This is due to Hadoop’s checkpoints (writing
intermediary results to disk) while Stratosphere currently does
not, trading reliability for speed. For queries without joins
(q1-q8), PAXQuery is faster for most queries than BaseX on
Hadoop or Stratosphere; this simply points out that our in-
house tree pattern matching operator (physical implementation
of nav) is more efficient than the one of BaseX. Queries with

TABLE 4
Query evaluation time (8 nodes, 272GB).

Query
Evaluation time (seconds)

BaseX BaseX PAXQueryHadoop-MR Stratosphere-PACT
q1 465 66 70
q2 773 282 189
q3 762 243 172
q4 244 72 58
q5 237 72 57
q6 488 70 73
q7 245 74 62
q8 576 237 206
q9 OOM OOM 114
q10 OOM OOM 299
q11 OOM OOM 334
q12 OOM OOM 132
q13 OOM OOM 456
q14 OOM OOM 683

joins (q9-q14) fail in the competitor architecture again. The
reason is that intermediary join results grow too large and this
leads to an out-of-memory error. PAXQuery evaluates such
queries well, based on its massively parallel (outer) joins.

6.3 Conclusions of the experiments
Our experiments demonstrate the efficiency of an XQuery
processor built on top of PACT.

First, our scalability evaluation has shown that the trans-
lation to PACT allows PAXQuery to parallelize every query
execution step with no effort required to partition, redistribute
data etc., and thus to scale out with the number of machines
in a cluster. The only case where scale-up was not so good
is q14 where we used a Cross (cartesian product) to translate
an inequality join; an orthogonal optimization here would be
to use a smarter dedicated join operator for such predicates,
e.g. [38].

Second, we have shown that PAXQuery outperforms com-
petitor XQuery processors, whether centralized or distributed
over Hadoop and Stratosphere. None of the competing proces-
sors was able to evaluate any of our queries with joins across
documents on the data volumes we considered, highlighting
the need for efficient parallel platforms for evaluating such
queries.

7 RELATED WORK
Massively parallel XML query processing. In this area,
MRQL [23] proposes a simple SQL-like XML query language
implemented through a few operators directly compilable into
MapReduce. Like our XQuery fragment, MRQL queries may
be nested, however, its dialect does not allow expressing the
rich join flavours that we use. Further, the XML navigation
supported by MRQL is limited to XPath, in contrast to our
richer navigation based on tree patterns with multiple returning
nodes, and nested and optional edges.

ChuQL [29] is an XQuery extension that exposes the
MapReduce framework to the developer in order to distribute
computations among XQuery engines; this leaves the paral-
lelization work to the programmer, in contrast with our implic-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

itly parallel approach which does not expose the underlying
parallelism at the query level.

HadoopXML [19] and the recent [13] process XML queries
in Hadoop clusters by explicitly fragmenting the input data
in a schema-driven, respectively, query-driven way, which
is effective when querying one single huge document. In
contrast, we focus on the frequent situation when no single
document is too large for one node, but there are many
documents whose global size is high, and queries may both
navigate and join over them. Further, we do not require any
partitioning work from the application level.

After the wide acceptance of Hadoop, other parallel execu-
tion engines and programming abstractions conceived to run
custom data intensive tasks over large data sets have been
proposed: PACT [9], Dryad [27], Hyracks [16] or Spark [51].
Among these, the only effort at parallelizing XQuery is
the ongoing VXQuery project [5], translating XQuery into
the Algebricks algebra, which compiles into parallel plans
executable by Hyracks. In contrast, PAXQuery translates into
an implicit parallel logical model such as PACT. Thus, our
algorithms do not need to address underlying parallelization
issues such as data redistribution between computation steps
etc. which [16] explicitly mentions.

XQuery processing in centralized settings has been thor-
oughly studied, in particular through algebras in [21], [34],
[35], [42]. In this work, our focus is on extending the benefits
of implicit large-scale parallelism to a complex XML alge-
bra, by formalizing its translation into the implicitly parallel
PACT paradigm. As shown by our experiments, even on
top of the Hadoop/Stratosphere-based architectures used in
the experimental comparison with PAXQuery, existing XML
processors [8], [41], [44] cannot scale in the presence of joins
across multiple documents of large collections. Our algebraic
based approach, instead, allows to delegate much more to
Stratosphere system wrt the distributed solution proposed in
Section 6, where joins remain internal to the XQuery engine.

XML data management has also been studied from many
other angles, e.g. on top of column stores [15], distributed
with [30] or without [1] an explicit fragmentation specification,
in P2P [31] etc. We focus on XQuery evaluation through the
massively parallel PACT framework, which leads to specific
translation difficulties we addressed.
Parallelizable nested languages. Recently, many high-level
languages which translate into massively parallel frameworks
have been proposed; some of them work with nested data
and/or feature nesting in the language, thus somehow resemble
XQuery. While PAXQuery’s implementation is specific to
XQuery, the concepts shown in this work are applicable to
these other languages.

Jaql [12] is a scripting language tailored to JSON data,
which translates into MapReduce programs; Meteor [26], also
for JSON, translates into PACT. None of these languages
handles XQuery semantics exactly, since JSON does not
feature node identity; the languages are also more limited,
e.g. Jaql only supports equi-joins.

The Asterix Query Language [11], or AQL in short, is based
on FLOWR expressions and resembles XQuery, but ignores
node identity which is important in XQuery and which we

support. Like VXQuery, AQL queries are translated into Alge-
bricks; recall that unlike our translation, its compilation to the
underlying Hyracks engine needs to deal with parallelization
related issues.

Finally, other higher level languages that support nested
data models and translate into parallel processing paradigms
include Pig [39] or Hive [48]. Our XQuery fragment is more
expressive, in particular supporting more types of joins. In
addition, Pig only allows two levels of nesting in queries,
which is a limitation. In contrast, we translate XQuery into
unnested algebraic plans with (possibly nested, possibly outer)
joins and grouping which we parallelize, leading to efficient
execution even for (originally) nested queries.
Complex operations using implicit parallel models. The
problem of evaluating complex operations through implicit
parallelism is of independent interest. For instance, the ex-
ecution of join operations using MapReduce has been studied
extensively. Shortly after the first formal proposal to compute
equi-joins on MapReduce [50], other studies extending it [14],
[28] or focusing on the processing of specific join types such as
multi-way joins [2], set-similarity joins [49], or ✓-joins [38],
appeared. PAXQuery is the first to translate a large family
of joins (which can be used outside XQuery), into the more
flexible PACT parallel framework.

8 CONCLUSION AND FUTURE WORK
We have presented the PAXQuery approach for the im-
plicit parallelization of XQuery, through the translation of
an XQuery algebraic plan into a PACT parallel plan. We
targeted a rich subset of XQuery 3.0 including recent additions
such as explicit grouping, and demonstrated the efficiency and
scalability of PAXQuery with experiments on collections of
hundreds of GBs.

For future work, we contemplate the integration of indexing
techniques into PAXQuery to improve query evaluation time.
Further, we would like to explore reutilization of intermediary
results in the PACT framework to enable efficient multiple-
query processing.

Acknowledgements. This work has been partially funded by
the KIC EIT ICT Labs activity 12115. We would like to
thank Kostas Tzoumas and the anonymous reviewers for their
valuable comments and suggestions to improve the quality of
this work.

REFERENCES

[1] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo,
“Dynamic XML Documents with Distribution and Replication,” in
SIGMOD, 2003.

[2] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-reduce
environment,” in EDBT, 2010.

[3] “Apache Hadoop,” http://hadoop.apache.org/.
[4] “Apache Spark,” http://spark.apache.org/.
[5] “Apache VXQuery,” http://incubator.apache.org/vxquery/.
[6] A. Arion, V. Benzaken, and I. Manolescu, “XML Access Modules:

Towards Physical Data Independence in XML Databases,” in XIME-P,
2005.

[7] A. Arion, V. Benzaken, I. Manolescu, Y. Papakonstantinou, and R. Vijay,
“Algebra-Based identification of tree patterns in XQuery,” in FQAS,
2006.

[8] “BaseX,” http://basex.org/products/xquery/.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://hadoop.apache.org/
http://incubator.apache.org/vxquery/
http://basex.org/products/xquery/

14

[9] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
“Nephele/PACTs: a programming model and execution framework for
web-scale analytical processing,” in SoCC, 2010.

[10] C. Beeri and Y. Tzaban, “SAL: An Algebra for Semistructured Data and
XML,” in WebDB, 1999.

[11] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose, R. Ver-
nica, A. Deutsch, Y. Papakonstantinou, and V. J. Tsotras, “ASTERIX:
Towards a Scalable, Semistructured Data Platform for Evolving-world
Models,” Distributed and Parallel Databases, 2011.

[12] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh,
C.-C. Kanne, F. Özcan, and E. J. Shekita, “Jaql: A Scripting Language
for Large Scale Semistructured Data Analysis,” PVLDB, 2011.

[13] N. Bidoit, D. Colazzo, N. Malla, F. Ulliana, M. Nolè, and C. Sartiani,
“Processing XML queries and updates on map/reduce clusters (demo),”
in EDBT, 2013.

[14] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian,
“A Comparison of Join Algorithms for Log Processing in MapReduce,”
in SIGMOD, 2010.

[15] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner, “MonetDB/XQuery: a fast XQuery processor powered by
a relational engine,” in SIGMOD, 2006.

[16] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica,
“Hyracks: A flexible and extensible foundation for data-intensive com-
puting,” in ICDE, 2011.

[17] Y. Chen, S. B. Davidson, and Y. Zheng, “An efficient XPath query
processor for XML streams,” in ICDE, 2006.

[18] Z. Chen, H. V. Jagadish, L. Lakshmanan, and S. Paparizos, “From
Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of
XQuery,” in VLDB, 2003.

[19] H. Choi, K.-H. Lee, S.-H. Kim, Y.-J. Lee, and B. Moon, “HadoopXML:
A suite for parallel processing of massive XML data with multiple twig
pattern queries (demo),” in ACM CIKM, 2012.

[20] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in OSDI, 2004.

[21] A. Deutsch, Y. Papakonstantinou, and Y. Xu, “The NEXT Logical
Framework for XQuery,” in VLDB, 2004.

[22] A. Eisenberg, “XQuery 3.0 is nearing completion,” SIGMOD Record,
vol. 42, no. 3, 2013.

[23] L. Fegaras, C. Li, U. Gupta, and J. Philip, “XML Query Optimization
in Map-Reduce,” in WebDB, 2011.

[24] M. Fernández, Y. Kadiyska, D. Suciu, A. Morishima, and W.-C. Tan,
“SilkRoute: A framework for publishing relational data in XML,” ACM
Trans. Database Syst., vol. 27, no. 4, Dec. 2002.

[25] T. Fiebig and G. Moerkotte, “Algebraic XML Construction and its
Optimization in Natix,” World Wide Web, vol. 4, no. 3, 2001.

[26] A. Heise, A. Rheinländer, M. Leich, U. Leser, and F. Naumann, “
Meteor/Sopremo: An Extensible Query Language and Operator Model
,” in BIGDATA, 2012.

[27] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Building Blocks,”
in EuroSys, 2007.

[28] D. Jiang, A. K. H. Tung, and G. Chen, “MAP-JOIN-REDUCE: Toward
Scalable and Efficient Data Analysis on Large Clusters,” IEEE TKDE,
2011.

[29] S. Khatchadourian, M. P. Consens, and J. Siméon, “Having a ChuQL at
XML on the cloud,” in A. Mendelzon Int’l. Workshop, 2011.

[30] P. Kling, M. T. Özsu, and K. Daudjee, “Generating Efficient Execution
Plans for Vertically Partitioned XML Databases,” PVLDB, 2010.

[31] G. Koloniari and E. Pitoura, “Peer-to-peer management of XML data:
issues and research challenges,” SIGMOD Record, vol. 34, no. 2, 2005.

[32] D. Lee, M. Mani, F. Chiu, and W. W. Chu, “Net & cot: translating
relational schemas to XML schemas using semantic constraints,” in
CIKM, 2002.

[33] I. Manolescu and Y. Papakonstantinou, “XQuery Midflight: Emerging
Database-Oriented Paradigms and a Classification of Research Ad-
vances,” in ICDE, 2005.

[34] I. Manolescu, Y. Papakonstantinou, and V. Vassalos, “XML Tuple
Algebra,” in Encyclopedia of Database Systems, 2009.

[35] N. May, S. Helmer, and G. Moerkotte, “Strategies for query unnesting
in XML databases,” TODS, vol. 31, no. 3, 2006.

[36] P. Michiels, G. A. Mihaila, and J. Siméon, “Put a Tree Pattern in Your
Algebra,” in ICDE, 2007.

[37] G. Miklau and D. Suciu, “Containment and equivalence for an XPath
fragment,” in PODS, 2002.

[38] A. Okcan and M. Riedewald, “Processing theta-joins using MapReduce,”
in SIGMOD, 2011.

[39] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A Not-So-Foreign Language for Data Processing,” in SIGMOD,
2008.

[40] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V. Jagadish, “Tree
Logical Classes for Efficient Evaluation of XQuery,” in SIGMOD, 2004.

[41] “Qizx/open,” http://www.axyana.com/qizxopen/.
[42] C. Re, J. Siméon, and M. F. Fernández, “A Complete and Efficient

Algebraic Compiler for XQuery,” in ICDE, 2006.
[43] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson, XQuery 3.0: An XML

Query Language, W3C Proposed Recommendation, October 2013.
[44] “Saxon,” http://www.saxonica.com/.
[45] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and

R. Busse, “XMark: A benchmark for XML data management,” in VLDB,
2002.

[46] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and J. Funderburk,
“Querying XML Views of Relational Data,” in VLDB, 2001.

[47] “Stratosphere Platform,” http://www.stratosphere.eu/.
[48] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,

S. Anthony, H. Liu, and R. Murthy, “Hive - a PB scale data warehouse
using Hadoop,” in ICDE, 2010.

[49] R. Vernica, M. J. Carey, and C. Li, “Efficient Parallel Set-similarity Joins
Using MapReduce,” in SIGMOD, 2010.

[50] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-reduce-
merge: Simplified Relational Data Processing on Large Clusters,” in
SIGMOD, 2007.

[51] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012.

[52] X. Zhang, B. Pielech, and E. A. Rundesnteiner, “Honey, I shrunk the
XQuery!: an XML algebra optimization approach,” in WIDM, 2002.

Jesús Camacho-Rodrı́guez is a member of
the technical staff at Hortonworks. He obtained
his PhD degree from Université Paris-Sud and
Inria in September 2014, and a CS Engineering
degree from University of Almerı́a in 2009. From
2009 to 2011, he was a research engineer at
Inria, where his work focused on XML data man-
agement in P2P systems. His research interests
include parallel and distributed query process-
ing, query optimization, and efficient large-scale
data management.

Dario Colazzo graduated from University of
Pisa and received his PhD from the same uni-
versity, in 2004. After his PhD, Dario has been
research visitor at Ecole Normale Supérieure
in Paris, and a post-doc, first at University of
Venezia and then at Université Paris-Sud, where
he became associate professor in 2005. Since
2013 he is full professor at Université Paris-
Dauphine. His research activities focus on safe
and efficient management of semi-structured
data.

Ioana Manolescu received her PhD from In-
ria and Université de Versailles Saint-Quentin
in 2001, after graduating from Ecole Normale
Supérieure in Paris. Ioana has been a post-doc
at Politecnico di Milano, Italy, then she joined
Inria where she is now senior researcher and the
lead of the OAK team, specialized in database
optimization techniques for complex, large data.
Her research interests include algebraic opti-
mizations, adaptive storage and efficient man-
agement of semantically rich data.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.axyana.com/qizxopen/
http://www.saxonica.com/

