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This paper is motivated by the characterization of the optimal symmetry breaking region in Caffarelli-Kohn-Nirenberg inequalities. As a consequence, optimal functions and sharp constants are computed in the symmetry region. The result solves a longstanding conjecture on the optimal symmetry range.

As a byproduct of our method we obtain sharp estimates for the principal eigenvalue of Schrödinger operators on some non-flat non-compact manifolds, which to the best of our knowledge are new.

The method relies on generalized entropy functionals for nonlinear diffusion equations. It opens a new area of research for approaches related to carré du champ methods on non-compact manifolds. However, key estimates depend as much on curvature properties as on purely nonlinear effects. The method is well adapted to functional inequalities involving simple weights and also applies to general cylinders. Beyond results on symmetry and symmetry breaking, and on optimal constants in functional inequalities, rigidity theorems for nonlinear elliptic equations can be deduced in rather general settings.

Introduction

Symmetry and the breaking thereof is a central theme in mathematics and the physical sciences. It is well known that symmetric energy functionals might have states of lowest energy that may or may not have these symmetries. In the latter case one says, in the language of physics, that the symmetry is broken, i.e., the symmetry group of the minimizer is smaller than the symmetry group of the functional. Needless to say, for computing the optimal value of the functional it is of advantage that an optimizer be symmetric. In other contexts the breaking of symmetry leads to interesting phenomena such as crystals in which the translation invariance of a system is broken. Thus, it is of central importance to decide what symmetry types, if any, an optimizer has.

Very often functionals depend on parameters and it might be that in one parameter range the lowest energy state has the full symmetry of the functional, while in other parts of the parameter region the symmetry is broken. Thus, in each region of the parameter space the minimizers possess a fixed symmetry or, to use a term from physics, a phase and the collection of these various phases constitute a phase diagram.

To decide whether a minimizer has the full symmetry or not can be difficult. To show that symmetry is broken one can minimize the functional in the class of symmetric functions and then check whether the value of the functional can be lowered by perturbing the minimizer away from the symmetric situation. If one can lower the energy in this fashion then symmetry is broken. This procedure is successful only if one knows a lot about the minimizer in the symmetric class and can sometimes be a formidable problem, but it is a local problem. It can also happen that there is degeneracy, that is, the energy of the symmetric as well as non-symmetric minimizers are the same, i.e., there is a region in parameter space where there is coexistence.

A real difficulty occurs when the minimizer in the symmetric class is stable, i.e., all local perturbations that break the symmetry increase the energy. It is obvious that, in general, one cannot conclude that the minimizer is symmetric because the minimizer in the symmetric class and the actual minimizer might not be close in any reasonable notion of distance. In general it is very difficult to decide, assuming stability, wether the minimizer is symmetric or not. This is a global problem and not amenable to linear methods.

It is evident that there are no general techniques available for understanding symmetry of minimizers. The focus has to be and has been on relevant and nontrivial examples, such as finding the sharp constant in Sobolev's inequality [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF][START_REF] Talenti | Best constant in Sobolev inequality[END_REF], the Hardy-Littlewood-Sobolev inequality [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] or the logarithmic Sobolev inequality [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] to mention classical examples. In the former two instances, rearrangement inequalities are the main tool for establishing the symmetry of the optimizers. There is a fairly large list of such examples that make up the canon of analysis and the goal of this paper is to add another one to it namely the problem of determining the sharp constant in the Caffarelli-Kohn-Nirenberg inequalities.

The Caffarelli-Kohn-Nirenberg inequalities (1.1)

R d |v| p |x| b p dx 2/p ≤ C a,b R d |∇v| 2 |x| 2 a dx ∀ v ∈ D a,b
have been established in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF], under the conditions that a ≤ b ≤ a + 1 if d ≥ 3, a < b ≤ a + 1 if d = 2, a + 1/2 < b ≤ a + 1 if d = 1, and a < a c where

a c := d -2 2 .
The exponent

(1.2) p = 2 d d -2 + 2 (b -a)
is determined by the invariance of the inequality under scalings. Here C a,b denotes the optimal constant in (1.1) and the space D a,b is defined by a < a c , are related by the property of modified inversion symmetry that can be found in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]Theorem 1.4,(ii)]. In this paper we shall assume that a < a c without further notice. Inequality (1.1) is sometimes called the Hardy-Sobolev inequality: for d ≥ 3 it interpolates between the usual Sobolev inequality (a = 0, b = 0) and the weighted Hardy inequalities corresponding to b = a + 1. More details can be found in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. In that paper, F. Catrina and Z.-Q. Wang have also shown existence results of optimal functions if b > a. For b = a < 0, d ≥ 3, equality in (1.1) is never achieved in D a,b . For b = a + 1 and d ≥ 2, the best constant in (1.1) is given by C a,a+1 = (a ca) 2 and it is never achieved. For a < b < a + 1 and d ≥ 2, the best constant in (1.1) is always achieved at some extremal function v a,b ∈ D a,b . When d = 1, optimal functions are even and explicit, as we shall see next.

If we consider inequality (1.1) on the smaller set of functions in D a,b which are radially symmetric, then the optimal constant is a constant C a,b ≤ C a,b and equality is achieved by

v (x) = 1 + |x| (p-2) (ac-a) -2 p-2 ∀ x ∈ R d .
In other words, we have C a,b = |x| -b v 2 p / |x| -a ∇v 2 2 . Moreover, all optimal radial functions are equal to v up to a scaling or a multiplication by a constant (and translations if a = b = 0). If d = 1, C a,b = C a,b and v is always an optimal function. The main symmetry issue is to know for which values of the parameters a and b the function v is also optimal for inequality (1.1) when d ≥ 2 or, equivalently, for which values of a and b we have C a,b = C a,b . We shall say that symmetry holds if C a,b = C a,b and that we have symmetry breaking otherwise.

Symmetry results have been obtained in various regions of the (a, b) plane. Moving planes and symmetrization methods have been applied successfully in [START_REF] Seng | On the best constant for a weighted Sobolev-Hardy inequality[END_REF][START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF] and [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF]Lemma 2.1] to cover the range 0 ≤ a < a c when d ≥ 3. The case a < 0 is by far more difficult. For any d ≥ 2, it has also been proved in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] that there is a curve p → (a, b) taking values in the region {(a, b) ∈ R 2 : a < 0 and a < b < a+1}, which originates at (a, b) = (0, 0) when p → 2 * , such that lim p→2 (a, ba) = (-∞, 1), and which separates the region of symmetry from the region of symmetry breaking. Here we assume that 2

* = 2 d/(d -2) if d ≥ 3 and 2 * = ∞ if d = 2. When d = 2,
a non-explicit region of symmetry attached to a = a c = 0 has been obtained by a perturbation method in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF]. Perturbation results have also been obtained for d ≥ 3: see [START_REF]Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Lin | Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] and [START_REF] Smets | Partial symmetry and asymptotic behavior for some elliptic variational problems[END_REF]Theorem 4.8]. Symmetry has been proved in [6, Theorem 3.1] when a < 0 and b > 0. In the case a < 0, the best known result so far in the region corresponding to a < 0 and b < 0 can be found in [START_REF] Dolbeault | Symmetry of extremals of functional inequalities via spectral estimates for linear operators[END_REF] where direct estimates show that symmetry holds under the condition

b ≥ d (d -1) + 4 d (a -a c ) 2 6 (d -1) + 8 (a -a c ) 2 + a -a c =: b direct (a) .
To establish symmetry breaking by perturbation is standard. One expands the functional

F[v] := C a,b R d |∇v| 2 |x| 2 a dx - R d |v| p |x| b p dx 2/p
near the critical point v to second order by computing

Q[w] := lim ε→0 1 ε 2 F[v + ε w] -F[v ] .
The spectrum of the operator associated with the quadratic form Q determines the local stability or instability of the critical point v . If a < 0 and

(1.3) b < d (a c -a) 2 (a c -a) 2 + d -1 + a -a c =: b FS (a) ,
it turns out that the lowest eigenvalue is negative and the radial optimal function is unstable, i.e., symmetry is broken. The difference b directb FS is of course nonnegative for any a < 0 but corresponds to a remarkably small region: see Fig. 1. If b > b FS then the radial optimal function is locally stable. If b = b FS , the lowest spectral point of the operator associated with Q is a zero eigenvalue, which incidentally determines b FS . The fact that symmetry can be broken was discovered by F. Catrina and Z.-Q. Wang in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. The sharp condition given in (1.3) is due to V. Felli and M. Schneider in [START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF] for d ≥ 3. Actually, the case d = 2 is also covered by (1.3). For brevity, we shall call it the Felli-Schneider region and call the curve b = b FS (a) the Felli-Schneider curve. The issue of symmetry in the Caffarelli-Kohn-Nirenberg inequalities (1.1) was studied numerically in [START_REF]A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities[END_REF]. In [START_REF]Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF] formal expansions were used to establish the behavior of non-radial critical points near the bifurcation point, supporting the conjecture that the Felli-Schneider curve is the threshold between the symmetry and the symmetry breaking region. This is precisely what we prove in this paper. Note that for (a, b) = (0, 0) the Caffarelli-Kohn-Nirenberg inequalities are reduced to Sobolev's inequality. In this case the functional F has the larger, noncompact symmetry group O(d + 1, 1). The celebrated Aubin-Talenti functions are optimal. The optimizers are unique up to multiplications by a constant, translations and scalings. For (a, b) = (0, 0) the functional F has the smaller symmetry group O(d), i.e., it is invariant under rotations and reflections about the origin, and scalings. This symmetry persists for the optimizers in the parameter region b ≥ b FS (a), but is broken in the remaining Felli-Schneider region. The optimizers have an O(d -1) symmetry: see [START_REF] Smets | Partial symmetry and asymptotic behavior for some elliptic variational problems[END_REF]. In this sense we have obtained the full phase diagram for the optimal functions of the Caffarelli-Kohn-Nirenberg inequalities. The reader may consult [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF] for a review of known results and [START_REF] Dolbeault | Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF] for some recent progress.

Our method yields a stronger result than Theorem 1.1, which can be interpreted as a rigidity result. Consider the equation |x| b p dx < ∞ is equal to v up to a scaling. This uniqueness result is not true anymore in the Felli-Schneider region of symmetry breaking: there we find at least two distinct nonnegative solutions, one radial and the other one non-radial. Our method of proof relies on a computation which is by many aspects similar to the one that can be found in [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF][START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] in the case of elliptic equations on compact manifolds, and without weights. Such results are called rigidity results because they aim at proving that only trivial solutions may exist. Trivial solutions are replaced in our case by the radial solution v .

(1.4) -∇ • |x| -2 a ∇v = |x| -b p |v| p-2 v .
We would also like to emphasize that our method does not rely on any kind of rearrangement technique. So far, it seems that symmetrization techniques simply do not work for the examples at hand.

The key idea of our method is to exhibit a nonlinear flow under the action of which F is monotone non-increasing, and whose limit is v . In practice, we do not need to take into account the whole flow, and it is enough to perturb a critical point of F in the infinitesimal direction indicated by the flow: we reach a contradiction if this critical point is not radially symmetric. Why the flow is the right tool to consider, at least at heuristic level, will be explained in Section 4.

Before doing that, we will reduce the Caffarelli-Kohn-Nirenberg inequalities to Sobolev type inequalities in which the dimension n is not necessarily an integer. Actually n plays the role of a dimension in view of the scaling properties of the inequalities and with respect to this dimension they are critical. Alternatively, the inequalities can be seen as Sobolev type inequalities on R d with a weight |x| n-d .

Sharp constants in Sobolev type inequalities can be characterized as optimal decay rates of entropies under the action of a fast diffusion flow: see [START_REF] Del | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF]. There is a by now standard method to prove this, which is a nonlinear version of the carré du champ method of D. Bakry and M. Emery, and whose strategy goes back to [START_REF] Bakry | Hypercontractivité de semi-groupes de diffusion[END_REF][START_REF]Diffusions hypercontractives[END_REF]. The nonlinear version was studied in [START_REF] José | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF][START_REF] José | Fine asymptotics for fast diffusion equations[END_REF][START_REF] Carlen | Hardy-Littlewood-Sobolev inequalities via fast diffusion flows[END_REF] in the case of the fast diffusion equation. The key idea is to prove that a nonlinear Fisher information and its derivative can be compared. The carré du champ method takes curvature and weights very well into account. The identity, which encodes the Bochner-Lichnerowicz-Weitzenböck formula in the context of semi-groups and Markov processes, is usually designated as the CD(ρ, N ) condition and has been extensively used in the context of Riemannian geometry. See [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] for a detailed account. This book, and in particular [4, chapter 6], has also been a source of inspiration for the change of variables of Section 4 and for the idea to change the dimension from d to n.

The link between the carré du champ method and rigidity results was established in [START_REF] Bakry | Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator[END_REF] and later exploited for interpolation inequalities and evolution problems on manifolds in [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF]. See [START_REF]Nonlinear flows and rigidity results on compact manifolds[END_REF][START_REF] Dolbeault | Improved interpolation inequalities on the sphere, Discrete and Continuous Dynamical Systems Series S[END_REF] for more recent and detailed results in this direction. However, in our setting, the relation of the Fisher information and its derivative along the flow is more a nonlinear effect than a curvature issue, as in [START_REF] Savaré | The concavity of Rényi entropy power[END_REF][START_REF] Dolbeault | Nonlinear diffusions: Extremal properties of Barenblatt profiles, best matching and delays[END_REF]. This will be made clear in Section 4. As a last observation, let us mention that the optimal cases of interpolation on the sphere and on the line, which were obtained by the combination of a stereographic projection and the Emden-Fowler transformation in [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF], are understood using nonlinear flow methods, but the interpolation on the cylinder, which is closely connected with (1.1) as we shall see next, was still open.

The Caffarelli-Kohn-Nirenberg inequalities (1.1) on R d are equivalent to Gagliardo-Nirenberg interpolation inequalities on the cylinder C 1 := R × S d-1 . As was observed in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], this follows from the Emden-Fowler transformation

(1.5) v(r, ω) = r a-ac ϕ(s, ω) with r = |x| , s = -log r and ω = x r .
With this transformation, inequality (1.1) can be rewritten as

(1.6) ∂ s ϕ 2 L 2 (C1) + ∇ ω ϕ 2 L 2 (C1) + Λ ϕ 2 L 2 (C1) ≥ µ(Λ) ϕ 2 L p (C1) ∀ ϕ ∈ H 1 (C 1 ) ,
where Λ := (a ca) 2 and, using (1.2), the optimal constant µ(Λ) is

µ(Λ) = 1 C a,b with a = a c ± √ Λ and b = d p ± √ Λ .
Strictly speaking, (1.2) with a < a c is given by a = a c -√ Λ, but (1.6) is independent of the sign of aa c , hence proving that (1.2) also holds with a > a c : this is a proof of the modified inversion symmetry property. Notice that ∇ ω denotes the gradient with respect to angular variables only, and we shall use the notation ∆ ω for the Laplace-Beltrami operator on S d-1 .

Radial symmetry of v means that ϕ depends only on s and we shall then say that ϕ is symmetric. Scaling invariance in R d is equivalent to invariance under translations in the s-direction and any optimal function satisfies, with a proper normalization, the Euler-Lagrange equation

(1.7) -∂ 2 s ϕ -∆ ω ϕ + Λ ϕ = ϕ p-1 in C 1 .
The symmetric solution to (1.7) is explicit and given by

(1.8) ϕ Λ (s) = p 2 Λ 1 p-2 cosh p-2 2 √ Λ s -2 p-2 .
Among symmetric solutions (solutions depending only on s), it is unique up to translations in the s-direction. The Felli-Schneider curve is given in terms of the parameters p = 

Λ if Λ ≤ Λ FS .
As a consequence, the value of the optimal constant is explicit for any Λ ≤ Λ FS and given by µ(Λ)

= |S d-1 | 1-2 p µ R (Λ) with µ R (Λ) := ∂ s ϕ Λ 2 L 2 (R) + Λ ϕ Λ 2 L 2 (R) ϕ Λ 2 L p (R) = p 2 Λ p+2 2 p 2 √ π Γ p p-2 (p -2) Γ 3 p-2 2 (p-2) p-2 p .
Our method is not limited to the cylinder C 1 = R × S d-1 and provides rigidity results for a large class of non-compact manifolds. Let us consider the case of a general cylinder

C = R × M
where (M, g) is a smooth compact connected Riemannian manifold of dimension d-1, without boundary. Let us denote by ∆ g the Laplace-Beltrami operator on M. We denote by d v g the volume element. We shall also denote by Ric g the Ricci tensor and by λ M 1 the lowest positive eigenvalue of -∆ g . We consider the case where the curvature of M is bounded from below and define

κ := inf M inf ξ∈S d-2 Ric g (ξ , ξ) , λ θ := 1 + δ θ d -1 d -2 κ + δ (1 -θ) λ M 1 with δ = n -d (d -1) (n -1)
,

where the dependence of λ θ on θ will be discussed in Remark 2. With

λ := λ θ where θ := (d -2) (n -1) 3 n + 1 -d (3 n + 5) (d + 1) d (n 2 -n -4) -n 2 + 3 n + 2 if d ≥ 2 ,
let us state a rigidity result for the equation

(1.9) -∂ 2 s ϕ -∆ g ϕ + Λ ϕ = ϕ p-1 in C . Theorem 1.4. Assume that d ≥ 2, p ∈ (2, 2 * ) and Λ > 0. If Λ ≤ λ p-2
, then any positive solution ϕ ∈ H 1 (C) of (1.9) is equal to ϕ Λ , up to a translation in the s-direction.

The condition in Theorem 1.4 is reminiscent of the result of J.R. Licois and L. Véron in [START_REF] René | Un théorème d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes[END_REF][START_REF]A class of nonlinear conservative elliptic equations in cylinders[END_REF] which uses an interpolation between λ M 1 and κ. To conclude the introduction, we come back to the question of the Gagliardo-Nirenberg interpolation inequalities on a general cylinder C

(1.10) ∂ s ϕ 2 L 2 (C) + ∇ g ϕ 2 L 2 (C) + Λ ϕ 2 L 2 (C) ≥ µ(Λ) ϕ 2 L p (C) ∀ ϕ ∈ H 1 (C)
where µ(Λ) denotes the optimal constant for any Λ > 0. As an extension of the constant found by V. Felli and M. Schneider, we define

Λ FS := 4 λ M 1 p 2 -4 for a general manifold M. Notice that λ M 1 = d -1 = κ + 1 if M = S d-1
and, as a consequence in this case, λ p-2 = Λ FS . Let us define

µ (Λ) := vol g (M) 1-2 p µ R (Λ) .
Corollary 1.5. Assume that d ≥ 2 and p ∈ (2, 2 * ). The optimal constant in (1.10) is given by µ

(Λ) = µ (Λ) if and only if Λ ∈ (0, Λ ] where Λ is such that λ p -2 ≤ Λ ≤ Λ FS ,
and if Λ < Λ FS , then λ p-2 < Λ < Λ FS . Our paper is organized as follows. We first generalize the linear instability result of V. Felli and M. Schneider in Section 2. In Section 3, we reformulate our problem as a critical Sobolev inequality in a space with a dimension n > d, which allows us to use tools based on the fast diffusion equation in Section 4, at least at the heuristic level. The results of Section 1 are proved in Section 6. They rely on a key technical result which is stated in Corollary 5.5. Our methods also yield new sharp spectral estimates on cylinders (which were announced in [START_REF] Dolbeault | Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders[END_REF]). Moreover, a precise version of an improved Hardy inequality is obtained. These results are proved in Section 7.

Linear instability of symmetric critical points

On C 1 = R × S d-1 , we consider the measure dν = ds dω, where dω is the measure induced by Lebesgue's measure on S d-1 ⊂ R d . On a general cylinder C = R × M, we consider the measure dν = ds d v g and still denote by ω the generic variable on M. Since Caffarelli-Kohn-Nirenberg inequalities (1.1) are equivalent to Gagliardo-Nirenberg inequalities (1.6) on C 1 with Λ := (a ca) 2 and since solutions of (1.4) are transformed into solutions to (1.7) by the Emden-Fowler transformation (1.5), we will work directly in the general cylinder setting, that is, on C. Minor modifications of an existence argument proved in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] for extremals of (1.6) yields the existence of optimal functions for (1.10) for any p ∈ (2, 2 * ) with

2 * = 2 d d-2 if d ≥ 3 and 2 * = ∞ if d = 1 or 2.
Up to multiplication by a constant, all extremal functions are positive on C.

Is s → ϕ Λ (s) as defined by (1.8) and seen as a function on C optimal for (1.6) ? Equivalently, is ϕ Λ a minimizer of

ϕ → G[ϕ] := ∂ s ϕ 2 L 2 (C) + ∇ ω ϕ 2 L 2 (C) + Λ ϕ 2 L 2 (C) -µ (Λ) ϕ 2 L p (C) ?
This can be tested by perturbing G around ϕ Λ . Here we simply extend the strategy of [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF] to a general cylinder C. Since the ground state of the Schrödinger operator -

∂ 2 s + Λ -(p -1) µ (Λ) ϕ p-2 Λ is generated by ϕ p/2 Λ , we may consider G ϕ Λ + ε ϕ p/2 Λ φ 1 as ε → 0, where φ 1 is an eigenfunction associated with the first positive eigenvalue λ M 1 of -∆ g on M.
An elementary computation shows that

G ϕ Λ + ε ϕ p/2 Λ φ 1 = ε 2 ϕ Λ p L p (R) λ M 1 -1 4 (p 2 -4) Λ + o(ε 2 ) . Proposition 2.1. With the above notations, ϕ Λ is not a local minimizer of G if Λ > 4 λ M 1 /(p 2 -4).
One can actually check that Proposition 2.1 states the sharp condition for linear instability of ϕ Λ . Details are left to the reader. See [START_REF] Dolbeault | Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders[END_REF] for a similar computation for spectral estimates, and [START_REF]Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF] for an expansion of the non-symmetric branch around the bifurcation point. Hence the region of linear instability of symmetric critical points is given by α > α FS , with

α := p -2 2 √ Λ = (1 + a -b) (a c -a) a c -a + b and α FS := p -2 p + 2 λ M 1 .
In terms of Λ, the above condition is equivalent to Λ > Λ FS :=

4 λ M 1 p 2 -4 . When M = S d-1 , λ M 1 = d -1
and we recover the expression of Λ FS found in [START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF].

A change of variables and a Sobolev type inequality

The first step of our method is a change of variables which reduces the Caffarelli-Kohn-Nirenberg inequalities to a Sobolev type inequality in a non-integer dimension n > d. A similar transformation can also be used for Gagliardo-Nirenberg inequalities on cylinders, combined with an inverse Emden-Fowler transformation.

3.1. The case of Caffarelli-Kohn-Nirenberg inequalities. We start by proving that (1.1) is equivalent to a Sobolev type inequality with a weight. From now on, we also assume that d ≥ 2. Written in spherical coordinates, with so that

r = |x| and ω = x |x| , the Caffarelli-Kohn-Nirenberg inequality (1.1) becomes ∞ 0 S d-1 |v| p r d-b p dr r dω 2 p ≤ C a,b ∞ 0 S d-1 |∇v| 2 r d-
α 1-2 p ∞ 0 S d-1 |w| p r d-b p α dr r dω 2 p ≤ C a,b ∞ 0 S d-1 α 2 ∂w ∂r 2 + 1 r 2 |∇ ω w| 2 r d-2 a-2 α +2 dr r dω ,
and pick α so that

n = d -b p α = d -2 a -2 α + 2 .
This is why we consider the parameters

α = p -2 2 √ Λ = (1 + a -b) (a c -a) a c -a + b and n = 2 p p -2 = d 1 + a -b .
If we think of n as a non-integer dimension, then p = 2 n n-2 is the associated critical Sobolev exponent. Since -∞ < a < a c , 0 < ba < 1 and 2 < p < 2 d d-2 , the parameters α and n vary in the ranges 0 < α < ∞ and d < n < ∞. The Felli-Schneider curve in the (α, n) variables is given by

α = d -1 n -1 =: α FS .
Hence, the region of symmetry breaking is given by α > α FS . In the new variables, the derivatives are given by

Dw = α ∂w ∂r , 1 r ∇ ω w .
On R d ≈ (0, +∞) × S d-1 , we consider the measure dµ := r n-1 dr dω .

The inequality becomes

(3.2) α 1-2 p R d |w| p dµ 2 p ≤ C a,b R d |Dw| 2 dµ
and has the homogeneity of Sobolev's inequality for functions defined on R n if n is an integer. The result of Theorem 1.1 can be rephrased as follows. Notations. When there is no ambiguity, we will omit the index ω and from now on note that ∇ = ∇ ω denotes the gradient with respect to the angular variable ω ∈ S d-1 and that ∆ is the Laplace-Beltrami operator on S d-1 . We define the self-adjoint operator L by

L w := -D * D w = α 2 w + α 2 n -1 r w + ∆ w r 2 . The fundamental property of L is the fact that R d w 1 L w 2 dµ = - R d Dw 1 • Dw 2 dµ ∀ w 1 , w 2 ∈ D(R d ) .

The case of Gagliardo-Nirenberg inequalities on general cylinders.

If we study solutions to (1.9) or inequality (1.10), the strategy is to use the inverse Emden-Fowler transform to rewrite the problem on (0, ∞) × M and then use the change of variables r → r α as in Section 3.1 to write a Sobolev type inequality. Let us consider the change of variables

(3.3) ϕ(s, ω) = e 2 s p-2 w e -α s , ω ∀ (s, ω) ∈ C = R × M , with α = p -2 2 √ Λ and n = 2 p p -2 .
Inequality (1.10) is then equivalent to

(3.4) µ(Λ) α 1-2 p (0,∞)×M |w| p dµ 2 p ≤ (0,∞)×M |Dw| 2 dµ
where dµ := r n-1 dr d v g is a measure on (0, ∞) × M and Dw = α ∂w ∂r , 1 r ∇ g w where ∇ g denotes the gradient on M. Inequality (3.4) coincides with (3.2) when M = S d-1 . With these notations, (1.9) can be rewritten as

-D * D w + w p-1 = 0 in (0, ∞) × M .
The region where we shall prove symmetry is given by

(3.5) α ≤ 1 2 (p -2) λ
with λ defined in the introduction. The symmetry region coincides with α ≤ α FS when M = S d-1 . Conversely, symmetry is broken if α > α FS with

α FS = p -2 2 Λ FS = p -2 p + 2 λ M 1 .
Notations. When there is no ambiguity, we shall write ∇ g = ∇ and ∆ g = ∆ in what follows.

Heuristics: monotonicity along a well chosen nonlinear flow

In this section we collect some observations on the monotonicity of a generalized Fisher information along a fast diffusion flow. These observations explain our strategy. We consider the measure dµ = r n-1 dr d v g on (0, ∞) × M.

Let us start with the Fisher information. We transform the Sobolev type inequality (3.4) of the previous section as follows. With 

α 2 ∂w ∂r 2 + 1 r 2 |∇w| 2 dµ = 1 4 n-2 n-1 2 I[u] and (0,∞)×M |w| p dµ = (0,∞)×M u dµ .
For later purpose, let η

:= 4 n-1 n-2 2 α 1-2 p .
Collecting these considerations, we have shown that the optimal constant in (3.4) can be characterized as follows.

Proposition 4.1. With the above notations and Λ = 4 α 2 /(p -2) 2 , we have

(4.4) µ(Λ) = η -1 inf I[u] : (0,∞)×M u dµ = 1 .
Here the infimum is taken over the nonnegative functions in L 1 ((0, ∞) × M such that (0,∞)×M u m dµ and I[u] are finite, which is the image of H 1 (C) after the transformations (3.3) and (4.1). We are interested not only in minimizers, but also in critical points of I under the mass constraint.

Next we consider the fast diffusion equation in R d , with d ≥ 2, given by (4.5)

∂u ∂t = L u m , m = 1 - 1 n .
At a heuristic level, (4.5) preserves the mass and decreases the Fisher information when the parameters are in the symmetry range determined by (3.5). In this range, the decay of the Fisher information is strict, except for self-similar solutions which correspond to symmetric critical points of I under a mass constraint, as we shall see below. We will actually use the flow only to characterize the direction in which one has to perturb an arbitrary critical point. To understand why such a direction has to be considered, it is useful to use the quantities provided by the nonlinear flow. Let us give some details.

Equation (4.5) admits self-similar solutions of Barenblatt type, which are given by

u (t, r, ω) = t -n c + r 2 2 (n -1) α 2 t 2 -n ∀ (t, r, ω) ∈ (0, ∞) × (0, ∞) × M .
The constant c is a numerical constant which has to be adjusted so that (0,∞)×M u dµ = 1. It has an explicit value and depends only on d and n. Also notice that the variable t plays the role of a scaling parameter. Except in this section, in which we deal with an evolution problem for heuristical reasons, t has to be understood in the sense of a positive scale.

If we assume that the solution to (4.5) is supplemented with an initial datum u(t = 0, x) = u 0 (x) ≥ 0 such that (0,∞)×M u 0 dµ = 1, then it makes sense to consider a solution to the Cauchy problem which preserves the mass, that is, such that d dt (0,∞)×M u dµ = 0 , as was done for the classical fast diffusion equation in [START_REF] Herrero | The Cauchy problem for ut = ∆u m when 0 < m < 1[END_REF], and consider d dt I[u(t, •)]. The functional I is invariant under scalings. Indeed, let λ be an arbitrary positive real number. If we consider u λ (x) = λ n u(λ x) for any x ∈ R d , we get that I[u λ ] = I[u] for any λ > 0. As a special case, when u = u , it is clear that I[u ] is independent of t > 0. In the symmetry range, the function u is optimal for (4.4). In any case, we have the following characterization. 

η µ (Λ) = I[u (t, •)] ∀ t > 0 .
This result is easy to prove (details are left to the reader) and the question is to know under which conditions we also have I[u (t, •)] = η µ(Λ), i.e., µ(Λ) = µ (Λ).

Our strategy for proving Theorem 1.1 is to establish that in the range (3.5), the converse is also true, namely that d dt I[u(t, •)] = 0 implies that u = u up to a time shift, that is, up to a rescaling. Heuristically, this can be done as follows. If u solves (4.5), then the pressure function p given by (4.3) solves

(4.6) ∂p ∂t = 1 n p L p -|Dp| 2 .
Let us define (4.7)

Q[p] := 1 2 L |Dp| 2 -Dp • DL p and K[p] := (0,∞)×M Q[p] - 1 n (L p) 2 p 1-n dµ .
In order to handle boundary terms, we also define 

(4.8) b(r) := r n-1 M ∂ ∂r p 1-n |Dp| 2 - 2 n p 1-n p L p d v g .
d dt I[u(t, •)] = -2 (n -1) n-1 K[p(t, •)] .
Proof. Let us define the domain M (r,R) := (r, R) × M, and its boundary M r ∪ M R where M r := {r} × M. Using (4.5) and (4.6), we can compute

d dt M (r,R) u |Dp| 2 dµ = M (r,R) ∂u ∂t |Dp| 2 dµ + 2 M (r,R) u Dp • D ∂p ∂t dµ = M (r,R) L (u m ) |Dp| 2 dµ + 2 M (r,R) u Dp • D 1 n p L p -|Dp| 2 dµ .
By integration by parts we get

d dt M (r,R) u |Dp| 2 dµ = M (r,R) u m L |Dp| 2 dµ + 2 n M (r,R) u p Dp • DL p dµ + 2 n M (r,R) u Dp • Dp L p dµ -2 M (r,R) u Dp • D |Dp| 2 dµ + α 2 M R (u m ) |Dp| 2 -u m ∂ ∂r (|Dp| 2 ) R n-1 d v g -α 2 Mr (u m ) |Dp| 2 -u m ∂ ∂r (|Dp| 2 ) r n-1 d v g = - M (r,R) u m L |Dp| 2 dµ + 2 n M (r,R) u p Dp • DL p dµ + 2 n M (r,R) u Dp • Dp L p dµ + α 2 M R (u m ) |Dp| 2 + u m ∂ ∂r (|Dp| 2 ) R n-1 d v g -α 2 Mr (u m ) |Dp| 2 + u m ∂ ∂r (|Dp| 2 ) r n-1 d v g ,
where the last line is also given by an integration by parts:

M (r,R) u Dp • D |Dp| 2 dµ = - M (r,R) D(u m ) • D |Dp| 2 dµ = M (r,R) u m L |Dp| 2 dµ -α 2 M R u m ∂ ∂r (|Dp| 2 ) R n-1 d v g + α 2 Mr u m ∂ ∂r (|Dp| 2 ) r n-1 d v g .
1) By definition of Q, we get that

M (r,R) u m L |Dp| 2 dµ = 2 M (r,R) u m Q[p] dµ + 2 M (r,R) u m Dp • DL p dµ .
2) Since u Dp = -D(u m ), an integration by parts gives

M (r,R) u Dp • Dp L p dµ = - M (r,R) D(u m ) • Dp L p dµ = M (r,R) u m (L p) 2 dµ + M (r,R) u m Dp • DL p dµ -α 2 M R u m p L p R n-1 d v g + α 2 Mr u m p L p r n-1 d v g .
and with u p = (n -1) u m we find that

2 n M (r,R) u p Dp • DL p dµ + 2 n M (r,R) u Dp • Dp L p dµ = 2 n M (r,R) u m (L p) 2 dµ + 2 M (r,R) u m Dp • DL p dµ - 2 α 2 n M R u m p L p R n-1 d v g + 2 α 2 n Mr u m p L p r n-1 d v g .
Collecting terms and passing to the limits as r → 0 and R → +∞ establishes Lemma 4.3.

A natural approach is to show that I[u(t, •)] is nonincreasing by proving that K[p(t, •)] is nonnegative for any t > 0 in the range (3.5). By Lemma 4.3, it is enough to prove that lim r→0+ b(r) = 0 = lim r→+∞ b(r) for any t > 0. As a consequence the flow drives any initial condition towards a minimum of I, which is a self-similar solution of Barenblatt type, i.e., u up to a translation with respect to t. Hence I[u] ≥ I[u (t, •)], which is equivalent to the sharp form of inequality (1.1).

We can avoid considering the flow by focusing on critical points for I[u] under the mass constraint. The Euler-Lagrange equation integrated against L u m must vanish, provided that the integral exists. Heuristically, this quantity coincides with the time derivative of I[u(t, •)] at the critical point. By Lemma 4.3, K[p] must then vanish for critical points. Since u solves an elliptic equation, we have additional regularity and decay properties of which we can take advantage to get rid of the boundary terms. With slight technical modifications, this is the line of arguments we shall use to prove the main results of the paper in Section 6.

The key computations

The goal of this section is to characterize the functions such that K[p] = 0: see Corollary 5.5. This result is the main ingredient of our method. 5.1. A preliminary computation. The calculations below are carried out for a function p defined on (0, ∞) × M where M is a d -1 dimensional smooth, compact Riemannian manifold. Here and ∇ respectively denote the derivative with respect to r and the gradient on M, g is the metric tensor, ∆ the Laplace-Beltrami operator on M and dv g the volume element. We recall that

L p = α 2 p + α 2 n -1 r p + ∆ p r 2 , Dp • Dw = α 2 p w + ∇p • ∇w r 2 and |Dp| 2 = α 2 |p | 2 + |∇p| 2 r 2 . We also define k[p] := Q(p) - 1 n (L p) 2 = 1 2 L |Dp| 2 -Dp • D L p - 1 n (L p) 2 ,
and

k M [p] := 1 2 ∆ |∇p| 2 -∇p • ∇∆ p -1 n-1 (∆ p) 2 -(n -2) α 2 |∇p| 2 .
Lemma 5.1. Let n = 1 be any real number, d ∈ N, d ≥ 2, and consider a function p ∈ C 3 ((0, ∞) × M), where (M, g) is a smooth, compact Riemannian manifold. Then we have

k[p] = α 4 1 - 1 n p - p r - ∆ p α 2 (n -1) r 2 2 + 2 α 2 1 r 2 ∇p - ∇p r 2 + 1 r 4 k M [p] .
Proof. By definition of k[p], we have

k[p] = α 2 2 α 2 p 2 + |∇p| 2 r 2 + α 2 2 n-1 r α 2 p 2 + |∇p| 2 r 2 + 1 2 r 2 ∆ α 2 p 2 + |∇p| 2 r 2 -α 2 p α 2 p + α 2 n-1 r p + ∆ p r 2 -1 r 2 ∇p • ∇ α 2 p + α 2 n-1 r p + ∆ p r 2 -1 n α 2 p + α 2 n-1 r p + ∆ p r 2 2 ,
which can be expanded as

α 2 2 2 α 2 p 2 + 2 α 2 p p + 2 |∇p | 2 +∇p•∇p r 2 -8 ∇p•∇p r 3 + 6 |∇p| 2 r 4 + α 2 n-1 r α 2 p p + ∇p•∇p r 2 -|∇p| 2 r 3 + 1 r 2 α 2 p ∆ p + α 2 |∇p | 2 + ∆ |∇p| 2 2 r 2 -α 2 p α 2 p + α 2 n-1 r p -α 2 n-1 r 2 p -2 ∆ p r 3 + ∆ p r 2 -1 r 2 α 2 ∇p • ∇p + α 2 n-1 r ∇p • ∇p + ∇p•∇∆ p r 2 -1 n α 4 p 2 + α 4 (n-1) 2 r 2 p 2 + (∆ p) 2 r 4 + 2 α 4 n-1 r p p + 2 α 2 p ∆ p r 2 + 2 α 2 n-1 r 3 p ∆ p .
By ordering the terms in powers of α, we get the result.

5.2.

An identity if d ≥ 3. On the smooth compact Riemannian manifold (M, g) we denote by Hf the Hessian of f , i.e, Hf i;j = ∇ i ∂ j f where ∇ j denotes the covariant derivative. Thus Hf is a symmetric covariant tensor of rank 2. With a slight abuse of language we identify its trace with the Laplace-Beltrami operator ∆ f = Tr (Hf ) = i,j g i,j Hf j;i where, as usual, j g i,j g j,k = δ i k . If A and B are covariant tensors, we will also abbreviate the notations by using A : B := i,j,k,l g i,j A j,k g k,l B l,i and A 2 := A : A .

It will be convenient to introduce the trace free Hessian

Lf := Hf - 1 d -1 (∆f ) g .
Let us define the tensor Zf and its trace free counterpart by

Zf := ∇f ⊗ ∇f f and Mf := Zf - 1 d -1 |∇f | 2 f g .
We use the notations λ θ , λ = λ θ and δ = 1 d-1 -1 n-1 of the introduction. The following result is adapted from [START_REF] René | Un théorème d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes[END_REF][START_REF]Nonlinear flows and rigidity results on compact manifolds[END_REF]. 

k M [p] p 1-n d v g ≥ λ -(n -2) α 2 M |∇p| 2 p 1-n d v g . If M = S d-1 , there is a positive constant ζ such that S d-1 k M [p] p 1-n dω ≥ λ -(n -2) α 2 S d-1 |∇p| 2 p 1-n dω + ζ (n -d) S d-1 |∇p| 4 p 1-n dω .
Proof. The Bochner-Lichnerowicz-Weitzenböck formula

1 2 ∆ (|∇f | 2 ) = Hf 2 + ∇(∆f ) • ∇f + Ric(∇f, ∇f ) yields that A := M 1 2 ∆(|∇p| 2 ) -∇(∆p) • ∇p -1 n-1 (∆p) 2 p 1-n d v g = M Hp 2 + Ric(∇p, ∇p) -1 n-1 (∆p) 2 p 1-n d v g .
Here Ric(∇p, ∇p) is the Ricci curvature tensor contracted with ∇p ⊗ ∇p. Set p = f β , where β = 2 3-n . A straightforward computation shows that

Hf β = β f β-1 Hf + (β -1) Zf and hence M Hp 2 -1 n-1 (∆p) 2 p 1-n d v g = β 2 M Hf + (β -1) Zf 2 -1 n-1 Tr (Hf + (β -1) Zf ) 2 d v g = β 2 M Lf + (β -1) Mf 2 + δ Tr (Hf + (β -1) Zf ) 2 d v g .
Next we observe that

M Tr (Hf + (β -1) Zf ) 2 d v g = M (∆ f ) 2 + 2 (β -1) ∆ f |∇f | 2 f + (β -1) 2 |∇f | 4 f 2 d v g .
We recall that d ≥ 3 and hence

|∇f | 4 f 2 = Zf 2 = d -1 d -2 Mf 2 .
Using integration by parts, we get that

M ∆ f |∇f | 2 f d v g = M |∇f | 4 f 2 d v g -2 M Hf : Zf d v g = d -1 d -2 M Mf 2 d v g -2 M Lf : Zf d v g - 2 d -1 M ∆ f |∇f | 2 f d v g .

This yields

M ∆ f |∇f | 2 f d v g = d -1 d + 1 M d -1 d -2 Mf 2 d v g -2 M Lf : Mf d v g
by noting that one can replace Zf by Mf because Lf is trace free.

Using the Bochner-Lichnerowicz-Weitzenböck formula once more we obtain

M (∆ f ) 2 d v g = d -1 d -2 M Lf 2 d v g + d -1 d -2 M Ric(∇f, ∇f ) d v g .
Hence we find that for any θ,

M Tr (Hf + (β -1) Zf ) 2 d v g -(1 -θ) M (∆ f ) 2 d v g = θ d -1 d -2 M Lf 2 d v g + d -1 d -2 M Ric(∇f, ∇f ) d v g + 2 (β -1) d -1 d + 1 M d -1 d -2 Mf 2 d v g -2 M Lf : Mf d v g + (β -1) 2 d -1 d -2 M Mf 2 d v g .
Altogether, we get

A -β 2 δ (1 -θ) M (∆ f ) 2 d v g = β 2 M a Lf 2 + 2 b Lf : Mf + c Mf 2 d v g + β 2 1 + δ θ d -1 d -2 M Ric(∇f, ∇f ) d v g , where a = 1 + δ θ d -1 d -2 , b = (β -1) 1 -2 δ d -1 d + 1 , c = (β -1) 2 1 + δ d -1 d -2 + 2 (β -1) δ (d -1) 2 (d + 1) (d -2)
.

The smallest value of θ for which

a Lf 2 + 2 b Lf : Mf + c Mf 2 is nonnegative is determined by the condition b 2 -a c = 0, that is, θ = θ < 0. Notice that with this choice θ > -(d-2) δ (d-1) = -(d-2) (n-1) n-d
for any d > 2 and n > d, so that the coefficient a is always positive.

The conclusion holds by the Poincaré inequality

M (∆ f ) 2 d v g ≥ λ M 1 M |∇f | 2 d v g .
To bound the term involving the Ricci tensor, we simply use the pointwise estimate

Ric(∇p, ∇p) ≥ κ |∇p| 2 and recall that d-1 d-2 κ ≤ λ M 1 , with equality when M = S d-1 . Altogether, the function θ → λ θ := 1+δ θ d-1 d-2 κ+δ (1-θ) λ M 1 is constant if M = S d-1
, monotone non-increasing otherwise, and we get that

A -λ θ β 2 M |∇f | 2 d v g ≥ a β 2 M Lf + b a Mf 2 d v g -b 2 -a c a β 2 M Mf 2 d v g .
In 

M k M [p] p 1-n d v g = (1-θ) β 2 δ M (∆f ) 2 d v g +a β 2 M Lf + b a Mf 2 d v g + c-b 2 a β 2 M Z f 2 d v g + β 2 1 + δ θ d-1 d-2 M Ric(∇f, ∇f ) d v g -4 (n-2) (n-3) 2 α 2 M |∇f | 2 d v g
for any θ ∈ [θ , 1] and a, b and c as above. This identity is more precise than the result in Lemma 5.2. Combined with Lemma 5.1, this shows that M k[p] d v g can be written as a sum of squares, with explicit coefficients.

Remark 2. Notice that the constant λ is an estimate of the largest constant λ such that

M 1 2 ∆(|∇p| 2 ) -∇(∆p) • ∇p -1 n-1 (∆p) 2 -λ |∇p| 2 p 1-n d v g ≥ 0 ,
for any positive function p ∈ C 3 (M). It is estimated by λ θ with θ ∈ [θ , 1]. In the case of the sphere, that is,

M = S d-1 , we have that d-1 d-2 κ = λ M 1 and λ θ = 1 + δ d-1 d-2 κ = d-2 d-1 + δ λ M 1 is independent of θ. Otherwise, by Lichnerowicz' theorem, we know that d-1 d-2 κ ≤ λ M 1 (with strict inequality if M = S d-1
, thanks to Obata's theorem). Hence θ → λ θ is a non-increasing function, and since θ is always negative, we have a simple lower bound for λ :

λ ≥ λ 0 = κ + δ λ M 1 .
As in [START_REF]Nonlinear flows and rigidity results on compact manifolds[END_REF], a better, nonlocal, estimate is obtained by refining λ as 

λ := inf f ∈ C 3 (M) s.t. ∇f ≡ 0 δ (1 -θ) M (∆ f ) 2 d v g + 1 + δ θ d-1 d-2 M Ric g (∇f, ∇f ) d v g M |∇f | 2 d v g . Remark 3. With θ = θ ,
a = (d -1) (d -2) (n + 1) 2 (d + 1) d (n 2 -n -4) -(n 2 -3 n -2) , b = - (n + 1) (d -1) (n -3) (d + 1) , c = (d -1) d (n 2 -n -4) -(n 2 -3 n -2) (d -2) (d + 1) (n -3) 2 . If M = S d-1 , we have λ M 1 = d -1, κ = d -2 and λ = n -2 n -1 (d -1) , ζ = - (d -1) d (3 n + 5) -3 n -1 (d -2) (d + 1) 2 (n -3) 2 . 5.3. A Poincaré inequality if d = 2. The manifold M is one-dimensional if d = 2, i.e.
, it is a smooth closed curve with curvilinear coordinate ω. A direct computation shows that

k M [p] = n -2 n -1 |∆p| 2 -(n -2) α 2 |∇p| 2 . Lemma 5.3. Assume that M is a smooth closed curve. If p is a positive function of class C 2 (M), then M k M [p] p 1-n d v g ≥ n -2 n -1 λ M 1 -(n -2) α 2 M |∇p| 2 p 1-n d v g + 1 12 (n + 3) (n -2) M |∇p| 4 p 2 p 1-n d v g . Proof. Since ∇ • p 1-n 2 ∇p = p 1-n 2 ∆p + 1 -n 2 |∇p| 2 p ,
we may take the square, integrate by parts the cross term and use the Poincaré inequality

M ∇ • p 1-n 2 ∇p 2 d v g ≥ λ M 1 M p 1-n 2 ∇p 2 d v g . Notice that M ∆p |∇p| 2 p p 1-n d v g = 1 3 M ∇ • |∇p| 2 ∇p p -n d v g = n 3 M |∇p| 4 p 2 p 1-n d v g and -1 12 (n + 3) (n -1) = 1-n 2 2 + 2 1-n 2 n 3 . Hence we get M |∆p| 2 p 1-n d v g ≥ λ M 1 M |∇p| 2 p 1-n d v g + 1 12 (n + 3) (n -1) M |∇p| 4 p 2 p 1-n d v g .
The conclusion immediately follows.

Consequences for K[p]

and some remarks. With Q[p] defined by (4.7), we recall that

K[p] = (0,∞)×M Q[p] - 1 n (L p) 2 p 1-n dµ = (0,∞)×M k[p] p 1-n dµ .
The following result is a direct consequence of Lemmas 5.1, 5.2 and 5.3 (also see Remark 1).

Corollary 5.4. Assume that d ∈ N, n ∈ R and n > d ≥ 2 and consider a function p ∈ C 3 ((0, ∞) × M). Then we have Proof. Let us deal first with the case M = S d-1 . In this case the condition (n -2) α 2 ≤ λ is equivalent to α ≤ α FS . By Lemma 5.2, p is only a function of r. Moreover, since K[p] = 0 we find that p = p /r for all r, which implies that p(r) = a + b r 2 for some constants a and b.

(5.1) K[p] ≥ 1 - 1 n α 4 (0,∞)×M p - p r - ∆ p α 2 (n -1) r 2 2 p 1-n dµ + 2 α 2 (0,∞)×M 1 r 2 ∇p - ∇p r 2 p 1-n dµ + λ -(n -2) α 2 (0,∞)×M 1 r 4 |∇p| 2 p 1-n dµ . Remark 4. When M = S d-1 with d ≥ 2, λ -(n -2) α 2 = (n -2) α 2 FS -α 2 with α 2 FS = d-1 n-1 .
Let us now address the case of M = S d-1 , which is more delicate. If (n -2) α 2 ≤ λ , the inequality K[p] ≥ 0 follows from Corollary 5.4. Moreover, under the same assumption,

K[p] ≥ 1 - 1 n α 4 (0,∞)×M p - p r - ∆ p α 2 (n -1) r 2 2 p 1-n dµ + 2 α 2 (0,∞)×M 1 r 2 ∇p - ∇p r 2 p 1-n dµ .
We write p(r, ω)

= k≥0 α k p k (r) y k (ω)
where (y k ) k≥0 is a basis of eigenfunctions associated with -∆ and (λ M k ) k≥0 denotes the corresponding sequence of eigenvalues. Notice that λ M 0 = 0 and λ M k > 0 for any k ≥ 1. When K[p] = 0, then

0 = α 4 1 - 1 n k≥0 α 2 k p k - p k r + λ M k p k α 2 (n -1) r 2 2 + 2 α 2 1 r 2 k≥0 α 2 k λ M k p k - p k r 2 .
All the terms in the r.h.s. are nonnegative, which means that we have to solve simultaneously

(5.2) p k - p k r + λ M k p k α 2 (n -1) r 2 = 0 for any k ≥ 0 and (5.3) p k - p k r = 0
for any k ≥ 1. The first equation shows that, up to multiplication by an arbitrary non-zero constant,

p ± k (r) = r β ± k with β ± k = 1 ± 1 - λ M k α 2 (n -1) 
.

For k ≥ 1, equations (5.2) and (5.3) are only compatible if at least one of β ± k = 1, which entails that λ M k = (n -1) α 2 . We shall prove that this is never the case for k ≥ 1. Because M = S d-1 we can use Lichnerowicz' and Obata's theorems to conclude that the strict inequality d-1 d-2 κ < λ M 1 holds. This implies that λ * < n-2 n-1 λ M 1 , and hence that α 2 (n -1) < λ M 1 . Altogether, p = p 0 has to be radially symmetric and given by p(r) = a + b r 2 , for some positive constants a and b. This concludes the proof.

Remark 5. If M = S d-1 , the case n = d ≥ 3 and α = α FS corresponds to Sobolev's inequality and the condition (n -2) α 2 ≤ λ is equivalent to α 2 ≤ α 2 FS = d-1 n-1 = 1.
Our results do not apply to this case, because of course it is well known that there is no rigidity in this case.

Proof of the main results

Assume that p ∈ (2, 2 * ) and consider an optimal function for the Caffarelli-Kohn-Nirenberg inequalities (1.1). Such a solution exists according to [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. Up to a multiplication by a constant, it solves (1.4). Hence Theorem 1.1 can be considered as a special case of Theorem 1.2. Similarly, we can consider the interpolation inequality (1.10). For the same reasons as in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], an optimal function exists, which solves (1.9) and the upper bound in Corollary 1.5, that is,

Λ ≤ Λ FS = 4 λ M 1 p 2 -4 follows from Proposition 2.1.
Corollary 1.3 is equivalent to Theorems 1.1 and 1.2. The proof of equivalence relies on the Emden-Fowler change of variables (1.5). Details are left to the reader. Moreover, it is clear that Corollary 1.3 is a special case of Theorem 1.4 and Corollary 1.5, which we prove next. Take any positive solution ϕ ∈ H 1 (C) to (1.9) and recall that by undoing the Emden-Fowler transformation (1.5), the function p defined in (4.3) can be written as (6.1)

p(r, ω) = (n -1) u -1 n (r, ω) = p+2 p-2 r ϕ(-log r α , ω) -p-2 2 ∀ (r, ω) ∈ (0, ∞) × M , with α = p-2 2 √
Λ and n = 2 p p-2 , and it satisfies the equation

(6.2) p L p - n 2 |Dp| 2 = 2 (n -1) 2 n -2 in (0, ∞) × M . Lemma 6.1. Let α ≤ α FS .
For any positive solution p of (6.2), corresponding to

ϕ ∈ H 1 (C), (0,∞)×M p L p - n 2 |Dp| 2 - 2 (n -1) 2 n -2 (L u m ) dµ = -n (n -1) n-1 K[p] .
Proof. Take 0 < r < R < +∞. Then a straightforward integration by parts yields

(r,R)×M p Lp - n 2 |Dp| 2 - 2 (n -1) 2 n -2 (L u m ) dµ = -n (n -1) n-1 (r,R)×M 1 2 L |Dp| 2 -Dp • DL p - 1 n (L p) 2 p 1-n dµ + α 2 r n-1 M n 2 u m |Dp| 2 p + 2 (n -1) 2 n -2 (u m ) d v g R r .
The regularity of p will be proved in Appendix A. The boundary term is bounded by a constant times (c(r) + c(R)), where

(6.3) c(r) := r n-1 M |u | u m-1 + u m |Dp| |Dp | + u m |Dp| 2 |p | p d v g .
By Proposition A.2 in the Appendix, lim r→0 c(r) = lim R→∞ c(R) = 0 and this ends the proof.

Proof of Theorem 1.4. Let us consider a solution ϕ of (1.9). Define p by (6.1), which then satisfies (6.2). It follows from Lemma 6.1 that any positive solution of (6.2) satisfies K[p] = 0. By Corollary 5.5, whenever α ≤ α FS , we get that K[p] = 0 determines the solution and establishes the symmetry result.

Proof of Corollary 1.5. We have to discuss the equality cases. A similar discussion has been done in [START_REF]Nonlinear flows and rigidity results on compact manifolds[END_REF]Theorem 4]. Here we observe that the rigidity result covers the case Λ = λ /(p -2). Now, if Λ < Λ FS , let us consider Λ n > Λ such that lim n→+∞ Λ n = Λ . Then, taking a non-radially symmetric extremal function ϕ n of (1.10) with Λ = Λ n , by elliptic estimates, we see that the sequence {ϕ n } n converges uniformly to an extremal solution of (1.10) with Λ = Λ . Since for any Λ < Λ FS the radial extremals of (1.10) are strict local minima, the radial extremal of (1.10) for Λ = Λ cannot be approached by the sequence {ϕ n } n : see [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] for a similar case. Hence, if Λ < Λ FS , at Λ = Λ there are at least two distinct nonnegative solutions of (1.7), which contradicts the rigidity property at Λ = λ /(p -2). Thus we know that Λ > λ p-2 if Λ < Λ FS .

Some consequences

This section illustrates some consequences of our main results by two further results, respectively on Schrödinger operators on cylinders and Hardy type inequalities on the Euclidean space. 7.1. Spectral estimates for Schrödinger operators on cylinders. Rigidity results and optimality in interpolation inequalities have interesting consequences on spectral estimates for Schrödinger operators on cylinders. The results of this section have been announced in [START_REF] Dolbeault | Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders[END_REF]. Here our goal is to compare

Λ(µ) := sup λ C 1 [V ] : V ∈ L q (C) , V L q (C) = µ , Λ (µ) := Λ R (vol g (M) -1/q µ and Λ R (µ) := sup λ R 1 [V ] : V ∈ L q (R) , V L q (R) = µ where -λ C 1 [V ] and -λ R 1 [V ]
denote the lowest eigenvalues of the Schrödinger operators -∂ 2 s -∆ -V and -∂ 2 s -V respectively on C and R. Assume that q ∈ (1, +∞) and let us define

µ 1 := q (q -1) √ π Γ(q) Γ(q + 1/2)
1/q and β := 2 q 2 q -1 .

Notice that µ 1 = µ (Λ = 1) with the notations of Section 1. According to [START_REF] Joseph | Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation[END_REF][START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF], we have

(7.1) Λ R (µ) = (q -1) 2 µ µ 1 β ∀ µ > 0 .
As a consequence, we obtain the one-dimensional Keller-Lieb-Thirring inequality: if V is a nonnegative real valued potential in L q (R), then we have

(7.2) λ R 1 [V ] ≤ Λ R ( V L q (R)
) . Equality holds if and only if, up to scalings, translations and multiplications by a positive constant,

V (s) = q (q -1) (cosh s) 2 =: V 1 (s) ∀ s ∈ R where V 1 L q (R) = µ 1 , λ R 1 [V 1 ] = (q -1)
2 . Moreover the function ϕ(s) = (cosh s) 1-q generates the corresponding eigenspace. See [START_REF] Dolbeault | Symmetry of extremals of functional inequalities via spectral estimates for linear operators[END_REF] for more details in the context of Caffarelli-Kohn-Nirenberg inequalities.

The classical Keller-Lieb-Thirring inequality in R d asserts that for all γ ≥ 0 if

d ≥ 3, γ > 0 if d = 2, and γ > 1/2 if d = 1, the lowest negative eigenvalue, -λ R d 1 [V ], of the operator -∆ -V satisfies λ R d 1 [V ] γ ≤ L 1 γ,d V + γ+d/2 L γ+d/2 (R d ) ∀ V ∈ L q (R d )
with optimal constant L 1 γ,d . See [START_REF] Joseph | Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation[END_REF][START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF][START_REF] Dolbeault | Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates[END_REF] for details. Proposition 7.1. Let d ≥ 2 and q ∈ (d/2, +∞). The function µ → Λ(µ) is convex, positive and such that, with γ = q -d 2 ,

Λ(µ) q-d 2 ∼ L 1 γ, d µ q as µ → +∞ .
With the notations of Theorem 1.4, there exists a positive µ with

(7.3) vol g (M) 2 2q-1 λ 2 (q -1) µ β 1 ≤ µ β ≤ vol g (M) 2 2q-1 λ M 1 (2 q -1) µ β 1 such that Λ(µ) = Λ (µ) ∀ µ ∈ (0, µ ] and Λ(µ) > Λ (µ) ∀ µ > µ .
As a special case, if M = S d-1 , inequalities in (7.3) are in fact equalities.

Proof. The existence of the function µ → Λ(µ) is an easy consequence of a Hölder estimate:

∂ s u 2 L 2 (C) + ∇u 2 L 2 (C) - C V |u| 2 dν ≥ ∂ s u 2 L 2 (C) + ∇u 2 L 2 (C) -µ u 2 L p (C)
with µ = V + L q (C) and q = p/(p -2), and of the Gagliardo-Nirenberg inequality (1.10). Since the equality case in Hölder's inequality is achieved by V = u p-2 up to some multiplicative constant, our Keller-Lieb-Thirring inequality

λ C 1 [V ] ≤ Λ V + L q (C) ∀ V ∈ L q (C) .
is in fact exactly equivalent to (1.10) and µ → Λ(µ) is the inverse of the function Λ → µ(Λ) in (1.10). Hence (7.3) is equivalent to the estimates of Corollary 1.5. The estimate of Λ(µ) as µ → +∞ and its other properties can be proved exactly as in [START_REF] Dolbeault | Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates[END_REF]. Let us give some details. By a scaling argument, it can be proved that as Λ goes to +∞, the minimizers of µ(Λ) concentrate at some point of M. Then, a blow-up analysis at the concentration point shows that, as Λ → +∞,

µ(Λ) ∼ Λ 1-ϑ L 1 γ, d 1 q with L 1 γ, d = inf ϕ∈H 1 (R d )\{0} ∇ϕ 2 L 2 (R d ) + ϕ 2 L 2 (R d ) ϕ 2 L p (R d ) -γ-d 2 ,
See [START_REF] Joseph | Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation[END_REF][START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF][START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Dolbeault | Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates[END_REF][START_REF] Dolbeault | Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders[END_REF] for further details.

7.2. Hardy inequalities with potentials. With v(x) = |x| a u(x) and Λ = (a ca) 2 , the Caffarelli-Kohn-Nirenberg inequalities (1.1) can be rewritten as

R d |∇u| 2 dx -a 2 c -Λ R d |u| 2 |x| 2 dx ≥ µ(Λ) R d |u| p |x| (b-a)p dx 2/p .
On the other hand, if V is a given smooth nonnegative potential on R d such that V (0) = 0, then by Hölder's inequality we get that

R d V |u| 2 |x| 2 dx = R d V |x| d q |u| 2 |x| 2( d p -ac) dx ≤ R d V q |x| d dx 1/q R d |u| p |x| (b-a)p dx 2/p .
Let us denote by µ → Λ(µ) the inverse of Λ → µ(Λ). Then we have the following result.

Proposition 7.2. Let d ≥ 1 and q ∈ (min{1, d/2}, +∞). Assume that V is a nonnegative function such that |x| -d V q is integrable. Then, for any

u ∈ Ḣ1 (R d ) := {u ∈ L 1 loc (R d ) : ∇u ∈ L 2 (R d )}, we have R d |∇u| 2 dx- R d V |u| 2 |x| 2 dx-a 2 c -Λ(µ) R d |u| 2 |x| 2 dx ≥ 0 if µ = R d V q |x| d dx 1/q . As a special case, if µ = R d V q |x| d dx 1/q
≤ µ with µ defined as in Proposition 7.1, then with Λ given by (7.1), we have

R d |∇u| 2 dx - R d V |u| 2 |x| 2 dx -a 2 c -Λ (µ) R d |u| 2 |x| 2 dx ≥ 0 ∀ u ∈ Ḣ1 (R d ) .
The above result is a generalized form of Hardy's inequality. If d ≥ 3, we recover the usual form by taking V ≡ 0, with optimal constant a 2 c . There is no optimal potential because the equality in Hölder's inequality would mean that V is proportional to |u| p-2 , so that |x| -d V q is not integrable if v(x) = |x| -a u(x) is an optimal function for (1.1).

Appendix A. Regularity and decay estimates

We denote by and ∇ the differentiation with respect to s and ω respectively. We work in the general setting and do not assume that M = S d-1 .

Proposition A.1. Any positive solution ϕ ∈ H 1 (C) of (1.7) with p ∈ (2, 2 * ) is uniformly bounded and smooth. Moreover there are two positive constants, C 1 and C 2 such that, for all (s, ω) ∈ C,

C 1 e - √ Λ |s| ≤ ϕ(s, ω) ≤ C 2 e - √ Λ |s| , |ϕ (s, ω)| , |ϕ (s, ω)| , |∇ϕ(s, ω)| , |∇ϕ (s, ω)| , |∆ ϕ(s, ω)| ≤ C 2 e - √ Λ |s| .
Proof. A similar result was proved in [START_REF] Catto | Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. III. Binding of neutral subsystems[END_REF]. Here we work in a more general setting when M = S d-1 . For sake of completeness, we sketch the main steps of the proof.

Step 1. The solution is bounded, smooth and lim |s|→+∞ ϕ(s, ω) = 0 for any ω ∈ M. Boundedness is obtained by a Moser iteration scheme. The C ∞ regularity follows by a localized boot-strap argument based on, e.g., [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Corollary 7.11, Theorem 8.10, and Corollary 8.11]. If s → χ(s) is a smooth truncation function such that 0 ≤ χ ≤ 1, χ ≡ 1 if |s| ≤ 1 and χ ≡ 0 if |s| ≥ 2, then ϕ ε (s, ω) := ϕ(s, ω) 1χ(ε s) has an arbitrary small norm in H 1 (C) and lim ε→0+ ϕ ε L ∞ (C) = 0, again by a Moser iteration scheme.

Step 2. Exponential decay of ϕ in |s|. For any µ ∈ (0, √ Λ), let h(s) := e -µ |s| and define From Step 2 we know that for some positive M and s, we have

s µ := inf s > 0 : |ϕ(σ, ω)| p-2 < Λ -µ 2 , ∀ (σ, ω) ∈ C ∩ {|σ| > s} .

By the Strong Maximum Principle applied to the function (h

-ϕ) which solves -∂ 2 s (h -ϕ) -∆ (h -ϕ) + µ 2 (h -ϕ) ≥ Λ -µ 2 -|ϕ| p-2 ϕ ≥ 0 for |s| ≥ s µ , we get the estimate 0 < ϕ ≤ ϕ L ∞ (C) e -µ (|s|-sµ) ∀ (s, ω) ∈ C ∩ {|s| > s µ } .
-∂ 2 s ϕ -∆ ϕ + Λ -M s 2 ϕ ≤ 0 in C ∩ {|s| > s} , while the function h 2 (s, ω) := e - √ Λ |s| e λ |s| satisfies -∂ 2 s h 2 -∆ h 2 + Λ -M s 2 h 2 = -1 s 2 M + 2 λ √ Λ + 2 λ s + λ s 2 h 2 in C∩{|s| > s} . By taking λ < -M 2 √
Λ and applying the Strong Maximum Principle for S > 0 large enough, we obtain

0 < ϕ ≤ ϕ L ∞ (C) e -λ S e - √ Λ (|s|-S)
in C ∩ {|s| > S} .

Step Next we rephrase the results of Proposition A.1 in the language of the pressure function p of Section 4 using (6.1) and establish the estimates needed in Lemmas 4.3 and 6.1.

Proposition A.2. Let m = 1 -1/n and ϕ ∈ H 1 (C) be a positive solution of (1.9) with p ∈ (2, 2 * ). Then the functions p associated with ϕ according to (6.1) are such that p , p /r, p/r 2 , ∇p /r, ∇p/r 2 and ∆p/r 2 are bounded as r → +∞ and of class

C ∞ on (0, ∞) × M. Moreover, if α ≤ α FS , as r → 0 + , we have (i) M |p (r, ω)| 2 d v g ≤ O(1), (ii) M |∇p(r, ω)| 2 d v g ≤ O(r 2 ), (iii) M |p (r, ω)| 2 d v g ≤ O(1/r 2 ), (iv) M ∇p (r, ω) -1 r ∇p(r, ω) 2 d v g ≤ O(1), (v) M |∆p(r, ω)| 2 d v g ≤ O(1/r 2 ).
Moreover, with the notations defined by (4.8) and (6. Proof. We say that f (s, ω) ∼ g(s, ω) as s → +∞ (resp. s → -∞) if the ratio f /g is bounded from above and from below by positive constants, independent of ω, and for s (resp. -s) large enough. There are some easy consequences of the change of variables (6.1) and of Proposition A.1: since ϕ(s, ω) ∼ e √ Λ s as s → -∞, ϕ(-log r/α, ω) ∼ r -2/(p-2) as r → +∞ and it is straightforward to check that p , p /r, p/r 2 , ∇p /r and ∇p/r 2 are bounded as r → +∞. As a consequence, we obtain that |b(r)| , c(r) ≤ O(r 2-n ) → 0 as r → +∞ because, by assumption, we know that n > d ≥ 2.

To complete the proof, one has to establish that lim r→0+ b(r) = lim r→0+ c(r) = 0. A convenient method for that relies on the Kelvin transformation. Let u(r, ω) = r -2n u(R, ω) and p(r, ω) = r 2 p(R, ω) with R = 1/r. It is a remarkable fact to observe that u solves the same equation as u, which can be easily seen after applying the Emden-Fowler transformation w(r, ω) = r 2-n w(R, ω) to the function w such that u(r, ω) = |w(r, ω)| 2 n n-2 . With evident notations if ϕ and ϕ are given in terms of w and w by (1.5), then ϕ(s, ω) = ϕ(-s, ω) for any (s, ω) ∈ R×M and it is clear that equation (1.9) is invariant under the transformation s →s.

According to Proposition A.1, p(r, ω) = r 2 p(1/r, ω) is bounded away from 0 and from infinity, and, uniformly in ω,

|p (r, ω)| = |2 r p 1 r , ω -p 1 r , ω | ≤ O 1 r √ Λ - ϕ (s, ω) ϕ(s, ω) , 1 r |∇p(r, ω)| = r |∇ p 1 r , ω | ≤ O 1 r ∇ ϕ(s, ω) ϕ(s, ω) ,
which are of order at most 1/r. Moreover, also uniformly in ω,

|p (r, ω)| = |2 p 1 r , ω - 2 r p 1 r , ω + 1 r 2 p 1 r , ω | ≤ O 1 r 2 ϕ (s, ω) ϕ(s, ω) - p 2 | ϕ (s, ω)| 2 | ϕ(s, ω)| 2 + α ϕ (s, ω) ϕ(s, ω) , | 1 r ∇p (r, ω) -1 r 2 ∇p(r, ω)| = |∇ p 1 r , ω -1 r ∇ p 1 r , ω | ≤ O 1 r 2 p 2 ϕ (s, ω) ∇ ϕ(s, ω) | ϕ(s, ω)| 2 - ∇ ϕ (s, ω) ϕ(s, ω) , 1 r 2 |∆ p(r, ω)| = |∆ p 1 r , ω | ≤ O 1 r 2 ∆ ϕ(s, ω) ϕ(s, ω) - p 2 |∇ ϕ(s, ω)| 2 | ϕ(s, ω)| 2 ,
which are of order at most 1/r 2 . This shows that |b(r)|, c(r) ≤ O(r n-4 ) and concludes the proof if 4 ≤ d < n. When d = 2 or 3 and p > 4, i.e., n < 4, more detailed estimates are needed. We will actually prove Properties (i)-(v) as r → 0 + . Using the fact that ϕ and ϕ solve the same equation, this amounts to prove that

(i) M ϕ (s,ω) ϕ(s,ω) - √ Λ 2 d v g ≤ O(e 2αs ), (ii) 
M ∇ϕ(s,ω) ϕ(s,ω) 2 d v g ≤ O(e 2αs ), (iii) 
M ϕ (s,ω) ϕ(s,ω) -p 2 |ϕ (s,ω)| 2 |ϕ(s,ω)| 2 + α ϕ (s,ω) ϕ(s,ω) 2 d v g ≤ O(e 2αs ), (iv) M p 2 ϕ (s,ω) ∇ϕ(s,ω) |ϕ(s,ω)| 2 -∇ϕ (s,ω) ϕ(s,ω) 2 d v g ≤ O(e 2αs ), (v) M ∆ϕ(s,ω) ϕ(s,ω) -p 2 |∇ϕ(s,ω)| 2 |ϕ(s,ω)| 2 2 d v g ≤ O(e 2αs ), as s → -∞.
Proof of (i). Let us consider a positive solution ϕ to (1.9) and define on R the function

ϕ 0 (s) = M ϕ(s, ω) d v g .
By integrating (1.9) on M, we know that ϕ 0 solves

-ϕ 0 + Λ ϕ 0 = M ϕ p-1 d v g =: h 0 (s) ∼ e -(p-1) √ Λ |s| in R .
From the integral representation

ϕ 0 (s) = e - √ Λs 2 √ Λ s -∞ e √ Λt h 0 (t) dt + e √ Λs 2 √ Λ ∞ s e - √ Λt h 0 (t) dt ,
we deduce that ϕ 0 (s) ∼ e From the Cauchy-Schwarz inequality, we deduce that

|χ 1 (s)| 2 = M ∂ s ψ ∂ 2 s ψ d v g 2 ≤ M |∂ s ψ| 2 d v g M |∂ 2 s ψ| 2 d v g = 2 χ 1 (s) M |∂ 2 s ψ| 2 d v g , that is M |∂ 2 s ψ| 2 d v g ≥ |χ 1 | 2 2 χ 1 ,
and inserting this estimate in (A.3) we obtain

-χ 1 + |χ 1 | 2 2 χ 1 + 2 λ 1 χ 1 -2 √ Λ χ 1 ≤ h 1 .
Let ζ 1 = √ χ 1 and observe that it solves

-ζ 1 + λ 1 ζ 1 -2 √ Λ ζ 1 ≤ h 1 2 ζ 1 .
By Cauchy-Schwarz inequality, for s → -∞, This ends the proof of (i).

Proof of (ii). By differentiating (1.9) with respect to ω, we obtain -∂ 2 s ∇ϕ -∇ ∆ ϕ + Λ ∇ϕ = (p -1) ϕ p-2 ∇ϕ in C . We proceed as in case (i). With similar notations, by defining because M ∂ 2 s ψ dv g = 0, we obtain

-χ 3 + |χ 3 | 2 2 χ 3 + 2 λ 1 χ 3 -2 √ Λ χ 3 ≤ h 3 , with h 3 := M ∂ 2 s H ∂ 2 s ψ d v g .
With the same arguments as in case (i), we deduce that χ 3 (s) ≤ O(e 2αs ) as s → -∞ . This ends the proof of (iii).

Proof of (iv). The term ϕ (s,ω) ∇ϕ(s,ω) |ϕ(s,ω)| 2 is easily bounded after integrating with respect to ω because ∂s ϕ ϕ is bounded according to Proposition A.1 and by (ii). As for the term ∇ϕ (s,ω) ϕ(s,ω) , we proceed like in case (ii). By applying the operator ∇∂ s to (1.9), we obtain We end the proof of (iv) by observing that ϕ(s, ω) ∼ e √ Λ s as s → -∞.

Proof of (v). By applying the Laplace-Beltrami operator to (1.9), we obtain as s → -∞ , using again the fact that √ Λ + λ 1 -√ Λ ≥ α for any Λ ∈ (0, Λ FS ) and ϕ(s, ω) ∼ e √ Λ s as s → -∞. The estimate for the other term follows from (ii). This ends the proof of (v).
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 111121 Figure 1. The Felli-Schneider region, or symmetry breaking region, appears in dark grey and is defined by a < 0, a < b < b FS(a). We prove that symmetry holds in the light grey region defined by b FS(a) ≤ b < a+1 when a < 0. Symmetry also holds for any b ∈ [a, a + 1) if a ∈ [0, ac). The curve a → b direct (a) corresponds to the dashed curve. The above plot is done with d = 3.

Theorem 1 . 2 .

 12 Assume that d ≥ 2 and p ∈ (2, 2 * ). If either a ∈ [0, a c ) and b > 0, or a < 0 and b ≥ b FS (a), then any nonnegative solution v of (1.4) which satisfies R d |v| p

2 a dr r dω where |∇v| 2 = ∂v ∂r 2 + 1 r 2

 22 |∇ ω v| 2 and ∇ ω denotes the gradient with respect to the angular variable ω ∈ S d-1 . Next we consider the change of variables r → r α , (3.1) v(r, ω) = w(r α , ω) ∀ (r, ω) ∈ R + × S d-1

Proposition 3 . 1 .

 31 Let d ≥ 2 and assume that α ≤ α FS . Then optimality in (3.2) is achieved by radial functions. The r.h.s. in (3.2) generically differs from the usual Dirichlet integral because of the coefficient α in the derivative D and because the angular variable ω is in S d-1 with d < n.

1 n

 1 = |w| ⇐⇒ u = |w| p with p = 2 n n -2 the r.h.s. in (3.4) is transformed into a generalized Fisher information (4.2) I[u] := (0,∞)×M u |Dp| 2 dµ where p = m 1m u m-1 and m = 1 -1 n , while the l.h.s. in (3.4) is now proportional to a mass, (0,∞)×M u dµ. Here p is the pressure function, as in [46, 5.7.1 p. 98]. If we replace m by 1 -1 n , we get that (4.3) p = (n -1) u -1 n is such that Du m =u Dp and Du u =n Dp p . The reader is invited to check that (0,∞)×M

Proposition 4 . 2 .

 42 With the above notations and Λ = 4 α 2 /(p -2) 2 , we have

Lemma 4 . 3 .

 43 With the notations defined by (4.3), (4.7) and (4.8), if u is a smooth solution of (4.5), with α ≤ α FS , and if lim r→0+ b(r) = 0 = lim r→+∞ b(r) for any t > 0, then

Lemma 5 . 2 .

 52 Assume that d ≥ 3 and n > d. If p is a positive function in C 3 (M), then M

Remark 1 .

 1 the general case, with d ≥ 3, the conclusion holds with θ = θ , b 2a c = 0 and λ = λ θ . If M = S d-1 with d ≥ 3, we choose θ = 0 and get the conclusion. With p = f β and β = 2 3-n and δ = 1 d-1 -1 n-1 , we have proved that M k M [p] p 1-n d v g can be written as a sum of squares, namely

  the constants a, b and c are explicit and given by

Corollary 5 . 5 .

 55 The difference of the two terms in (5.1) involves an additional term equal to ζ (nd) (0,∞)×M |∇p| 4 p 1-n dµ if d ≥ 3, where the expression of ζ can be found in Remark 3, but one can choose a = 1 while b is unchanged. If d = 2, the difference of the two terms in (5.1) is bounded from below by Assume that n > d ≥ 2 and that (n -2) α 2 ≤ λ . Then, for any function p ∈ C 3 ((0, ∞) × M), K[p] ≥ 0 and K[p] = 0 if and only if u = u (t, •) for some t > 0.

Step 3 .

 3 Optimal exponential decay of ϕ in |s|. The function h 1 (s, ω) := e - √ Λ |s| satisfies the equation -∆ h 1 + Λ h 1 = 0 on C ∩ {|s| > 1}. Hence, by the Strong Maximum Principle, we have ϕ(s, ω) ≥ min C∩{|s|≤1}

√√ 2 M

 2 Λs ∼ ϕ(s, ω) as s → -∞ and ϕ 0 (s) -√ Λ ϕ 0 (s) ϕ(s, ω) ∼ -Λt h 0 (t) dt = O(e 2αs ) as s → -∞ .If we define ψ(s, ω) := e √ Λ |s| ϕ(s, ω)ϕ 0 (s) , we may observe that it is bounded and solves the equation(A.1) -∂ 2 s ψ -∆ ψ -2 √ Λ ∂ s ψ = e √ Λ |s| ϕ p-1ϕ p-1 0 =: H ≤ O(e -2α|s| )and∂ s ϕ(s, ω) ϕ(s, ω) -√ Λ = O(e 2αs ) + ∂ s ψ(s, ω) e - √ Λ s ϕ(s, ω) as s → -∞ .We recall that e - √ Λ s ϕ(s, ω) is bounded from above and from below by positive constants as s → -∞, and |e - √ Λ s ∂ s ϕ(s, ω)| is bounded above. As a consequence, we know that ∂ s H = O(e 2αs ) as s → -∞. Hence we know that∂ s ϕ(s, ω) ϕ(s, ω) -√ Λ ≤ C |∂ s ψ(s, ω)| + O(e 2αs ) ,where C is a constant. We differentiate (A.1) with respect to s. The function∂ s ψ solves (A.2) -∂ 2 s (∂ s ψ) -∆ (∂ s ψ) -2 √ Λ ∂ s (∂ s ψ) = ∂ s H ,with |∂ s H(s, ω)| ≤ O(e 2αs ) as s → -∞ . Let us define χ 1 (s) := 1 |∂ s ψ| 2 d v g , multiply (A.2) by ∂ s ψ and integrate over M. Using χ 1 = M holds because M ∂ s ψ d v g = 0 for any s ∈ R, by definition of ψ, and where h 1 := M ∂ s H ∂ s ψ d v g .

|h 1 (s)| ≤ √ 2 M|∂ s H| 2 d v g 1 / 2 ζ 1 √Λs ζ 1 (

 121211 (s) ≤ C e 2αs ζ 1 (s) .Using once more an integral representation of the solution, with µ := √ Λ + λ 1 , it is easy to check thate )t h 1 (t) ζ 1 (t) dt ,which is enough to deduce that ζ 1 (s) ≤ O e αs as s → -∞. Note that the condition that µ -√ Λ = Λ + λ 1 -√ Λ ≥ αis equivalent to the inequality α ≤ α FS . Hence we have shown that for α ≤ α FS , (A.4) χ 1 (s) ≤ O e 2αs as s → -∞ .

|∇ϕ| 2 1 M-χ 2 + |χ 2 | 2 2 χ 2 + 2 (Λ + λ 1 ) χ 2 ≤ h 2 with h 2 : 2 satisfies -ζ 2 + (Λ + λ 1 ) ζ 2 ≤ h 2 2 ζ 2 . 2 |∂ s ψ| 2 . 1 M 2 s

 2122212222122212 d v g , after multiplying the equation by ∇ϕ and using the fact thatM (∆ϕ) 2 d v g ≥ λ |∇ϕ| 2 d v gas, e.g., in [25,Lemma 7] and the Cauchy-Schwarz inequality, we obtain = (p -1)M ϕ p-2 |∇ϕ| 2 d v g = O e -p √ Λ |s| . The function ζ 2 = √ χ By the Cauchy-Schwarz inequality, h 2 /ζ 2 = O e -(p-1) √ Λ |s| . We easily deduce that χ 2 (s) ≤ O e 2 (α+ √ Λ) s as s → -∞ .Indeed, we observe that√ Λ + λ 1 -√ Λ ≥ α for any Λ ∈ (0, Λ FS ) and ϕ(s, ω) ∼ e √ Λ sas s → -∞, which ends the proof of (ii).Proof of (iii). With ψ = e - √ Λs (ϕϕ 0 ) and ϕ 0 (s) = M ϕ(s, ω) d v g as in case (i), we can check that (A.5) Because according to Proposition A.1 ∂ s ψ and ∂sϕ ϕ are bounded as s → -∞, and taking into account (A.4), it remains to prove that χ 3 (s) := 1 2 M |∂ 2 s ψ| 2 d v g is of order O(e 2αs ). We differentiate (A.1) twice with respect to s. After multiplying the equation by ∂ 2 s ψ and using the fact that M |∇(∂ 2 s ψ)| 2 d v g ≥ λ |∂ ψ| 2 d v g

-∂ 2 s 2 M 1 M-χ 4 + |χ 4 | 2 2 χ 4 + 2 (Λ + λ 1 ) χ 4 ≤ h 4 ,

 221442144 (∇∂ s ϕ) -∇∆(∂ s ϕ) + Λ ∇∂ s ϕ = ∂ s ∇H = (p -1) ϕ p-2 ∇∂ s ϕ + (p -2) ∂ s ϕ ∇ϕ ϕ in C .With similar notations, by defining χ 4 (s) := 1 |∇∂ s ϕ| 2 d v g , after multiplying the equation by ∇∂ s ϕ and using the Poincaré inequality M |∆(∂ s ϕ)| 2 d v g ≥ λ |∇(∂ s ϕ)| 2 d v g we obtain with h 4 := M ∂ s ∇H ∂ s ∇ϕ d v g . With the same arguments, we deduce that χ 4 (s) ≤ O e 2 (α+ √ Λ) s as s → -∞ .

-∂ 2 s 2 MM∆ϕ ∆ 2 ϕ d v g = M |∇∆ϕ| 2 d v g ≥ λ 1 M |∆ϕ| 2 d v g , we obtain -χ 5 + |χ 5 | 2 2 χ 5 + 2 (Λ + λ 1 ) χ 5 ≤ h 5 with h 5 :

 221552155 (∆ϕ) -∆ 2 ϕ + Λ ∆ϕ = ∆H = (p -1) ϕ p-2 ∆ϕ + (p -2) |∇ϕ| 2 ϕ in C .We proceed as in case (ii). With similar notations, by defining χ 5 (s) := 1 |∆ϕ| 2 d v g , after multiplying the equation by ∆ϕ and using the fact that -= M ∆H ∆ϕ d v g . With the same arguments, we deduce that χ 5 (s) ≤ O e 2 (α+ √ Λ) s

  Assume that d ≥ 2 and p ∈ (2, 2 * ). Equality in (1.6) is achieved by ϕ Λ if and only if Λ ≤ Λ FS . Moreover, up to translations, the unique solution to (1.7) is equal to ϕ

	Corollary 1.3.
	2 n n-2 , where n is the new dimension, and Λ by
	Λ = Λ FS := 4 The results of Theorems 1.1 and 1.2 have an exact counterpart on the cylinder. d -1 . p 2 -4

  4. Optimal exponential decay in |s| for ∇ϕ, ∆ ϕ. Using local charts and [32, Theorem 8.32, p. 210] on local C 1,α estimates, all first derivatives of ϕ converge to 0 with rate e - √ Λ |s| as |s| → +∞. [32, Theorem 8.10, p. 186] provides local W k+2,2 estimates of the order e - √ Λ |s| for |s| large enough. The result follows from [32, Corollary 7.11, Theorem 8.10, and Corollary 8.11] if k is taken large enough.
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