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Abstract 

 

This review summarizes the research progress made over the past decade in the field of gastropod 

immunity resulting from investigations of the interaction between the snail Biomphalaria 

glabrata and its trematode parasites. A combination of integrated approaches, including cellular, 

genetic and comparative molecular and proteomic approaches have revealed novel molecular 

components involved in mediating Biomphalaria immune responses that provide insights into the 

nature of host-parasite compatibility and the mechanisms involved in parasite recognition and 

killing. The current overview emphasizes that the interaction between B.	 glabrata and its 

trematode parasites involves a complex molecular crosstalk between numerous antigens, immune 

receptors, effectors and anti-effector systems that are highly diverse structurally and extremely 

variable in expression between and within host and parasite populations. Ultimately, integration of 

these molecular signals will determine the outcome of a specific interaction between a B.	glabrata 

individual and its interacting trematodes. Understanding these complex molecular interactions and 

identifying key factors that may be targeted to impairment of schistosome development in the 

snail host is crucial to generating new alternative schistosomiasis control strategies. 
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1. Introduction: 

 

Much of our knowledge of gastropod innate immunity has come from investigations of snails that 

serve as intermediate hosts for the human blood flukes of the genus Schistosoma. Schistosomes 

are the causative agents of schistosomiasis, one of the most important of the human neglected 

tropical diseases in the world (WHO, 2014; http://www.who.int/mediacentre/factsheets/fs115/en/ 

accessed 2015/01/07). Schistosomes infect over 200 million people worldwide causing both acute 

and chronic, debilitating diseases [1, 2]. There are no effective vaccines against schistosomes, 

and treatment still relies on a single drug, praziquantel [3]. As praziquantel resistance can be 

easily selected in the laboratory [4] and some human populations subjected to mass treatment 

now show evidence of reduced drug susceptibility [5], alternate control strategies are necessary, 

including strategies for blocking transmission via the snail intermediate host. In this context, 

understanding the molecular mechanisms of the snail’s internal defense system, especially those 

mediating resistance to schistosomes (and other helminths), could give valuable clues for 

developing new strategies to disrupt disease transmission.  

As pointed out in a recent editorial on the importance of snail research as an integral part of 

schistosomiasis control schemes [6], a community of investigators has concentrated their research 

efforts on understanding the mechanisms of snail-trematode compatibility using the model snail 

species Biomphalaria glabrata whose genome has been sequenced and currently is undergoing 

assembly and annotation (www.vectorbase.org accessed 2015/01/07). Here we review the major 

discoveries made over the past decade on innate immunity in B. glabrata from investigations 

conducted at the cellular, genetic, and molecular levels. Furthermore, gene discovery efforts have 

resulted in the identification of numerous genes with presumptive immune function, and 

importantly, have led to the development of molecular tools, such as RNA interference, which 

has allowed for the functional analysis of some of these genes. Several reviews published in the 

last five years have focused on digenean – B. glabrata relationships including their immune 

interactions [6-10]. Here we give a complementary view of B. glabrata immunity by reviewing 

recent discoveries made over the past decade from non-targeted immune studies as well as from 

the numerous studies investigating specific questions focusing on the nature of host-parasite 

compatibility, and the mechanisms underlying resistance and parasite recognition.  
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2. Insights	from	non‐targeted	transcriptomic	studies 

Although many studies have investigated snail immunity in the context of the B. glabrata/S. 

mansoni interactions, only a limited number have used non-targeted immune gene discovery 

methods to provide a survey of potentially immune-related genes. For example, Mitta and 

collaborators analyzed transcripts expressed by circulating hemocytes (the main effector cells) of 

Biomphalaria spp. using random sequencing of a hemocyte cDNA library [11]. This allowed 

identification of several hundred novel transcripts including 31 immune-relevant transcripts 

corresponding to various functional groups. In addition to usual anticipated candidates such as 

transcripts coding for enzymes involved in oxidative response or cell adhesion proteins, several 

unexpected transcripts were identified. In particular, transcripts displaying sequence similarities 

with the mammalian cytokine MIF (Macrophage Migration Inhibitory Factor) and a PGRP 

(peptidoglycan recognition protein) were both identified for the first time in any mollusk species.  

Following this hemocyte gene discovery study, numerous followup investigations were 

conducted to identify transcripts differentially expressed during an immune response. B. glabrata 

snails were exposed to various infectious agents such as trematodes [12-14], bacteria [12, 15, 16], 

or fungi [15], followed by cDNAs analyses using various techniques involving ORESTES or 

EST sequencing [14], microarrays [12, 13] and NGS technologies [15] in order to identify genes 

responding to these challenges. Altogether, these studies greatly increased the number and 

diversity of immune-relevant transcripts identified in B. glabrata and helped to establish a 

substantial repertoire of predicted genes with the potential for serving a functional role in 

pathogen interactions. Included among these were candidates genes belonging to various 

functional groups including those coding for pattern recognition proteins (e.g., Fibrinogen- 

related proteins (FREPS), PGRPs, macrophage mannose receptor, C-type lectins, galectins), cell 

adhesion molecules (e.g., dermatopontins, matrilins, integrins), immune regulators (e.g., MIF, 

Allograft inflammatory factor (AIF), C1q TNF-related protein), cellular defense effectors (e.g., 

lipopolysaccharide-binding protein/bactericidal permeability-increasing protein (LBP/BPI), 

lyzozyme), proteases and protease inhibitors (e.g. serpins, serine proteases, trypsin inhibitors, 

metalloproteinases) or oxidative stress and stress related proteins (e.g. superoxide dismutases 

(SODs), dual-oxidase, Glutathione S-transferases (GSTs), peroxiredoxins, multidrug resistance 
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proteins, soma ferritins, cyclophilins, etc.) as well as candidates involved in regulatory networks 

and signaling pathways (e.g. Zinc-finger proteins, calmodulins, Thymosin B4) [11, 12, 15, 16].  

In addition to providing a growing database of immune-relevant genes, these studies paved the 

way for complementary targeted and functional studies. For example, the potential existence and 

involvement of a MIF cytokine in B. glabrata immunity was investigated functionally by RNAi 

knockdown, in which snail MIF protein was shown to exhibit cellular immune activities similar 

to those of well known mammalian cytokines [17]. This was followed by other studies that 

reported the existence of MIF transcripts in other mollusk species including marine species [18] 

suggesting that this cytokine is a conserved protein among mollusk species. Similarly, several 

isoforms of PGRPs were identified and characterized in B. glabrata [19]. Three full-length 

transcripts were shown to originate from a long form PGRP gene (BgPGRP-LA) by alternative 

splicing and one from a short form PGRP gene (BgPGRP-SA), supporting the existence of the 

well conserved Toll/Imd immune-signaling pathways in this gastropod snail [19]. Curiously, with 

the exception of transcripts similar to theromacins [11], the previously mentioned gene discovery 

studies, including those involving bacterial challenges, did not result in the identification of a 

diversified arsenal of antimicrobial peptides (AMPs). In contrast, however, cDNAs of 

antimicrobial proteins such as achacins and LBP/BPIs have been reported in B. glabrata and 

other molluscs [11, 12, 15, 16]. Using a proteomic approach LBP/BPI was identified as a major 

protein of B. glabrata egg masses [20] and was shown to exhibit a protective its antimicrobial 

activity [21]. 

 

3. Insights	from	comparisons	of	susceptible	and	resistant	snail	strains 

 

The low prevalence of snails with patent schistosome infection usually observed in transmission 

foci [22, 23] raises the possibility that partial innate resistance could exist in natural snail 

populations. This hypothesis has been extensively investigated in various laboratories, and 

genetic studies conducted with different trematode/B. glabrata models. These studies have 

demonstrated a spectrum of infection susceptibility depending on the host-parasite combination. 

Results of experimental infection clearly show that susceptible and resistant phenotypes can 

occur and these are heritable traits that can be selected for under laboratory conditions [24-26]. 



6 
 

These genetically-selected susceptible/resistant B. glabrata strains have become the model 

organism of choice for investigating the mechanisms underlying resistance and as subjects for 

comparative molecular studies. The following sections present the work conducted over the past 

decade on different strains of B. glabrata inbred for susceptibility or resistance to two trematode 

species, Echinostoma caproni and S. mansoni (Figs. 1 and 2). 

 

 3.a. Resistance to Echinostoma caproni  

In this model, two strains of B. glabrata varying in their susceptibilities to infection by 

Echinostoma caproni miracidia were selected [27]. While miracidia are able to penetrate both 

susceptible and resistant snails, the parasite undergoes normal development in susceptible snails, 

whereas in resistant snails, it is encapsulated in the pericardial region by circulating hemocytes, 

the main effector cells in snails, resulting in larval death and elimination. Susceptibility/ 

resistance mechanisms of B. glabrata to E. caproni are probably multigenic [27] and rely on both 

humoral and cellular factors [28]. In vivo comparison of E. caproni development in both B. 

glabrata strains revealed that sporocysts were abnormally developed and degenerated regardless 

of the intensity of the encapsulation response in resistant snails [28]. These results suggested that 

humoral factors present in snail plasma, in addition to hemocytes, may be actively involved in the 

molecular processes underlying resistance to E. caproni [28]. As a first approach to identify these 

factors, a comparative proteomic study was performed on plasma extracts prepared from both 

strains. Thirteen plasma proteins were differentially represented between strains [29]. These 

proteins belong to three different classes. The first is a type-2 secreted cystatin (cysteine protease 

inhibitors that control activity of cathepsins, ECM-degrading proteases) and was named Bg type-

2 cystatin. Two other proteins representing a second class were identified as isoforms of secreted 

calcium-binding proteins of the EF-hand type (designated Bg CaBP 1 and 2) that are known to 

play a key role in calcium homeostasis. The last two proteins identified were isoforms of an endo 

-1,4-mannanase that are known to randomly cleave within the main chain of galactomannan, 

glucomannan, galactoglucomannan and mannan [30]. All of these proteins are expressed in the 

albumen gland and secreted into the hemolymph. They are more abundant in the plasma of 

susceptible snails and these differences appear correlated with their transcript levels in the 

albumen gland [29]. Post-infection expression of these five genes is stable in susceptible snails 

following infection, while they increase significantly in exposed resistant snails [29]. It was 
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proposed that these differences could be linked to a differential regulation of genes in the 

albumen gland between snail strains. In mollusks, the albumen gland is considered as an 

accessory sexual gland [31] although it has been shown to be involved in the production of 

defense effector-like agglutinins in planorbid snails [32] or antimicrobial proteins in B. glabrata 

[20] and several opisthobranch gastropods [33]. The results obtained by Guillou and collaborators 

[34] supported the view that the albumen gland may play a significant role in immune defense 

including processes underlying susceptibility/resistance to E. caproni.  

 

Regarding the cellular factors, previous studies showed that excretory-secretory (ES) products 

from in vitro transformed E. caproni sporocysts inhibited key defence-related functions of 

susceptible snail hemocytes such as adhesion and phagocytosis [35]. Interestingly, hemocytes 

from resistant snails remained unaffected by these parasite ES products, suggesting a differential 

response compared to those of susceptible snails. Comparative approaches were undertaken to 

identify the molecular basis of this phenotypic difference. Because observed differences appeared 

to be related to adhesive properties of hemocytes, the expression of genes directly involved in 

adhesion processes was investigated in both strains [36]. Transcripts of 4 genes were 

differentially expressed between strains and included transcripts encoding two isoforms of 

dermatopontin-like proteins (Bg dermatopontin-2 and -3), a matrilin and cadherin [36]. Among 

these, the dermatopontins seem to be the most promising candidates due their likelihood of being 

secretory proteins and their share structural features with dermatopontins identified in two other 

invertebrate species, Suberites domuncula and Limulus polyphemus, which were shown to be 

involved in adhesive processes [37, 38]. Furthermore, steady-state transcript levels for these two 

B. glabrata dermatopontin genes were shown to be i) higher in hemocytes from unexposed 

resistant snails, and ii) greatly enhanced in resistant snails 48 h after exposure to the parasite. 

Interestingly, previous histological studies showed that hemocytic encapsulation reactions to E. 

caproni sporocysts occurred between 48 and 72 hours post exposure [28] in resistant snails, 

corresponding to the timing of hemocyte dermatopontin gene up-regulation. After this initial 

targeted transcriptomic approach, a comparative proteomic study was performed using hemocytes 

of different snail strains [39]. This approach identified 12 proteins that exhibited significant 

differences in abundance between strains. Among these was a Bg aldolase, intermediate filament 

protein, cytidine deaminase, ribosomal protein P1 and histone H4 [39].  
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By employing different gene/protein discovery approaches several candidate immune genes have 

been identified in hemocytes, as well as other tissues (e.g, albumen gland) that may be playing 

important roles in regulating susceptibility/resistance processes [29, 36, 39]. In order to expand 

the repertoire of potential immune-related genes differentially expressed in model snail strains, a 

suppression subtractive hybridization (SSH) method was used to study the two snail strains at the 

whole body level [40]. Results of this study not only confirmed the differential expression of 

several genes identified previously, but also new candidate genes belonging to novel functional 

groups. One of the more promising immune relevant candidates was a gene cluster displaying 

similarities to the defense factor Aplysianin A, originally purified from the albumen gland of 

Aplysia kurodai [33]. This factor was highly expressed in resistant B. glabrata when compared to 

the susceptible strain prompting speculation that its high abundance in resistant snails may be 

associated with the effective encapsulation response of resistant snails against E. caproni.  

 

3.b. Resistance to S. mansoni  

Interactions between B. glabrata and S. mansoni are characterized by a compatibility 

polymorphism in which a specific snail strain may be resistant to a specific S. mansoni strain 

while susceptible to another S. mansoni strain [41] (Figure 3). Selection and use of different 

snail/schistosome combinations were extremely useful to investigate the genetic bases of 

compatibility as well as the functional mechanisms involved in regulating immune interactions. 

In the present section we will use the terms “susceptible” and “resistant” for snail strains that 

allow or disallow, respectively, infection by a specific strain of S. mansoni. However, the snail 

phenotype also is dependent on the schistosome strain used. Studies using snail stocks that are 

either resistant (13-16-R1 and BS-90 strains) or susceptible (M-line or NMRI strains) to specific 

S. mansoni stocks have clearly demonstrated a strong genetic basis for the susceptibility of B. 

glabrata to S. mansoni [25, 42]. Using snail stocks that represent these different susceptibility 

phenotypes, the genetic loci governing these traits have been assessed by a variety of DNA 

genotyping tools. These studies have led to the identification of heritable markers related to the 

parasite-resistance phenotype of adult snails [43]. However, as these sequences are repetitive in 

the snail genome, further attempts to characterize the associated genes were not successful. A 

reverse genetic approach using linkage analysis of polymorphic expressed sequence tags (ESTs) - 
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expressed simple sequence repeats (eSSRs) - and previously identified bi-allelic microsatellite 

markers, genomic (g)SSRs were used, resulting in the identification of putative genomic 

locations for resistance gene loci [44]. Similarly other studies have revealed one locus whose 

allelic variation is associated with snail resistance. This locus corresponds to a linked cluster of 

redox genes including a gene encoding for a cytosolic copper/zinc SOD (sod1, [45-47]). The 

current genome assembly and annotation of B. glabrata will significantly facilitate identification 

of additional genes associated with both resistance and susceptibility in this snail species. 

Nevertheless, the causality of the previous mentioned associations still remains to be elucidated.  

In addition to these genetic approaches, advances have also been made towards the identification 

of genes associated with snail susceptibility phenotypes by examining differences in gene 

expression profiles between different snail strains that are either resistant or susceptible to 

parasite infection. The first studies identifying gene product of immunological relevance was 

developed by Schneider and collaborators [48] using differential-display reverse-transcription 

PCR for a comparison of resistant 13-16-R1 and susceptible M-line B. glabrata strains. In this 

work several partial gene transcripts derived from hemocyte cDNA that displayed similarities to 

adhesion molecules, kinases, glycosidases and peroxidases were identified, but no further 

characterization of these candidates were conducted. In subsequent studies, a differential display 

approach was developed to evaluate gene expression in mantle and brain tissues of the resistant 

BS90 and susceptible BB02 strains of B. glabrata during experimental exposure to S. mansoni 

[49]. Several candidate genes were identified and some of them were confirmed to be 

differentially regulated after challenge. Two of these genes induced in resistant snails following 

larval exposure displayed similarities with a HSP70 and a myoglobin. Follow-up studies using 

suppression subtractive hybridization (SSH) with the same snail strains focused on hemocytes 

and hematopoietic organ to allowed for the identification of transcripts expressed differentially 

between hemocytes from resistant and susceptible snails [50]. Two of these transcripts, 

displaying homology with ferritins and serine proteases, were specifically upregulated in BS-90 

and BBO2, respectively. Contrary to the above findings, however, another study using the same 

SSH methodology, but employing juvenile B. glabrata snails, gave contradictory results: a 

specific induction of the transcript corresponding to HSP70 was found in susceptible juveniles, 

but not in the resistant strain. To address the differing results regarding the differential gene 

expression of HSP70 between snail strains, a quantitative RT-PCR approach was undertaken in 



10 
 

which snails were subjected to infection and heat shock. The results confirmed that expression of 

HSP70 is dramatically induced during heat shock as well as after infection in susceptible juvenile 

snails, but not in the resistant strain [51]. Induction of stress genes after either heat-shock or 

parasite infection was a major feature distinguishing susceptible juvenile snails from their 

resistant counterparts. In order to further examine this apparent association between heat stress 

response and snail susceptibility, the effect of temperature modulation was investigated [52]. 

Results of this study showed that, if maintained for up to 4 hours at 32°C prior to infection, 

resistant snails became susceptible, suggesting an association or linkage between temperature-

sensitivity (heat-shock) and susceptibility to infection in this resistant snail model. Additionally, 

resistant snails treated with the HSP90-specific inhibitor, geldanamycin (GA) after heat stress, 

were no longer susceptible to infection, retaining their resistant phenotype. Consistently, 

susceptible snail phenotypes treated with GA before parasite exposure also remained uninfected. 

These results suggest a putative role of HSPs and thermal stress in B. glabrata susceptibility to S. 

mansoni infection [52].  

Another suppression subtractive hybridization study on whole snail tissues was used to construct 

forward and reverse cDNA libraries to identify genes involved in the immediate response of 

juvenile resistant and susceptible snails after early exposure to S. mansoni [53]. While no 

defense-related transcripts were found among juvenile susceptible snail ESTs, several ESTs 

corresponded to transcripts involved in immune regulation/defense response (C-type lectin, 

cytidine deaminase, macrophage expressed gene 1, anti-microbial peptide theromacin) were 

encountered in resistant snails [53]. Using cDNA microarrays a comparison of gene expression in 

hemocytes from parasite-exposed and control groups of both schistosome-resistant and 

schistosome-susceptible strains (at 2 hours post exposure) was examined. As previously shown, 

differences in expression of genes involved in immune/stress response, signal transduction and 

matrix/adhesion were identified between the two snail strains. These findings supports the 

hypothesis that schistosome-resistant snails recognize parasites and mount an appropriate defense 

response, while in schistosome-susceptible snails are unable to defend themselves against 

infection either because they lack the capacity to recognize and react to the parasite or effector 

cells (hemocytes) are rendered ineffective by active suppression of the defense response during 

early in infection [54]. 
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In order to gain a better understanding of specific genes involved in regulating snail 

compatibility, gene-targeted comparative approaches were undertaken on the previous mentioned 

susceptible and resistant snail strains. For example, since the role of hydrolytic enzymes can be 

crucial in host-pathogen interactions, a comparative study on proteolytic enzyme activities and 

transcripts of susceptible and resistant snails was performed [55]. This work revealed differences 

in cysteine protease activity between both strains and a significant up-regulation of cathepsin B 

transcripts in resistant (vs. susceptible) snails after parasite exposure. Since hydrogen peroxide 

(H2O2) was shown to be involved in hemocyte-mediated sporocyst killing [56], the hypothesis 

that Cu/Zn superoxide dismutase (SOD, a cytosolic enzyme that catalyzes the conversion of 

superoxide anion to H2O2), could be different between resistant and susceptible snail strains was 

tested. The amount of steady-state Cu/Zn SOD mRNA was constitutively higher in hemocytes 

from resistant snails, and this correlated directly with a higher Cu/Zn SOD enzymatic activity 

[57] and a higher capacity to produce H2O2 [58] in resistant snails. A causal relationship between 

B. glabrata SOD1 expression and susceptibility/resistance to S. mansoni was further supported by 

expression analysis [59] and by genetic-linkage studies [46, 47]. Finally, 52 inbred lines 

originating from the B. glabrata 13-16-R1 snail populations were reared to determine their 

phenotypes in regard to susceptibility/resistance to S. mansoni. These lines displayed differences 

in numbers of spreading hemocytes with snail lines harboring significantly larger numbers of 

circulating hemocytes exclusively exhibing resistance to S. mansoni, whereas lines characterized 

by a lower hemocyte number showing variable phenotypes (resistant or susceptible). In the same 

work, transcript levels in hemocytes were quantified for 18 potential defense-related genes. The 

different susceptibility/resistance phenotypes correlated with differences in transcript levels for 

two redox-relevant genes (a predicted phagocyte oxidase component and a peroxiredoxin) and an 

Allograft Inflammatory Factor (potentially a regulator of leucocyte activation) [60]. 

	

4	Insights	from	studies	into	recognition	of	S.	mansoni		

During the course of its intramolluscan development, S. mansoni may use different strategies, in a 

sequential manner, to avoid elimination. Upon penetration into the snail host, miracidia of S. 

mansoni undergo dramatic morphological and physiological changes as they transform into the 

sporocyst stage [61]. During the first hours of infection, the ciliated epidermal plates of the 

miracidium detach and epidermal ridges begin to expand for the formation of a new tegument 
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[62]. This young post-miracidium parasite is highly vulnerable to host immunity because it is 

devoid of a protective surface covering until the new tegument is completely formed at about 5 hr 

post infection. The formation of new tegument included participation of membrane-bound 

vesicles that discharge their contents into the snail tissues. This apparently helps protect the 

parasite from host immunity as it prevents snail hemocytes from attachment to the parasite 

tegument. If a postmiracidium fails to mobilize these membrane-bound vesicles in the formation 

of tegument, the parasite becomes surrounded by hemocytes and the parasite is eliminated within 

24 hr [62]. During these initial first hours of infection, S. mansoni may thus employ an active 

strategy for avoiding recognition and elimination by the host’s immune system [61, 63-65]. It has 

long been speculated that one of the strategies used by schistosomes to avoid host immune 

recognition is molecular mimicry [66, 67]. By expressing host-like antigens or molecules, the 

parasite is less likely to be recognized as foreign and avoids evoking an immune response [68]. 

To achieve these different goals, during the different phases of the transformation process, the 

parasite releases an abundance of diverse proteins that are postulated to serve protective function 

during formation of the new tegument by the parasite [69]. The parasite-released, so-called 

Excretory Secretory Products (ESPs) and Larval Transformation Proteins (LTPs) [61, 62, 70] are 

involved in an arms race between parasite infectivity strategies and host defence mechanisms that 

ultimately determines the success or failure of host–parasite infections (Figure 3). As a first step 

to investigate the molecular determinants that play a key role in the cross-talk between snails and 

schistosomes, the biochemical characterization of ESPs and LTPs of the parasite was undertaken. 

This led to identification of presence of redox/antioxidant enzymes, glycolytic enzymes, ion-

binding proteins including those with putative anti-oxidant Fe-binding activities (ferritins, heme-

binding protein) and proteases/protease inhibitors [61, 63]. These findings fit well into a model in 

which parasite ESP/LTPs protect sporocysts from oxidative damage and other immune effectors 

of the host. For further understanding of the molecular dialogue between snails and schistosomes, 

also the characterisation of the molecules directly involved in recognition processes was 

conducted, not only from the parasite side but also from the perspective of the host. 

In B. glabrata, a lectin-based system for immune recognition of glycan determinants associated 

with non-self has been hypothesized to activate immune responses to invading pathogens, 

including digenetic trematodes [9, 68, 71-73]. In such a system, the sharing of glycan epitopes 

between invading larvae and elements of the snail’s immune system could play a prominent role 



13 
 

in determining infection success [68, 71, 72]. Investigations of glycan signatures from B. 

glabrata and S. mansoni by Yoshino and collaborators have demonstrated that glycotopes are 

both abundantly expressed and extremely diverse in structure [68, 71, 74, 75]. For example, a 3-

fucosylated lacdiNAc (LDN) was prominently expressed on the larval surface and amongst 

glycoproteins released during larval transformation and early sporocyst development [74]. This 

glycotope was heterogeneously expressed among individual schistosome larvae, particularly 

miracidia. This implies a possible role for these glycotopes in snail–schistosome compatibility 

[68, 74, 75]. An independent study investigated antigenic differences between two S. mansoni 

strains, the first being totally compatible (C strain) and the second totally incompatible (IC strain) 

towards B. glabrata of the same Brazilian strain. Newly penetrated parasites from the IC strain 

are contacted by host hemocytes within 1 to 2 hours post-infection and entirely encapsulated by 8 

to 12 hours post-infection (Figure 3). By contrast, newly-penetrated miracidia of the C strain 

were not encapsulated and and developed into primary sporocysts (Sp1) (Figure 3). These 

observations suggested that constitutive antigenic differences exist between the two schistosome 

strains. A comparative proteomics approach [76] study revealed that the main difference between 

these S. mansoni strains corresponded to mucin-like glycoproteins. Mucins are generally known 

to play key roles in the host–parasite interplay [77-80]. Further study [81] showed that these 

proteins share several features characteristic of mucins including a N-terminal domain containing 

a variable number of tandem repeats and a conserved C-terminal domain [81]. The proteins are: 

(i) only expressed by larval schistosome stages that interact with the snail intermediate host (ii) 

produced and located in the apical gland of miracidia and sporocysts, (iii) , highly glycosylated, 

and finally (iv) highly polymorphic [81]. Consequently, they were called S. mansoni polymorphic 

mucins (SmPoMucs). A detailed analysis of their high level of intra- and inter-strain variations 

showed that SmPoMuc diversification is driven by a complex cascade of mechanisms involving 

recombinations between members of the SmPoMuc multigene family, post-transcriptional 

regulation events and post-translational modifications [82]. The consequence of this genetic 

variability is a remarkably high degree of polymorphism from a limited set of genes making each 

individual parasite able to express a specific and unique pattern of SmPoMucs.  

 Taken together, these results suggest that antigenic diversity may explain the differences 

of compatibility between schistosome and strains of B. glabrata snails. For further examination 

of the putative involvement of SmPoMuc and other glycotopes as targets for recognition by snail 
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immune receptors of the snails, an interactome experiment was conducted to characterize snail 

plasma proteins that interact with the parasite and its products. This approach identified several 

host lectins and parasite glycoproteins. Among the lectins, FREPs (fibrinogen-related proteins, 

see below) were identified as well as another B. glabrata lectin that has sequence similarities 

with a secreted galactose-binding lectin previously described from another gastropod, Helix 

pomatia [83]. Additional to these snail lectins the interactome also contained several parasite-

contributed glycosylated proteins that were identified as SmPoMucs, the 23 kDa integral 

membrane protein (Sm23 or tetraspanin) and the glycoprotein K5 [84]. Taken together, these 

results suggest that the recognition process between S. mansoni and B. glabrata is likely 

multifactorial, involving different immune receptors from the host and different carbohydrate 

components and/or glycoproteins from the parasite [84].  

A complementary co-immunoprecipitation (CoIP) experiment [84] was performed to further 

study the potential interaction between SmPoMucs and putative immune receptor(s) of the host. 

Antibodies raised against SmPoMucs were used in antibody pull-down experiments. Analysis 

showed that SmPoMucs formed molecular complexes B. glabrata FREP lectins, extensively 

studied plasma immune receptors [85]. The FREPs are perfect candidates for snail molecular 

determinants of the compatibility polymorphism [72] that determines parasite/snail compatibility 

on an individual basis. Indeed, FREPs are lectin-like hemolymph proteins that bind and 

precipitate soluble antigens derived from trematodes [85]. Thorough study has revealed that 

FREPs are highly polymorphic and that somatic diversification generates unique FREP 

repertoirtes in individual b. glabrata [86]. A specific review dedicated to these molecules is 

presented in the present special issue. A third molecular partner was identified in the 

FREP/SmPoMuc containing complex: a thioester-containing protein from B. glabrata (BgTEP). 

The presence of BgTEP in the complex was intriguing as molecules of the TEP family play key 

roles in other invertebrate/pathogen interactions, especially in insects. TEP1 is crucial for 

phagocytosis of bacteria and killing of Plasmodium parasites in the mosquito Anopheles gambiae. 

TEP1 from the mosquito is secreted by hemocytes and cleaved in hemolymph into an active form 

(called mature TEP1 or TEP1-cut, [87]). The C-terminal part of TEP1 binds to bacteria or the 

ookinete stage of malaria parasites through a thioester bond. The involvement of this 

complement-like molecule in the antiparasitic defense of mosquitoes was discussed previously 

[88]. Precursor and phylogenetic analysis of BgTEP suggest that it shares the features with 
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invertebrate TEPs that are known to be involved in antiparasitic defense and phagocytosis of 

micro-organisms [89-92]. In addition, LC-MS/MS analysis of the interactome components led to 

the identification of peptides that are all located in the C-terminal part of BgTEP, suggesting a 

thioester-dependent association with the two other partners of the complex. With the indication 

that BgTEP occurs in activated from in the immune complex, it may well play a role in 

opsonization processes as previously described for other members of the TEP family. This 

hypothesis is further supported by the presence of an Alpha2 Macroglobulin receptor binding 

domain (region 1343–1427) in the C-terminal part of BgTEP precursor [84]. This domain is 

involved in the interaction with macrophage- and phagocyte-specific receptors [93] and may 

participate in hemocyte recruitment and capsule formation around incompatible parasites in snail 

tissues.(Figure 3). Using a combination of affinity chromatography and proteomic analyses, Wu, 

Yoshino et al. (in preparation) have found that affinity-immobilized sporocyst surface 

glycoproteins and glycoproteins released during miracidial transformation selectively bind 

various plasma proteins, notably members of several FREPs subfamilies including Freps 2, 3, 5, 

7, and 12, C-type lectins and dermatopontins. These findings support the compatibility 

polymorphism hypothesis, and suggest that molecular interactions which ultimately lead to host 

susceptibility or resistance are highly complex and multifactorial.  

The interactome study employing B.	 glabrata plasma and S.	mansoni primary sporocyst 

extracts, also identified a new putative cytolytic protein from B.	 glabrata named 

Biomphalysin [84]. Biomphalysin belongs to the β pore-forming toxin (β -PFT) superfamily 

that includes virulence factors of amoeba, known to effect lysis by form channels in 

membranes of target cells [94]. The expression of Biomphalysin is restricted to hemocytes 

and it is not differentially regulated following parasite challenge. Likely it has a sentinel role 

in preventing pathogen invasion. Recombinant Biomphalysin had hemolytic activity and 

was found to bind parasite membranes while it exerts high cytotoxicity toward S.	mansoni 

sporocysts. This functional characterization of Biomphalysin provides for the first time the 

description of a gastropod immune effector protein involved in S.	mansoni	killing [94]. 

In conclusion, highly variable FREPs from B. glabrata form complexes with similarly 

highly polymorphic and individually variable mucins (the SmPoMucs) from the trematode 

parasite S. mansoni. Among the different molecules identified in the studies reviewed here, it 

appears that FREPs and SmPoMucs display the appropriate level of polymorphism to explain at 
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least in part the compatibility polymorphism that determines the outcome of infections natural 

populations of B. glabrata and S. mansoni. These two highly polymorphic systems from the host 

and the parasite seem to be deployed during the early stages of infection, and this interaction is a 

likely key component for determining the success or failure of the infection. Several recent 

studies partially support this supposition. The knock down of FREPs by RNA interference was 

shown to reduce by 20 to 30% the individual resistance of B. glabrata to trematode infections 

[95, 96]. Experiments using SmPoMucs knock-down are currently in progress. In addition, 

SmPoMuc expression is controlled epigenetically through histone modifications [97] and 

diversity of expressed SmPoMuc is increased by experimental modification (using Trichostatine 

A; TSA) of the chromatin status of S. mansoni sporocysts treatment [98]. TSA treatment 

increases (i) the diversity of expressed SmPoMuc and (ii) the compatibility of some parasite 

strains towards a specific snail strain (Fneich S. and collaborator, personal communication). 

These results clearly support the view that FREPs (and SmPoMucs) are likely key factors of the 

compatibility polymorphism. Work is currently ongoing to investigate their role in different 

natural populations from Africa and South America. When all the results presented in this review 

are taken together, it seems that also other molecular partners are probably involved. Recognition 

and immune activation are likely effected through involvement of a large repertoire of interacting 

molecules. Several host lectins and glycoproteins or glycan signatures of the parasite have been 

identified. In addition to the above mentioned molecules, B. glabrata galectin (BgGal) with 

galactoside-binding activity was found to display hemagglutinating activity. BgGal was not 

detected in cell-free plasma; rather it was immunolocalized in the plasma membrane of snail 

hemocyte sub-populations. This suggests that BgGal could serve as a pattern recognition receptor 

that selectively recognizes and binds hemocytes to pathogens that possess appropriate sugar 

ligands [99]. 

 

5	Insights	from	studies	of	the	immune	response	of	B.	glabrata	against	trematodes  

A synthesis of all results from the many different investigations of the previous decade 

aimed at study of anti-trematode responses of B.	 glabrata	 is challenging due to the 

differences in experimental designs. Many biological parameters vary among studies 

including strains of Biomphalaria (BS90, M line), snail size/age, parasite strain (NMRI, PR-

1), miracidial dose used for infection, duration of infection(2h, 5h or 12h or more post 
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exposure) and the depth of sequencing. There is also the need to discriminate between 

direct and indirect effects resulting from parasite activities and the inflammation of host 

tissues due with penetration, intramolluscal development and associated migration events 

of the parasite. Finally, activation and type of snail defense response depend on the nature 

of the pathogen [12, 15] or even its genotype [100], indicative of a sophisticated mechanism 

for antigen recognition. Section 3 presented the molecules involved in recognition. Here, the 

focus is on the transcriptomic upregulation of the genes involved encompassing genes 

encoding immune receptors as well as those encoding immune effectors and the genes 

reflecting cellular activation processes in hemocytes and other tissues that are involved in 

anti-trematode responses. 

	

 5.a. Inducible immune receptors 

In different transcriptomic approaches using microarray, and SSH, FREPs were shown to be 

expressed at increased abundance after challenge resistant and susceptible snails by E.	

paraensei [12, 13] or S.	mansoni[12, 13, 101, 102]. A comparison showed that specific 

patterns of FREP are evoked depending on the species of parasite used for infection. In 

addition, the kinetics of induction for different FREPS differs between species. For example, 

Frep 2 and 4 are highly expressed earlier during E.	paraensi challenge in susceptible snails 

[103] and Frep 3 and 7 later on. Other types of lectins also respond to infection. First, 

galectins were detected after S.	mansoni infection in susceptible snails [12, 13] as well as in 

resistant snails [53]. One of these galectins functions through its binding ability to the 

tegument of schistosome sporocyst in carbohydrate-dependent hemocyte adhesion [99]. 

Single domain C-type lectins represent a third category of lectins that responds to both E.	

caproni [34] and S.	mansoni (susceptible snails, [104]). The C-type lectin identified by 

Guillou and co-workers was expressed in the albumen gland [34], and organ with putative 

role in immunity [29]. Finally, a C1q-like lectin displays an elevated transcription level after 

challenge of susceptible snails by E.	paraensei and S.	mansoni	[12, 13]. 

C1q-like proteins may interact with fucosylated determinants that are absent in snail [105] 

but that predominate on parasite tegument [106-108]. In addition, Castillo and coworkers 

have demonstrated that the binding activity of some fucose-binding proteins promotes 

adhesion of snail hemocytes to sporocysts [109]. To conclude this section on lectins, the 
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diversity observed and their transcriptional kinetics in response to different types of infections 

suggest that they play a crucial role in the recognition of trematode antigens leading to the 

development of an efficient anti-trematode response.  

 

5.b. Inducible immune effectors 

After injury and/or recognition of the parasite, different molecular pathways were 

activated that may help B.	glabrata	to develop a response against the challenging infection. 

All the factors that were identified as participants correspond to three different classes of 

effectors: (i) proteases/protease inhibitors, (ii) Reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) and (iii) antimicrobial proteins. 

	

	 ‐Proteases	and	protease	 inhibitors:	After penetration by a parasite, detection by 

the snail host of miracidia (compatible or not) that attempt to establish yields an inducible 

systemic transcriptional activity. This reponse may be induced by inflammatory processes 

that are linked to injury due to mechanical [110] and proteolytic [111] activities of 

miracidia. In this context, induction of many extracellular components participating in cell/ 

cell or cell /matrix interactions such as MFAP4 (microfibrillar associated protein), mucin, 

dermatopontin and matrilin suggests a dynamic remodeling of the extracellular matrix 

(ECM) at the time of the penetration by the parasite [11, 101]. Expression patterns of , B.	

glabrata cathepsin, elastase and Zn metalloproteinase were also modulated [53, 101]. 

Additionally, host protease inhibitors like cystatin or serine protease inhibitors were 

upregulated in resistant hemocytes after challenge with either schistosomes [101] or 

echinostomes [11]. These factors may counteract parasite proteases in order to maintain 

adhesive properties of hemocytes and/or defense factors onto the parasite surface. This 

hypothesis was strengthened by the expression of cystatin in hemocytes that aggregated at 

the site of infection, and hemocytes that participated in encapsulation of E.	 caproni [34]. 

Finally, a Schistosoma	mansoni venom allergen-like (SmVAL) protein was shown to affect 

the expression of ECM structuring proteins in B.	glabrata [112]. This suggests an enzymatic 

battle between parasite and snail to control the physicochemical properties of connective 

tissue to facilitate or prevent migration of the parasite in the snail.  
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	 ‐ROS	and	RNS:	The highly reactive chemical compounds that derive from molecular 

oxygen and nitrogen (ROS and RNS) are crucial factors of the snail defense against S.	

mansoni	 [113]. Conversely, S.	mansoni has adapted to this oxidative attack from the snail 

host by developing several antioxidant systems [114]. During transformation of a 

miracidium to mother	sporocyst,	 the intramolluscan larval parasite expresses an array of 

antioxidant enzymes like glutathione-S-transferase (GST), Cu/Zn superoxide dismutase 

(SOD), glutathione peroxidase (GPx) and Peroxiredoxins (Prx). [61, 63, 115-117] that are 

addressed to the newly formed tegumental syncitium for survival of the parasite within the 

host [116, 118]. Interestingly, the snail’s oxidative burst in response to miracidia 

penetration seems to be activated by recognition of antigens. Indeed, 

mannose/galactose/fucose-containing antigens rapidly induce PI3K-dependent production 

of hydrogen peroxide , the main ROS involved in killing S.	mansoni sporocysts [56, 119, 

120]. Likely to prevent native cellular damage caused by immune-related production of 

ROS, B.	glabrata	engages enzymatic detoxification mechanisms upon parasite infection [12, 

13]. 

	

	 ‐Antimicrobial	proteins:	Snail responses to trematode infection include increased 

transcription levels for several putative antimicrobial proteins. Prominent among these are 

genes that belong to the LBP/BPI family. were highly up-regulated especially after 

echinostome challenge [13, 34]. One particular LBP/BPI protein (i) was expressed in the 

albumen gland [34], (ii) represented the major protein of B. glabrata egg masses [20] and (iii) 

displayed antibacterial activity as well as an unexpected activity against oomycetes (aquatic 

fungi) [21]. Nevertheless, the role of LBP/BPI in anti-trematode defense remains unclear. A 

second antimicrobial protein was identified as putative Macrophage expressed gene-1 

(MPEG1) belonging to the MACPF (membrane-attack complex/perforin) protein 

superfamily [121]. The corresponding gene was upregulated in hemocytes from resistant 

snails challenged with S.	mansoni [53].  

	

5.c. Inducible genes as indicators of cellular activation  

To monitor and study an immune response against invaders, it is convenient to focus on immune 

related genes that are induced after a challenge. Accordingly, many transcriptomic approaches 
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have focused on RNA extracted from whole snails and interpreted snail immunity based on genes 

transcripts that displayed similarities to immune genes whose function has been elucidated in 

other biological models. Taking into account the conservation of molecular pathways involved in 

cellular activation processes, here we focus discussion on cells involved in immune function, the 

hemocytes, in particular those from resistant snails. First, enhanced intracellular activity (evident 

from expression of genes involved in protein synthesis, membrane trafficking and mitochondrial 

respiration) was observed in hemocytes from resistant snails after exposure to miracidia [101, 

104]. An echinostome infection induced expression of the intermediate filament gene (a 

cytoskeletal component), this suggests alterations in hemocyte mobility and capability to adhere 

to the parasite [39]. Similarly, after exposure to S. mansoni, diverse components of the 

cytoskeleton, such as actin and myosin filaments but also alpha and beta tubulins, were shown to 

be induced [101]. In addition, regulatory factors of hemocyte motility such as RACK, 14-3-3 

proteins and GRK2 are induced after parasite infection [53, 101]. Finally, a cytidine deaminase, 

putatively involved in RNA editing was induced in resistant snails after challenge [53]. This 

type of enzyme may also participate in somatic mutation processes to drive diversification 

of genes that encode B.	 glabrata immune receptors such as FREPs [86], as well as 

development of specificity of immune functions in hemocytes [36]. 	

 

6. Conclusion: 

Research over the past decade has provided major advances in the field of molluscan 

immunity, particularly concerning the snail B.	glabrata. A diversity of experimental systems 

comprising different strains of B.	 glabrata and trematode parasites that display various 

levels of compatibility has clearly shown that the mechanisms underlying the success or 

failure of parasite development are multigenic and variable among and within populations. 

This may reflect the immunological arms race between the host and the parasite that 

involves recognition mechanisms that include lectin/glycan interactions as well as effector 

and anti-effector systems like biomphalysins, LBP/BPI, and ROS/ROS scavengers,. It 

appears that the relative importance of these different factors varies greatly for different 

populations of host snails and parasites, as was evident for example by the interplay of 

relative levels of ROS production and ROS scavengers in determining host-parasite 

compatibility [114]. To date, the contribution of environmental factors as determinant of 
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compatibility between snails and their parasites has probably been underestimated. A 

recent study indicated an influence of the temperature stress and HSPs on the outcome of S.	

mansoni	 infection in B.	 glabrata [52]. Others have shown the influence of previous 

encounters with other (species or strains of) digenean parasites that may lead to immune 

priming or “immunization” against future infections.[100]. Finally, epigenetic mechanisms 

seem to be involved in the expression of some determinants of the compatibility [97] in a 

manner that probably influences the compatibility status between parasite and host 

partners. A future challenge is to explore the relative importance of these different factors 

in defining the compatibility status of B.	 glabrata	 relative to particular parasites. The 

assembly and annotation of the B.	glabrata	genome	will facilitate continued development of 

molecular level studies that are likely to provide novel insights important for addressing 

this important question. The results from the past decade emphasize that the interaction 

between B. glabrata and its trematode parasites is governed by a complex molecular crosstalk 

that involves numerous antigens, immune receptors, effectors and anti-effector systems. Some of 

these molecules are highly diversified and/or are expressed differentially among (populations of) 

B. glabrata snails and digenean parasites. Therefore, the resolution of a specific interaction 

between an individual B. glabrata and a particular digenean parasite depends on the integration 

of numerous individual parameters. Understanding this complex molecular crosstalk and 

identifying key factors that may be targeted to impair schistosome development in the snail host 

is crucial to generate avenues for developing new alternative control strategies toward blocking 

transmission and disruption of the transmission of schistosomiasis. 
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Legends	to	figure	
 
 
Figure 1: Schistosoma	mansoni	life	cycle. 
Schistosoma	mansoni has a complex life cycle that involves two hosts. Adult worms mate in 
the venous system of a vertebrate definitive host. Eggs are expelled with the faeces. If 
deposited in an aquatic environment, the eggs hatch to release a miracidium that will infect 
a freshwater snail of the genus Biomphalaria. Within snail tissues, the miracidium 
transforms into a primary sporocyst that multiplies asexually to produce secondary 
sporocysts. Secondary sporocysts produce cercariae that emerge from the snail and actively 
infect a vertebrate definitive host. 
 
Figure 2:	Echinostoma	caproni	life	cycle. 
The life cycle of Echinostoma	caproni involves three hosts, a vertebrate definitive host (mice 
are used as experimental host in the laboratory) and invertebrate first and second 
intermediate hosts (Biomphalaria	glabrata	may serve in both capacities). Hermaphrodite 
adult worms reproduce in the gastrointestinal tract of a mouse, unembryonated eggs are 
released with faeces. If deposited in an aquatic environment, the eggs complete their 
development, hatch and release miracidia. Miracidia actively penetrate a Biomphalaria	
glabrata first intermediate host. Within the snail tissues, the miracidia transform to 
sporocysts that multiply asexually to yield rediae and cercariae. The cercariae leave the 
snail and actively infect the second intermediate host snail (Biomphalaria	 glabrata) and 
encyst to become metacercariae. After ingestion a mouse definitive host, metacercariae 
excyst in the intestine and develop into adults. 
 
Figure 3:	 Schistosoma	 mansoni	 /	 Biomphalaria	 glabrata	 immunobiological	
interactions. 
The outcome of infection is dependent on the nature of the host and parasite interaction. 
The immunobiological interactions of the parasite (S.	mansoni)	towards different strains of 
B.	glabrata	are either compatible/susceptible (C/S) or incompatible/resistant (I/R).  
A. In the I/R immunobiological interaction, the parasite was recognized as non-self after 
penetration, encapsulated and killed by the hemocytes, the snail's circulating immune cells. 
Note the multi-layer hemocyte capsule surrounding a dead sporocyst at 48 hours after 
penetration.  
B. In the C/S imunobiological interaction, the parasite was not recognized and developed 
normally in snail tissue. The sporocyst is growing in the head-foot of the snail 48 hours 
after penetration. 
The same immune cellular response processes were observed in the interaction between 
Echinostoma	caproni and B.	glabrata. 
 


