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Introduction

Hyperelastic compressible solids are characterized by a specific stored energy e. We take the energy in separable form [7] :

e (G, η) = e h (ρ, η) + e e (g) .

Here G = B -1 is the Finger tensor, B = FF T is the left Cauchy-Green deformation tensor, F is the deformation gradient, g = G |G| -1/3 , |G| is the determinant of G, ρ is the solid density (ρ = ρ 0 |G| 1/2 , ρ 0 is the reference density ), and η is the specific entropy. The energy e h (ρ, η) is the hydrodynamic part of the energy, depending only on the determinant of G and the entropy η, and e e (g) is the shear elastic energy. Eventually, e e (g) can depend also on the entropy through the material parameters as the shear modulus, for example. In the present paper, we will consider only isotropic solids, where e e (g) = e e (j 1 , j 2 ) , j 1 = tr (g) , j 2 = g : g =tr g 2 .

The shear part of the energy is unaffected by the volume change. Such a decomposition into purely volumetric and isochoric deformation is useful, in particular, for description of nearly incompressible isotropic hyperelasticity [START_REF] Hartmann | Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for nearly incompressibility[END_REF], [START_REF] Pence | Distortion of Anisotropic Hyperelastic Solids Under Pure Pressure Loading : Compressibility, Incompressibility and Near-Incompressibility[END_REF]. In particular, with the energy of the form (1) the pressure is determined only by the hydrodynamic part :

p = ρ 2 ∂e h ∂ρ ,
while the deviatoric part S of the Cauchy stress tensor σ = -pI + S, tr (S) = 0, is given only by the shear part :

S = -2ρ ∂e e ∂j 1 g - j 1 3 I + 2 ∂e e ∂j 2 g 2 - j 2 3 I .
An important numerical advantage of giving the energy in separable form is that the numerical non-stationary codes of hyperelasticity can directly be used for fluids (it is sufficient to take e e = 0). Also, such a separable form allows us to prove easier the hyperbolicity of governing equations. The hyperbolicity property is a necessary condition for the wellposedness of the Cauchy problem and the corresponding numerical Godunov's methods. Even if the criterion of hyperbolicity of nonstationary hyperelasticity is well known (the energy e should be an rank-one convex function of the deformation gradient F [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Mechanics[END_REF]), it is extremely difficult, if not impossible, to verify it in practice even in the case of isotropic elastic materials ( cf. [START_REF] Dacorogna | Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension[END_REF], [START_REF] Davies | A simple derivation of necessary and sufficient conditions for the strong ellipticity of isotropic hyperelastic materials in plane strain[END_REF], [START_REF] De Tommasi | A note on the strong ellipticity in two-dimensional isotropic elasticity[END_REF], [START_REF] Horgan | Remarks on ellipticity for the generalized Blatz-Ko constitutive model for a compressible nonlinearly elastic solid[END_REF] for the rank-one convexity study).

Recently, in the case of isotropic solids with the equation of state in separable form (1), we have proposed a criterion of hyperbolicity in 3D case which is easier to verify [START_REF] Ndanou | Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form[END_REF].

We study here a one -parameter family of energies. For a particular value of the parameter, it contains compressible neo-hookean solids. By using the above mentioned criterion, we will show that in a large domain of parameter the energy is rank-one convex. The result obtained is not new for the case of compressible neo-hookean solids (the proof of the polyconvexity that implies the rank-one convexity can be found in [START_REF] Hartmann | Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for nearly incompressibility[END_REF]). Finally, a specific Riemann problem (pure torsion test) will be considered to show a strong dependence of the solution on this parameter.

One-parameter family of energies

Let F be the deformation gradient, B = FF T is the left Cauchy -Green deformation tensor, G = (B)

-1 is the Finger tensor. Using notations a, b, c for the columns of F -1 we have :

F -1 = (a, b, c), F -T =   a T b T c T   , G =   ||a|| 2 a • b a • c a • b ||b|| 2 b • c a • c b • c ||c|| 2 .   .
Denoting the determinant of G by |G| we obviously have

|G| = ∆ 2 ,
where ∆ is the determinant of F -1 :

∆ = F -1 = a• (b ∧ c) .
We introduce a reduced Finger tensor having a unit determinant :

g = G/ |G| 1/3 .
Consider, in particular, the following particular example of a one-parameter family of the equations of state in separable form (1) proposed in [START_REF] Favrie | A thermodynamically compatible splitting procedure in hyperelasticity[END_REF] :

e e = µ 4ρ 0 aj 2 + 1 -2a 3 j 2 1 + 3 (a -1) . (2) 
Here a can be viewed as a new non-linear material parameter. In the limit of small deformations, for any value of the parameter a , the Hooke law is recovered. An explicit expression of the invariants j k in terms of the vectors a, b, c is :

j 1 (a, b, c) = a 2 + b 2 + c 2 ∆ 2/3 , j 2 (a, b, c) = a 4 + b 4 + c 4 + 2 (b • c) 2 + 2 (a • b) 2 + 2 (a • c) 2 ∆ 4/3 .
The hydrodynamic part of the energy e h (ρ, η) can be taken, as a convex function of (τ, η) , τ = 1/ρ. For example, the 'stiffened gas' equation of state can be used :

e h (ρ, η) = p + γp ∞ ρ (γ -1) , p + p ∞ = f (η) ρ γ , df dη > 0. (3) 
In particular, one can take

f (η) = A exp η c v , A = const > 0.
Here p ∞ = const, c v is the heat capacity at constant volume, and γ > 1 is the polytropic exponent.

The hydrodynamic sound speed as a function of the pressure and the density is given by:

c 2 = γ (p + p ∞ ) ρ .
The energy in separable form with a = 0.5 was successfully used in [START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF] for a numerical study of dynamical fracture and fragmentation of metals in the framework of a model of Maxwell type solids. The corresponding isochoric energy is

e e = µ 8ρ 0 (j 2 -3) . (4) 
The rank-one convexity of (4) was proved in [START_REF] Ndanou | Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form[END_REF]. Also, as it was proved in [START_REF] Favrie | A thermodynamically compatible splitting procedure in hyperelasticity[END_REF], for any 0 < a < 0.5 the energy ( 2) is rank-one convex. It is interesting to note that the value a = -1 corresponds to neo-hookean solids :

e e = µ 4ρ 0 j 2 1 -j 2 -6 .
Indeed, for neo-hookean solids one takes e e in the form

e e = µ 2ρ 0 (i 1 -3) , where i 1 = tr B , B = B/ |B| 1/3 .
Due to Cayley -Hamilton theorem,

B 3 -i 1 B 2 + i 2 1 -i 2 2 B-Id 3 = 0, i 2 = B: B = tr B 2 .
It implies

B -3 - i 2 1 -i 2 2 B -2 + i 1 B -1 -Id 3 = 0.
Or, since g = B -1 , one has

g 3 - i 2 1 -i 2 2 g 2 + i 1 g -Id 3 = 0. ( 5 
)
Since at the same time

g 3 -j 1 g 2 + j 2 1 -j 2 2 g -Id 3 = 0, j 2 = g : g = tr g 2 , (6) 
one can identify the expressions for the invariants to obtain the relation between j k and i k , k = 1, 2 :

j 1 = i 2 1 -i 2 2 , j 2 1 -j 2 2 = i 1.
Hence, the shear energy of the neo-Hookean materials expressed in terms of invariants j k is :

e e = µ 2ρ 0 (i 1 -3) = µ 4ρ 0 j 2 1 -j 2 -6 . (7) 
The rank-one convexity of compressible neo-hookean materials was established, for example, in [START_REF] Hartmann | Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for nearly incompressibility[END_REF]. Since the neo-hookean materials correspond to the value a = -1, the question arises whether the criterion of hyperbolicity proposed in [START_REF] Ndanou | Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form[END_REF] can also be applied to the neo-hookean materials. Also, it would be useful to have, for experimental and numerical purposes, a one-parameter family (2) that is rank -one convex for a larger interval of a, for example for all a from [-1, 0.5].

Rank-one convexity

Theorem 4 in [START_REF] Ndanou | Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form[END_REF] gives a criterium of hyperbolicity in 3D case. In particular, in the isentropic case it states that if the matrix M given by:

M = 1 ∆ F -T E F -1 = 1 ∆   a T E a a T E b a T E c a T E b b T E b b T E c a T E c b T E c c T E c   (8) 
is positive definite in the domain

X 2 + Y 2 + Z 2 -2XY Z < 1, (9) 
and the squared hydrodynamic sound velocity c 2 = ∂p ∂ρ is positive (it is equivalent that e h is convex with respect to τ = 1/ρ), then the the equations are hyperbolic, i.e. the energy e = e h + e e is rank-one convex. Here X, Y and Z are cosinus of angles between vectors a, b and c :

X = cos(a, b), Y = cos(a, c), Z = cos(b, c),
E is the Hessian matrix of the volume isochoric energy E = ∆e e with respect to a (due to the invariance of E with respect to rotation, one can take also the Hessian matrix with respect to b or c ). The domain [START_REF] Horgan | Remarks on ellipticity for the generalized Blatz-Ko constitutive model for a compressible nonlinearly elastic solid[END_REF] corresponds to all possible deformations with det F =1,

i.e. corresponding to incompressible solids. Indeed, due to the fact that the shear specific energy e e is a homogeneous function of degree zero with respect to G, the matrix M has the same property. So, the restriction (10) is natural. Since µ/(4ρ 0 ) > 0, we take it one in (7). Then, up to a linear function of a,

E = ∆ j 2 1 -j 2 = 2 a 2 b 2 -(a • b) 2 + a 2 c 2 -(a • c) 2 + b 2 c 2 -(b • c) 2 ∆ 1/3 .
The first derivative of E is :

∂E ∂a = 4 b 2 a -(a • b) b + c 2 a -(a • c) c ∆ 1/3 - 2 3 a 2 b 2 -(a • b) 2 + a 2 c 2 -(a • c) 2 + b 2 c 2 -(b • c) 2 ∆ 4/3 (b ∧ c) .
The second derivative of E is :

E = ∂ 2 E ∂a 2 = 4 b 2 + c 2 I -b ⊗ b -c ⊗ c ∆ 1/3 - 4 3 b 2 a -(a • b) b + c 2 a -(a • c) c ∆ 4/3 ⊗(b ∧ c)- 4 3 (b ∧ c)⊗ b 2 a -(a • b) b + c 2 a -(a • c) c ∆ 4/3 + 8 9 a 2 b 2 -(a • b) 2 + a 2 c 2 -(a • c) 2 + b 2 c 2 -(b • c) 2 ∆ 7/3 (b ∧ c) ⊗ (b ∧ c) .
It implies :

a T E a = 20 9 a 2 b 2 -(a • b) 2 + 20 9 a 2 c 2 -(a • c) 2 + 8 9 b 2 c 2 -(b • c) 2 ∆ 1/3 , a T E b = 8 3 (a • b) c 2 -(a • c) (b • c) ∆ 1/3 , a T E c = 8 3 (a • c) b 2 -(a • b) (b • c) ∆ 1/3 , b T E c = 0, b T E b = 4 b 2 c 2 -(b • c) 2 ∆ 1/3 , c T E c = 4 b 2 c 2 -(b • c) 2 ∆ 1/3 .
Finally, the matrix M at the surface ∆ = 1 can be written as :

M = DND T
where

D = D T =   2 3 0 0 0 2 0 0 0 2   , N =   5A 2 B 2 1 -X 2 + 5A 2 C 2 1 -Y 2 + 2B 2 C 2 1 -Z 2 2ABC 2 (X -Y Z) 2AB 2 C (Y -XZ) 2ABC 2 (X -Y Z) B 2 C 2 1 -Z 2 0 2AB 2 C (Y -XZ) 0 B 2 C 2 1 -Z 2   .
Here we denoted

A = a , B = b , C = c .
The positive definiteness of M is equivalent to the positive definiteness of the matrix N.

A = a , B = b , C = c .
Estimating N in the Cartesian basis (corresponding to X = Y = Z = 1 and A = B = C = 1) we obtain

N =   12 0 0 0 1 0 0 0 1   .
Hence, N is positive definite at this point. It is now sufficient to show that the determinant of N is positive to assure that N is positive definite. The determinant of N is :

det N = 2B 6 C 6 (1 -Z) 3 (1 + Z) 3 +A 2 B 4 C 6 (1 -Z) (1 + Z) Y 2 Z 2 -5Z 2 + 8XY Z -5Y 2 -4X 2 + 5 +A 2 B 6 C 4 (1 -Z)(1 + Z) X 2 Z 2 -5Z 2 + 8XY Z -4Y 2 -5X 2 + 5 = B 4 C 4 1 -Z 2 2B 2 C 2 1 -Z 2 2 + A 2 C 2 Y 2 Z 2 -5Z 2 + 8XY Z -5Y 2 -4X 2 + 5 + A 2 B 2 (X 2 Z 2 -5Z 2 + 8XY Z -4Y 2 -5X 2 + 5)
Obviously, in the domain of (X, Y, Z) defined by ( 9) the determinant is positive because

Y 2 Z 2 -5Z 2 + 8XY Z -5Y 2 -4X 2 + 5 = Y 2 Z 2 -Z 2 -Y 2 + 1 -4 X 2 + Y 2 + Z 2 -2XY Z -1 > 1 -Y 2 1 -Z 2 > 0, X 2 Z 2 -5Z 2 + 8XY Z -4Y 2 -5X 2 + 5 = X 2 Z 2 -Z 2 -X 2 + 1 -4 X 2 + Y 2 + Z 2 -2XY Z -1 > 1 -X 2 1 -Z 2 > 0.
This proves the hyperbolicity of the generalized neo-hookean materials. Even if the proof is a little bit lengthy for this simple case of neo-hookean materials, it follows the same line as the case a = 0.5 for which exiting in the litterature sufficient criteria of rank-one convexity fail. The final remark is that the energy equation ( 2) can also be written as a linear combination of j 2 and the energy of neo-hookean solids:

e e = µ 4ρ 0 1 + a 3 (j 2 -3) + 1 -2a 3 j 2 1 -j 2 -6 .
Since the matrices M corresponding to the energies j 2 and the neo-hookean solids (7) are non negatives, the same property will be valid for the one-parameter family of energies (2) for any a :

-1 ≤ a < 0.5.

Influence of the parameter a

For applications to rubbers one can take, for example, the following values of the material parameters corresponding to silastic RTV-521 :

ρ 0 = 1372 kg/m 3 , µ = 1 M P a, γ = 2.4, p ∞ = 3.3 GP a.
The experimental data for determining the hydrodynamic part of the energy are taken from the database [START_REF] Bushman | Shock Wave Database[END_REF]. The behavior of the dimensionless deviatoric stress S 11 /µ as a function of the strain 1-a 1 (a 1 is the first component of the vector a = (a 1 , a 2 , a 3 ) T ) is shown in Figure 1. A one dimensional shear test case is addressed below. The studied configuration is shown in Figure 2 where an elastic body is subjected to a strong shear test. The same computation is performed with different values of parameter a. The hyperelastic non-stationary model was used for numerical solving the Riemann problem. The considered mesh involves 4000 cells. The Riemann problem has been solved using a robust splitting method described in [START_REF] Favrie | A thermodynamically compatible splitting procedure in hyperelasticity[END_REF]. The exact solution can also be constructed in this case [START_REF] Ndanou | The piston problem in hyperelasticity with the stored energy in separable form[END_REF]. One can see on Figures 2 and3 that the velocities of shear waves (shocks) are smaller for neo-hookean solids. Also, the initial shear discontinuity produces much stronger normal velocity jump when a = 0.5 compared to the neo-hookean solids. The shear stress amplitude is smaller in the neo-hookean solids, in spite of large transverse deformations.

Conclusions

Applying the theorem proved in [START_REF] Ndanou | Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form[END_REF], we established the hyperbolicity of dynamic equations of hyperelastic isotropic solids in the case of a one-parameter family of equations of state (2) containing, in paricular, generalized neo-hookean solids. The hyperbolicity is equivalent to the rank-one convexity of the corresponding energies. The influence of the parameter on the solution properties is shown in the case of a strong shear test. The normal velocity is plotted on the left, the tangential velocity is plotted on the right. Solid line corresponds to a = 0.5, while the dotted line corresponds to the neo-hookean solids (a = -1).
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Figure 1 :

 1 Figure 1: The behaviour of the dimensionless deviatoric stress S 11 /µ is shown. Solid line corresponds to a = 0.5, while the dotted line (which is almost a straight line ) corresponds to the neo-hookean solids (a = -1).

Figure 2 :Figure 3 :

 23 Figure2: An elastic solid (rubber) is subjected to a shear test. To the left, solids admits a positive tangential velocity while to the right, its velocity is negative.

Figure 4 :

 4 Figure4: The normal velocity is plotted on the left, the tangential velocity is plotted on the right. Solid line corresponds to a = 0.5, while the dotted line corresponds to the neo-hookean solids (a = -1).
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