
HAL Id: hal-01162866
https://hal.science/hal-01162866v1

Submitted on 11 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning chronicles signing multiple scenario instances
Audine Subias, Louise Travé-Massuyès, Euriell Le Corronc

To cite this version:
Audine Subias, Louise Travé-Massuyès, Euriell Le Corronc. Learning chronicles signing multiple
scenario instances. 25th International Workshop on Principles of Diagnosis - DX’14, Sep 2014, Graz,
Austria. �hal-01162866�

https://hal.science/hal-01162866v1
https://hal.archives-ouvertes.fr

Learning chronicles signing multiple scenario instances

Audine Subias1,3 and Louise Travé-Massuyès1,2 and Euriell Le Corronc1,4
1CNRS, LAAS, 7, avenue du Colonel Roche, F-31400 Toulouse, France

2Univ de Toulouse, LAAS, F-31400 Toulouse, France
3Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
4Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

e-mail: {subias, louise, elecorro}@laas.fr

Abstract
Chronicle recognition is an efficient and robust
method for fault diagnosis. The knowledge about
the underlying system is gathered in a set of
chronicles, then the occurrence of a fault is diag-
nosed by analyzing the flow of observations and
matching this flow with a set of available chron-
icles. The chronicle approach is very efficient as
it relies on the direct association of the symptom,
which is in this case a complex temporal pattern,
to a situation. Another advantage comes from
the efficiency of recognition engines which make
chronicles suitable for one-line operation. How-
ever, there is a real bottleneck for obtaining the
chronicles. In this paper, we consider the problem
of learning the chronicles. Because a given situ-
ation often results in several admissible event se-
quences, our contribution targets an extension to
multiple event sequences of a chronicle discovery
algorithm tailored for one single event sequence.
The concepts and algorithms are illustrated with
representative and easy to understand examples.

1 Introduction
Chronicles are temporal patterns well suited to capture the
behavior of dynamic processes at an abstract level based on
events. They are among the formalisms that can be used to
model timed discrete event systems. Chronicles may repre-
sent the signatures of specific situations, and are hence very
efficient for diagnosis. They may also be associated to de-
cision rules specifying which actions must be undertaken
when reconfiguration is needed.

The chronicle approach has been developed and used in
a large spectrum of diagnosis applications [1]: in the medi-
cal field for ECG interpretation and cardiac arrhythmia de-
tection [2], in intrusion detection systems [3], in telecom-
munication networks [4]. More recently, chronicles have
been used in the context of web services [5, 6]. Chroni-
cles are also applied on activity recognition in the setting of
unmanned aircraft Systems and unmanned aerial vehicles
operating over road and traffic networks [7].

Among the challenges raised by the chronicle approach
is the problem of acquiring the chronicles. On one hand,
model based chronicle generation approaches have been de-
veloped. For instance, in [8] the patterns are built from Petri
net models of the situation to recognize. Nevertheless, most
of the works addressing this problem are data driven. They

rely on analyzing logs and extract the significant patterns by
temporal data mining techniques [9].

The objective of temporal data mining techniques is to
discover all patterns of interest in the input data, by means
of an unsupervised approach. There are several ways to
define the relevance of a pattern. Among them, the fre-
quency criterium is widely used [10, 11]. One can distin-
guish two main frameworks: sequential patterns [12] and
frequent episodes [13].

• The sequential pattern framework is based on the dis-
covery in a collection of sequences of all possible time
ordered sets of event (i.e. sequence of events) with
sufficient number of occurrences w.r.t a user-defined
threshold. The number of occurrences of a set of events
is defined as the number of times the set of events can
be observed in the collection. Further, a sequence of
events is said to be maximal if it involves the high-
est possible number of events. Sequential pattern dis-
covery relies on the systematic search of maximal se-
quences that have a number of occurrences at least
equal to a user-defined threshold. Many methods for
unearthing sequential patterns are designed along the
lines of the Apriori algorithm [12].

• Frequent episode framework uses a single (long) se-
quence and considers the discovery of temporal pat-
terns, called episodes, that occur with sufficient fre-
quence in the sequence. An episode is a partially or-
dered set of event types. Similarly to the case of se-
quential patterns, the notion of frequent episode and
sub-episode are defined. In [13] episode discovery fo-
cusses on two types of episodes: serial episodes when
the order between the event types is total and parallel
episodes when there is only partial order between the
events types.

Chronicles are designed to afford for total order and par-
tial order temporal patterns but also patterns combining the
two types. Moreover, chronicles consider temporal con-
straints between event type occurrences.

One of the main difficulties of chronicle discovery is to
guarantee robustness to variations. The chronicle discov-
ery approach proposed in this paper aims at discovering fre-
quent chronicles common to multiple sequences represent-
ing variations of a unique situation, that is to say chronicles
that are frequent in each sequence of a collection. This is
motivated by the fact that the event sequences arising from
the same situation generally present variants that must be
accounted for.

Our contribution precisely targets an extension to mul-
tiple event sequences of the chronicle discovery algorithm
proposed by [11], which is tailored for one single event se-
quence. We target to discover the chronicles not only for a
given frequency but for all the possible frequencies higher
than a specified threshold but keep the anytime-like strat-
egy of [11] that allows the user to stop the algorithm at any
time. This is a way to cope with the algorithm’s complexity,
which is exponential because of the combinatorial nature of
the chronicle discovery problem that heritates the complex-
ity of the episode discovery problem and the one of affecting
temporal constraints to each event pair. Clearly the theoreti-
cal complexity of our algorithm remains the same as the one
of [11] but dealing with multiple sequences tends to reduce
it in practice and definetively widens its scope of applicabil-
ity.

The paper is organizes as follows. Section 2 provides
the concepts and definitions underlying the proposed ap-
proach. Section 3 first presents the algorithm for building a
database representing the sequences at hand. It then presents
the chronicle learning algorithm that uses the constructed
database. Section 4 summarizes and concludes the work.

2 Concepts and definitions
In this section, the concepts that underly our chronicle min-
ing algorithm are presented and formalized. Chronicles
have been introduced as a way to express temporal infor-
mation about a domain [14].

The domain is assumed to be described through a set of
features whose values change over time with the evolutions
of the domain.

The data samples are hence given in terms of the set of
features {χ1, . . . , χn}. Every χj takes its value in the set
U j , called the domain of χj . The universe U = U1 × · · · ×
Un is defined as the Cartesian product of the feature do-
mains. Therefore any sample can be represented by a vector
~x = (x1, . . . , xn)T of U , so that every component xj corre-
sponds to the feature value χj qualifying the object ~x. The
subset of U formed by these vectors is called the database.

When samples need to be indexed by time, a sample taken
at time ti is represented by a vector ~xti = (x1ti , . . . , x

n
ti)
T .

The value taken by the feature χj across time can be con-
sidered as a random variable xjt , t ∈ Z. The correspond-
ing time series, taken from time ti to time tf is noted
Xti−tf = {~xt, t = ti, . . . , tf} = 〈~xti , . . . , ~xtf 〉.

The concept of event type expresses a change in the value
of a given domain feature or set of features. Let us define
E as the totally ordered set of all event types. The order
relation is denoted by ≤E .

Definition 1 (Event). An event is defined as a pair (ei, ti),
where ei ∈ E is an event type and ti is a variable of integer
type called the event date.

Time representation relies on the time point algebra and
time is considered as a linearly ordered discrete set of in-
stants whose resolution is sufficient to capture the environ-
ment dynamics.

Definition 2 (Temporal sequence). A temporal sequence on
E is an ordered set of events denoted S = 〈(ei, ti)j〉j∈Nl

where Nl is a finite set of linearly ordered time points of
cardinal l and l = |S| is the size of the temporal sequence,
i.e. the number of events in S.

The temporal sequence typology is the set of event types
E′ ∈ E that occur in S. Moreover, let us point out that in
such temporal sequences, the index i refers to the event type
ei whereas the index j refers to the chronology of the event
dates.

Example: Let us consider the following temporal se-
quence S = 〈(e1, t1)1, (e2, t2)2, (e1, t1)3〉 where l = 3.
The event date of (e1, t1)1 is lower than the event date of
(e2, t2)2, itself lower than the event date of (e1, t1)3.

To represent specific domain evolutions, we consider that
event dates may be constrained. Consider two events (ei, ti)
and (ej , tj). We define I as the time interval expressed as
the pair Iij = [t−, t+] corresponding to the lower and up-
per bounds on the temporal distance between the two event
dates ti and tj , t− ≤ t+. We denote by τij the tempo-
ral constraints defined by τij = tj − ti ∈ [t−, t+]. If
the event dates ti and tj satisfy the temporal constraint τij ,
we write ei[t−, t+]ej and say that the events are temporally
constrained by τij . Iij = [t−, t+] is called the support of
τij .

Several events may have the same event type and hence
a pair (ei, ej) may not be unically temporally constrained.
Consequently, temporal constraints τij and their corre-
sponding supports Iij are indexed by k as τkij and Ikij . For
sake of simplicity, the index k is avoided when not neces-
sary.

Definition 3 (Chronicle). A chronicle is a triplet C =
(E , T ,G) such that E ⊆ E with ∀ei ∈ E , ei 6E ei+1,
T = {τij}16i6j6|E|, and G = (V,A) is a directed graph
where the nodes V represent event types of E and the arcs
A represent the constraints between the event dates. E is
called the typology of the chronicle, T is the set of tem-
poral constraints of the chronicle, and G is the precedence
graph.

Example: The chronicle concept can be illustrated by
the chronicle C defined by E = {e1, e2, e3}, T =
{τ112, τ212, τ23}, and G given in Figure 1. Moreover, we have
I112 = [1, 3], I212 = [2, 10] and I23 = [4, 6].

e1 e2 e3

e2

[1, 3] [4, 6]

[2, 10]

Figure 1: Chronicle precedence graph G

A chronicle C represents an evolution pattern involving
a subset of event types E , a set of temporal constraints T
linking event dates, and a directed graph G linking event
occurences. Chronicles define temporal patterns similar to
temporal constraint networks [15], where the temporal order
of events is quantified with numerical bounds and reflects
the represented piece of temporal evolution.

The episodes of [13] are a particular type of chronicle.
A parallel episode is a collection of event types that occur
in a given partial order whereas the event types of a serial
episode are totally ordered. In the case of episodes, tempo-
ral constraints do not specify numerical temporal bounds but
are just precedence constraints of the form tj−ti ∈ [0,+∞[
or tj − ti ∈] − ∞, 0]. An episode can hence be viewed

as a degenerated chronicle defined by the pair (E ,G). Con-
versely, chronicles are parallel episodes with additional tem-
poral information.

The occurrences of a given chronicle C in a temporal se-
quence S are denoted by subsequences called chronicle in-
stances.
Definition 4 (Chronicle instance). An instance of C =
(E , T ,G) in a temporal sequence S is a subset of event
types E ′ of S such that E ′ is isomorphic to E , in other words
|E ′| = |E|, and the event types of E ′ satisfy all temporal
constraints T of the chronicle C according to the graph G.
Definition 5 (Frequency of a chronicle). The frequency of a
chronicle C in a temporal sequence S, noted f(C|S), is the
number of instances of C in S.

In the literature, it is hardly the case that all the instances
of a given chronicle are returned by a chronicle recognition
engine. Additional constraints are generally used to form a
recognition criterion γ. For example, [13] returns the short-
est instances in the sense of the instance duration in the se-
quence. [10] returns all the recognized at the earliest dis-
joint instances, i.e. all the instances that do not overlap in
the sequence and that occur earliest in the sequence. The
frequency of a chronicle C in a temporal sequence S can be
defined according to the recognition criterion γ and it is then
noted fγ(C|S).

Given a set of event types E, the space of possible chron-
icles can be structured by a generality relation.
Definition 6 (Generality relation among chronicles). A
chronicle C = (E , T ,G) is more general than a chronicle
C′ = (E ′, T ′,G′), denoted C v C′, if E ⊆ E ′ or ∀τij ∈
T , τij ⊇ τ ′ij or G′ is a subgraph of the transitive closure of
G. Equivalently, C′ is said stricter than C.
Definition 7 (Monotonicity). A frequency fγ is said to be
monotonic for the relation v if and only if C v C′ implies
that fγ(C|S) > fγ(C′|S) for any temporal sequence S of
events.
Definition 8 (Minimal and maximal chronicles of a set).
Given a set of chronicles C, the subset of minimal and max-
imal chronicles of C are defined by:

Min(C) = {C ∈ C|∀C′ ∈ C, C v C′ ⇒ C = C′},
Max(C) = {C ∈ C|∀C′ ∈ C, C′ v C ⇒ C = C′}.

3 An algorithm for learning general
chronicles from multiple temporal
sequences

The chronicle mining process consists in discovering all
chronicles C whose instances occur in a given temporal se-
quence S. However, it is often the case that the same sit-
uation does not result in perfectly identical temporal se-
quences. In this case, we are interested in learning the
chronicles whose instances occur in all the temporal se-
quences. This problem can be stated as: given a set of
temporal sequence S = {S1, . . . ,Sn} and a minimum fre-
quency threshold fth, find all minimal frequent chronicles
C such that fγ(C) is at least fth in all temporal sequences of
S.

This paper builds on the chronicle learning algorithm pro-
posed by [11] and presents an extension to the case of mul-
tiple temporal sequences. The chronicle learning algorithm
by [11] has two phases:

1. It builds a constraint database D representing the tem-
poral sequence S. This is performed with the Complete
Constraint-Database Construction algorithm (CCDC
algorithm).

2. It generates a set of candidate chronicles starting with
a set of chronicles that were proved to be frequent and
using D to explore the chronicle space. This is im-
plemented by the Heuristic Chronicle Discovery Algo-
rithm (HCDA algorithm).

Extending this algorithm to multiple temporal sequences
requires to redesign the first phase so that the constraint
database not only represents one temporal sequence but all
the temporal sequences in the set S.

3.1 Constraint database representing multiple
temporal sequences

The constraint database D is an object in which every tem-
poral constraint τij = ei[t

−, t+]ej that is frequent in all
the sequences of S is stored. It is organized as a set of
trees Tαij for each pair of event types (ei, ej) with i, j =
1, . . . , |E|, i 6 j and α = 1, . . . , nij . The nodes of the trees
are temporal constraints and arrows represent is_parent_of
relations.
Definition 9 (is_parent_of relation). ei[t−, t+]ej
is_parent_of ei[t−

′
, t+

′
]ej iff [t−

′
, t+

′
] ⊂ [t−, t+] and

@ei[t−
′′
, t+

′′
]ej such that [t−

′
, t+

′
] ⊂ [t−

′′
, t+

′′
] ⊂

[t−, t+].

The root of a tree Tαij is hence a temporal constraint
ei[t
−, t+]ej such that the occurrences of 〈(ei, ti), (ej , tj)〉

in all temporal sequences of S are maximal. Unlike in [11],
there may be a number nij of such temporal constraints for
the same pair (ei, ej), hence nij trees. Let us notice that a
temporal constraint ei[t−, t+]ej actually defines a 2-length
chronicle C = (E , T ,G) for which E = {ei, ej} T = τij
and G is the reduced graph with one edge labeled by τij
between two nodes. Then, the root of Tαij is the 2-length
chronicle with topology E = {ei, ej} that is the most gen-
eral for all temporal sequences of S and the child nodes are
stricter 2-lengh chronicles with the same typology. DT is
defined as the set of all tree roots.

As we consider multiple temporal sequences, only the
pairs of event types (ei, ej) shared by all the temporal se-
quences Si ∈ S are examined.

In a first stage, for each sequence Sk ∈ S and for each
pair (ei, ej) ∈ E2 such that (ei, ti) ∈ Sk and (ej , tj) ∈ Sk,
the set of all the occurrences of the pair in the sequence Sk
(notedOkij) is determined. The set of time interval durations
between the two event types of the occurrences of Okij is
given by Dkij = {dkij = (tj − ti)|〈(ei, ti), (ej , tj)〉 ∈ Okij}.
From the frequency fkij of (ei, ej) in each temporal se-
quence Sk, we introduce fmax = mink(f

k
ij). fmax is the

maximal number of occurrences for (ei, ej) present in all
the sequences of S.

Example: Let us consider the three temporal sequences of
Figure 2. S = {S1,S2,S3}. For the pair (e1, e2), O1

e1,e2 =
{〈(e1, 3), (e2, 1)〉, 〈(e1, 3), (e2, 4)〉, 〈(e1, 3), (e2, 5)〉},
O2
e1,e2 = {〈(e1, 2), (e2, 1)〉, 〈(e1, 2), (e2, 3)〉} and finally
O3
e1,e2 = {〈(e1, 2), (e2, 1)〉, 〈(e1, 2), (e2, 3)〉, 〈(e1, 2), (e2, 5)〉}.
Additionally, D1

12 = {−2, 1, 2}, D2
12 = {−1, 1} and

D3
12 = {−1, 1, 3}. Finally the frequencies of the pair

(e1, e2) for each sequence are given by f112 = 3, f212 = 2,
f312 = 3, hence fmax = 2.

1 112 2 2 333 4 45 5

Sequence 1 Sequence 2 Sequence 3

e e eee e e eee1 1 22 222 2 2 e1 2

Figure 2: Example of multiple sequences

The roots of the trees for the pair (ei, ej) must hence be
such that the number of occurrences 〈(ei, ti), (ej , tj)〉 in all
temporal sequences of S is equal to fmax. The following
explains how to obtain these roots.

Two sets of supports are considered for each sequence
Sk: the set of minimal supports Ikij and the set of maximal

supports Ikij that guaranty exactly fmax occurrences of the
pair (ei, ej) in Sk. Whereas minimal supports are used in
the algorithm of [11], maximal supports are a new concept
required by our method to deal with multiple sequences.
These sets are defined as follows:

Ikij = {I
k
ij = [t−, t+]|fkij = fmax

and ∀[t−, t+] ⊆ [t−, t+] fkij < fmax}.

Ikij = {I
k

ij = [t
−
, t

+
]|fkij = fmax

and ∀[t−, t+] ⊇ [t
−
, t

+
] fkij > fmax}.

Example: On the example of Figure 2, the minimal
and maximal supports that guaranty exactly fmax = 2

for each sequence are I112 = {[−2, 1], [1, 2]} and I112 =

{] − ∞, 1], [−1,+∞[}, I212 = {[−1, 1]} and I212 =

{] − ∞,+∞[}, I312 = {[−1, 1], [1, 3]} and I312 = {] −
∞, 2], [1,+∞[}.

Then, the minimal and maximal supports obtained for
each Sk are combined to obtain all the possibilities for the
whole set of sequences S. Let us denote by Icombij and Icombij
the set of minimal and maximal support combinations, re-
spectively:

Icombij = {Icombij = {I1ij , · · · , I
n
ij}|I

k
ij ∈ Ikij , k = 1, · · · , n},

Icombij = {Icombij = {I1ij , · · · , I
n

ij}|I
k

ij ∈ Ikij , k = 1, · · · , n}.
The union of the minimal supports of every combination

of Icombij is a candidate for being a tree root for (ei, ej). The
set of tree root candidates for (ei, ej) is given by:

RCij = {rαij =
⋃
k

Ikij , I
k
ij ∈ Ikij , k = 1, · · · , n,

α = 1, . . . , card(Icombij)}.
However, minimal supports are determined indepen-

dently for each sequence. As a consequence, a candidate
may violate the fmax occurrences rule in some of the se-
quences, in which case it is not valid.

The validity of a candidate can be assessed thanks to the
maximal supports. Indeed, the intersection of the maximal

supports of every combination of Icombij provides a maximal
common interval, denoted MCI , that guaranties exactly
fmax occurrences of the pair (ei, ej) in all the sequences
Sk ∈ S:

MCIij = {MCIβij =
⋂
k

I
k

ij , I
k

ij ∈ Ikij , k = 1, · · · , n,

β = 1, . . . , card(Icombij)}.
Property 1. A tree root candidate rαij of RCij is valid if ∃β
such that rαij ⊆MCIβij , where MCIβij ∈MCIij .

A valid tree root candidate for (ei, ej) is denoted Rαij and
the set of such roots is denoted Rij . The cardinal of Rij is
nij .

Example: Let us build the first following combinations by
taking the first elements of the minimal and maximal sup-
ports for each sequence: {[−2, 1], [−1, 1], [−1, 1]} ∈ Icomb12

and {] − ∞, 1],] − ∞,+∞[,] − ∞, 2]} ∈ Icomb12 . The in-
tersection of the maximal supports provides a maximal com-
mon intervalMCI112 that validates the union of the minimal
supports r112, that is:

r112 = [−2, 1] ⊆ MCI112 =]−∞, 1].

Hence, a first valid tree root for pair (e1, e2) is given by
R1

12 = r112 = [−2, 1]. However, about the second ob-
tained combinations {[−2, 1], [−1, 1], [1, 3]} ∈ Icomb12 and
{]−∞, 1],]−∞,+∞[, [1,+∞[} ∈ Icomb12 , the intersection
of the maximal supports provides this maximal common in-
terval MCI212 = [1, 1] that do not validate the union of the
minimal supports r212 = [−2, 3]. Hence, r212 is not a good
candidate to be a tree root, it authorizes 3 occurences in se-
quences 1 and 3 so it violates the fmax = 2 occurences rule.

The same procedure is applied for f = fmax − 1 and so
on until f = 1 to find the tree roots in case no candidate is
valid for f + 1 or to find the child nodes of the lower levels
of the trees. The lowest level always corresponds to f = 1
and is never empty because the considered pairs have been
taken as pairs appearing in all the sequences. The trees for
the different pairs (ei, ej) may have a root corresponding to
a different frequency. The root frequency for the trees of
(ei, ej) is denoted frootij .

 [-2,1] [-1,2]

 [-2,-1] [1,1] [1,1] e

e

eee

ee

ee

e1

1

1

1 1 22

2

2

2

Figure 3: Set of trees for pair (e1, e2)

Example: For the example of Figure 2, two valid tree
roots are found for pair (e1, e2): R1

12 = [−2, 1] and R2
12 =

[−1, 2]. The set of trees is illustrated in Figure 3 with
froot12 = 2 and n12 = 2.

3.2 Chronicle discovery algorithm
Once the constraint database D has been built to account
for all the sequences in S as presented in section 3.1, the
algorithm for discovering all minimal frequent chronicles
for D, given an input frequency threshold fth, is the same
as the HCDA algorithm of [11] but the counting step. This

algorithm is hence called HCDA-modified (HCDAM). The
counting step is slightly different because we want HCDAM
to provide all the frequent chronicles whose frequency is
above the specified threshold. Like in [11], the candidate
chronicles are called D-chronicles.

The principle of HCDAM is to generate a set of candi-
date D-chronicles from a chronicle that was proved to be
frequent. The set Candidates is initiated with the set of root
trees DT . The algorithm maintains two lists:

• the list Frequent includes the candidate D-chronicles
that have been proved frequent, i.e. whose frequence is
higher or equal to fth, and strictest,

• the list NotFrequent includes the chronicles that have
been proved not frequent.

Instead of immediately counting a candidate C, i.e. deter-
mining the minimal number of occurences in the sequences
of S, the algorithm first makes use of the generality relation
and monotonicity property to discard or accept the candidate
without counting:

• if there exists a chronicle C′ more general than C in
NotFrequent, then C is not frequent as well,

• if there exists a chronicle C′ stricter than C in Frequent,
then C is also frequent.

If none of the two above situations apply, then C is
counted, which is performed with CRS (Chronicle Recog-
nition System) [14].

In our algorithm, the candidate is also counted in the sec-
ond situation to determine its actual frequency, which is nec-
essarily higher than fth and higher than the frequency of
the stricter chronicle C′. Obviously, only maximal chron-
icles are saved in NotFrequent because this set is used to
search for more general chronicles. Conversely, only mini-
mal chronicles are saved in Frequent.

Example: Consider the following sequences of events.
Sequence 1 Sequence 2 Sequence 3

(e1, 1.049432) (e1, 13.354919) (e5, 7.207688)
(e2, 1.606904) (e2, 14.1784) (e6, 7.36308)
(e3, 1.873512) (e3, 14.377672) (e2, 8.00252)
(e4, 2.18784) (e4, 14.706472) (e3, 8.273512)
(e5, 3.441056) (e5, 15.196873) (e4, 8.482312)
(e4, 5.871024) (e4, 18.395527) (e5, 9.8347435)

(e4, 12.974768)
The algorithm HCDA-modified has been used to learn the

two following chronicles:

• C1 = (E1, T1,G1) , with E1 = {e2, e3, e4, e5}, T1 =
{τ52, τ54, τ24, τ53, τ23} and G1 given in Figure 4.

e2
e5

e4

e3

[−2,−1] [−1.5, 3.5]

[0, 0.5]
[−2,−0.5]

[0, 5]

Figure 4: Graph G1 of chronicle C1

• C2 = (E2, T2,G2), with E2 = {e4, e5}, T2 = {τ54} and
G2 given Figure 5.

e5 e4[−1.5, 3.5]

Figure 5: Graph G2 of chronicle C2

The second chronicle is a chronicle of frequency 2, which
means that it must be recognized twice to sign the situation
captured by the three sequences of the exemple. The first
chronicle is the stricter chronicle. It involves the larger set
of event types with the tightest temporal constraints. It is of
frequency 1.

4 Conclusion
This paper deals with the problem of discovering temporal
patterns in the form of chronicles that are common to a set
of temporal sequences issued from the same situation. The
obtained chronicles then sign the situation and can be used
for situation assessment or diagnosis purposes. The paper
builds on work by [11] and extends the proposed algorithm
that targets learning the frequent chronicles for one single
sequence to multiple temporal sequences that represent vari-
ants of a unique situation. This requires to deeply revise the
algorithm to generate the constraint database representing
the temporal sequences. The revised algorithm is illustrated
by a simple example which helps understand the different
steps of the method.

Future research includes theoretical as well as applied
work. The complexity of the modified algorithm, in par-
ticular the way to build the constraint database, should be
carefully analyzed and ways to improve efficiency should be
studied. The theoretical complexity of HCDAM is clearly
the same as the one of [11] but dealing with multiple se-
quences reduces the number of constraint graphs in the
database as well as the number of possible temporal con-
straints between each pair of events, resulting in increased
tractability. Actually, we believe that improving the algo-
rithm’s complexity is rather to be expected from a more ef-
ficient way to generate the constraint database and this is
one of our goal for the near future.

On the other hand, it is planned to use this work for a
real prognostic problem, applying the algorithm HCDAM
to the observable signals of a pressure regulation valve of a
modern aircraft in different wear situations.

References
[1] MO Cordier and C Dousson. Alarm driven monitor-

ing based on chronicles. In 4th Sumposium on Fault
Detection Supervision and Safety for Technical Pro-
cesses (SafeProcess), pages 286–291, Budapest, Hun-
gary, june 2000.

[2] G. Carrault, M.-O. Cordier, R. Quiniou, M. Garreau,
J.-J. Bellanger, and A. Bardou. A model-based ap-
proach for learning to identify cardiac arrhythmias. In
W. Horn, Y. Shahar, G. Lindberg, S. Andreassen, and
J. Wyatt, editors, Proceedings of AIMDM-99 : Arti-
ficial Intelligence in Medicine and Medical Decision
Making, volume 1620 of LNAI, pages 165–174, Aal-
borg, Denmark, june 1999. Springer Verlag.

[3] Benjamin Morin and Hervé Debar. Correltaion on in-
trusion: an application od chronicles. In 6th Interna-
tional Conference on recent Advances in Intrusion De-
tection RAID, Pittsburgh, USA, september 2003.

[4] P. Laborie and J.-P. Krivine. Automatic generation of
chronicles and its application to alarm processing in
power distribution systems. In 8th international work-
shop of diagnosis (DX97), Mont Saint-Michel, France,
1997.

[5] M.-O. Cordier, X. Le Guillou, S. Robin, L. Rozé, and
T. Vidal. Distributed chronicles for on-line diagnosis
of web services. In G. Biswas, X. Koutsoukos, and
S. Abdelwahed, editors, 18th International Workshop
on Principles of Diagnosis, pages 37–44, May 2007.

[6] Y. Pencolé and A. Subias. A chronicle-based diagnos-
ability approach for discrete timed-event systems: Ap-
plication to web-services. Journal of Universal Com-
puter Science, 15(17):3246–3272, 2009.

[7] F. Fessant, F. Clérot, and C. Dousson. Mining of
an alarm log to improve the discovery of frequent
patterns. Lecture Note on Artificial Intelligence,
3275:144–152, 2004.

[8] B. Guerraz and C. Dousson. Chronicles construction
starting from the fault model of the system to diagnose.
In International Workshop on Principles of Diagnosis
(DX04), pages 51–56, Carcassonne, France, 2004.

[9] Theophano Mitsa. Temporal data mining. CRC Press,
2010.

[10] C. Dousson and T. Vu Duong. Discovering chronicles
with numerical time constraints from alarm logs for
monitoring dynamic systems. In IJCAI 99: Proceed-
ings of the Sixteenth International Joint Conference on
Artificial Intelligence, pages 620–626, San Francisco,
CA, USA, June 1999.

[11] D. Cram, B. Mathern, and A. Mille. A complete chron-
icle discovery approach: application to activity analy-
sis. Expert Systems, 29(4):321–346, 2012.

[12] R Agrawal and R Srikant. Fast algorithms for min-
ing association rules. Proc. 20th Int. Conf. on Very
Large Data Bases, Santiago, Chile., pages 487–499,
Jan 1994.

[13] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Dis-
covery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, 1:259–289, 1997.

[14] C. Dousson, P. Gaborit, and M. Ghallab. Situation
recognition: representation and algorithms. In IJ-
CAI: International Joint Conference on Artificial In-
telligence, pages 166–172, Chambéry, France, august
1993.

[15] R. Dechter, Meiri I., and J. Pearl. Temporal constraint
networks. Artificial intelligence, 49(1):61–95, 1991.

