

On the equivariant K-homology of PSL_2 of the imaginary quadratic integers

Alexander D. Rahm

▶ To cite this version:

Alexander D. Rahm. On the equivariant K-homology of PSL_2 of the imaginary quadratic integers. 2015. hal-01162857v1

HAL Id: hal-01162857 https://hal.science/hal-01162857v1

Preprint submitted on 12 Jun 2015 (v1), last revised 21 Jan 2016 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE EQUIVARIANT K-HOMOLOGY OF PSL $_2$ OF THE IMAGINARY QUADRATIC INTEGERS

ALEXANDER D. RAHM

ABSTRACT. We establish formulae for the torsion part of the equivariant K-homology of all the Bianchi groups (PSL₂ of the imaginary quadratic integers), in terms of elementary number-theoretic quantities. To achieve this, we introduce a novel technique in the computation of Bredon homology: representation ring splitting, which allows us to adapt the recent technique of torsion subcomplex reduction from group homology to Bredon homology.

Introduction

In this paper, we establish formulae for the torsion part of the Bredon homology of the Bianchi groups, with respect to the family \mathfrak{Fin} of finite subgroups and coefficients in the complex representation ring $R_{\mathbb{C}}$, from which we deduce their equivariant K-homology. Then we use the fact that the Baum—Connes assembly map from the equivariant K-homology to the K-theory of the reduced C^* -algebras of the Bianchi groups is an isomorphism. This has been inspired by works of Sanchez-Garcia [21,22], and allows us to obtain the isomorphism type of the latter operator K-theory, which would be extremely hard to compute from the reduced C^* -algebras. Case-by-case computations on the machine have already been carried out for the equivariant K-homology of the Bianchi groups [18] (see [6] for a way to extend them to non-trivial class group cases, alternative to the current implementation by the author), but by their nature, they can of course only cover a small finite collection of Bianchi groups. In order to obtain the desired formulae for all Bianchi groups, we set up an adaptation to Bredon homology of torsion subcomplex reduction, a technique which has recently been formulated for group homology [16], and some elements of which had already been used earlier on as ad hoc tricks by Soulé [26]. A priori, it is possible with our methods to treat any discrete group with a nice action on a cell complex; and another class of examples for this is work in advanced progress jointly with Lafont, Ortiz and Sanchez-Garcia [12], namely hyperbolic Coxeter groups, many of which are not arithmetic. Please note that definitions of Bredon homology and equivariant K-homology are given in [15], so we will not recall them in this paper.

1. Statement of the results

Theorem 1. Let Γ be a Bianchi group or one of their subgroups. Then the Bredon homology $H_n^{\mathfrak{F}in}(\Gamma; R_{\mathbb{C}})$ splits as a direct sum over

- (1) the orbit space homology $H_n(\underline{B}\Gamma; \mathbb{Z})$,
- (2) a submodule $H_n(\Psi^{(2)}_{\bullet})$ determined by the reduced 2-torsion subcomplex of $(\underline{E}\Gamma,\Gamma)$
- (3) and a submodule $H_n(\Psi^{(3)}_{\bullet})$ determined by the reduced 3-torsion subcomplex of $(\underline{E}\Gamma,\Gamma)$.

These submodules are given as follows, except for PSL_2 over the Gaussian and Eisensteinian integers. The additional units in these two rings induce some particularities which we would like to avoid. This does not cause any harm, because the Bredon homology and equivariant K-homology of these two Bianchi groups have already been computed [18]. So for the remainder

Date: June 12, 2015.

²⁰¹⁰ Mathematics Subject Classification. 55N91, Equivariant homology and cohomology. 19L47, Equivariant K-theory.

of this article, the term "Bianchi group" will stand for PSL_2 over a ring of imaginary quadratic integers excluding these two.

Theorem 2. The 2-torsion part of the Bredon complex of a Bianchi group Γ has homology

$$H_n(\Psi_{\bullet}^{(2)}) \cong \begin{cases} \mathbb{Z}^{z_2} \oplus (\mathbb{Z}/2)^{\frac{d_2}{2}}, & n = 0, \\ \mathbb{Z}^{o_2}, & n = 1, \\ 0, & \text{otherwise,} \end{cases}$$

where z_2 counts the number of conjugacy classes of subgroups of type $\mathbb{Z}/2$ in Γ , o_2 counts the conjugacy classes of those of them which are not contained in any 2-dihedral subgroup, and d_2 counts the number of 2-dihedral subgroups, whether or not they are contained in a tetrahedral subgroup of Γ .

Theorem 3. The 3-torsion part of the Bredon complex of a Bianchi group Γ has homology

$$H_n(\Psi^{(3)}_{\bullet}) \cong \begin{cases} \mathbb{Z}^{2o_3 + \iota_3}, & n = 0 \text{ or } 1, \\ 0, & \text{otherwise,} \end{cases}$$

where amongst the subgroups of type $\mathbb{Z}/3$ in Γ , o₃ counts the number of conjugacy classes of those of them which are not contained in any 3-dihedral subgroup, and ι_3 counts the conjugacy classes of those of them which are contained in some 3-dihedral subgroup in Γ .

Note that there are formulae for the numbers o_2, z_2, d_2, o_3 and ι_3 in terms of elementary number-theoretic quantities [11], which are very easy to evaluate on the machine [16, appendix].

Together with Theorem 5 below, we obtain the following formulae for the equivariant K-homology of the Bianchi groups. Note for this purpose that for a Bianchi group Γ , there is a model for $\underline{\mathrm{E}}\Gamma$ of dimension 2, so $\mathrm{H}_2(\underline{\mathrm{B}}\Gamma;\mathbb{Z})\cong\mathbb{Z}^{\beta_2}$ is torsion-free. Note also that the naive Euler characteristic of the Bianchi groups vanishes (again excluding the two special cases of Gaussian and Eisensteinian integers), for $\beta_i=\dim\mathrm{H}_i(\underline{\mathrm{B}}\Gamma;\mathbb{Q})$ we have $\beta_0-\beta_1+\beta_2=0$ and $\beta_0=1$.

Corollary 4. For any Bianchi group Γ , the short exact sequence of Theorem 5 splits into $K_0^{\Gamma}(\underline{\mathrm{E}}\Gamma) \cong \mathbb{Z} \oplus \mathbb{Z}^{\beta_2} \oplus \mathbb{Z}^{z_2} \oplus (\mathbb{Z}/2)^{\frac{d_2}{2}} \oplus \mathbb{Z}^{2o_3+\iota_3}$. Furthermore, $K_1^{\Gamma}(\underline{\mathrm{E}}\Gamma) \cong \mathrm{H}_1(\underline{\mathrm{B}}\Gamma; \mathbb{Z}) \oplus \mathbb{Z}^{o_2} \oplus \mathbb{Z}^{2o_3+\iota_3}$.

A table evaluating these formulas for a range of Bianchi groups is given in Appendix 8. That table agrees with the machine calculations which were carried out by the author for all cases of class number 1 and 2 with [19] in the way described in the author's PhD thesis [20] (only the cases of class number 1 were covered at that time), following the method of [21,22].

The remainder of the equivariant K-homology of Γ is given by 2-periodicity.

As the Baum-Connes conjecture is verified by the Bianchi groups, these equivariant K-homology groups are isomorphic to the K-theory of the reduced group C^* -algebras.

Organisation of the paper. In Section 4, we give the proof of Theorem 1. In Section 5, we give the proof of Theorems 2 and 3. We make recalls about the assembly map in Section 7.

Acknowledgements. The author would like to thank Rubén Sánchez-García, Conchita Martínez Pérez and Alain Valette for helpful discussions.

2. Recalls about the Bredon Chain Complex

As described in [15], the equivariant K-homology of the classifying space for proper actions $K_*^G(\underline{E}G)$ can be computed by means of the Bredon homology with coefficients in the complex representation ring, $H_*^{\mathfrak{Fin}}(G; R_{\mathbb{C}})$. More precisely, when we have a classifying space for proper actions of dimension at most 2, then the Atiyah—Hirzebruch spectral sequence from its Bredon homology to its equivariant K-homology degenerates on the E^2 -page and directly yields the following.

Theorem 5 ([15]). Let G be an arbitrary group such that $\dim \underline{E}G \leq 2$. Then there is a natural short exact sequence

$$0 \to \mathrm{H}^{\mathfrak{Fin}}_0(G; R_{\mathbb{C}}) \to K^G_0(\underline{\mathrm{E}}G) \to \mathrm{H}^{\mathfrak{Fin}}_2(G; R_{\mathbb{C}}) \to 0$$

and a natural isomorphism $H_1^{\mathfrak{Fin}}(G; R_{\mathbb{C}}) \cong K_1^G(\underline{\mathbb{E}}G)$.

We will follow Sánchez-García's treatment [21, 22].

Consider the Bianchi group $\Gamma := \operatorname{PSL}_2(\mathcal{O}_{-m})$. Denote by Γ_{σ} the stabiliser of a cell σ , and by $R_{\mathbb{C}}(G)$ the complex representation ring of a group G. We will compute case by case the Bredon chain complex

$$0 \longrightarrow \bigoplus_{\sigma \in \Gamma \setminus X^{(2)}} R_{\mathbb{C}}(\Gamma_{\sigma}) \xrightarrow{\Psi_{2}} \bigoplus_{\sigma \in \Gamma \setminus X^{(1)}} R_{\mathbb{C}}(\Gamma_{\sigma}) \xrightarrow{\Psi_{1}} \bigoplus_{\sigma \in \Gamma \setminus X^{(0)}} R_{\mathbb{C}}(\Gamma_{\sigma}) \longrightarrow 0,$$

of our refined Γ-cell complex $X^{(p)}$. As X is a classifying space for proper Γ-actions, the homology of this Bredon chain complex is the Bredon homology $H_p^{\mathfrak{Fin}}(\Gamma; R_{\mathbb{C}})$ of Γ [21].

3. Recalls about torsion subcomplexes

In this section we recall the ℓ -torsion subcomplexes theory of [16] for the calculation of group homology, which we are going to adapt to the calculation of Bredon homology in this paper. We require any discrete group Γ under our study to be provided with a Γ -cell complex, that is a finite-dimensional cell complex X with cellular Γ -action such that each cell stabilizer fixes its cell point-wise. Let ℓ be a prime number.

Definition 6. The ℓ -torsion subcomplex of a Γ -cell complex X consists of all the cells of X whose stabilizers in Γ contain elements of order ℓ .

We further require that the fixed point set X^G be acyclic for every nontrivial finite ℓ -subgroup G of Γ . Then Brown's proposition X.(7.2) [2] specializes as follows.

Proposition 7. There is an isomorphism between the ℓ -primary parts of the Farrell cohomology of Γ and the Γ -equivariant Farrell cohomology of the ℓ -torsion subcomplex.

For a given Bianchi group, the ℓ -torsion subcomplex can be quite large. It turns out to be useful to reduce this subcomplex, and we identify two conditions under which we can do this in a way that Proposition 7 still holds.

Condition A. In the ℓ -torsion subcomplex, let σ be a cell of dimension n-1 which lies in the boundary of precisely two n-cells representing different orbits, τ_1 and τ_2 . Assume further that no higher-dimensional cells of the ℓ -torsion subcomplex touch σ ; and that the n-cell stabilizers admit an isomorphism $\Gamma_{\tau_1} \cong \Gamma_{\tau_2}$.

Condition B. The inclusion of the cell stabilizer Γ_{σ} into Γ_{τ_1} and Γ_{τ_2} induces isomorphisms on mod ℓ cohomology.

When both conditions are satisfied in the ℓ -torsion subcomplex, we merge the cells τ_1 and τ_2 along σ and do so for their entire orbits. The effect of this merging is to decease the size of the ℓ -torsion subcomplex without changing its Γ -equivariant Farrell cohomology. This process can often be repeated: by a "terminal vertex," we will denote a vertex with no adjacent higher-dimensional cells and precisely one adjacent edge in the quotient space, and by "cutting off" the latter edge, we will mean that we remove the edge together with the terminal vertex from our cell complex.

Definition 8. The reduced ℓ -torsion subcomplex associated to a Γ -cell complex X is the cell complex obtained by recursively merging orbit-wise all the pairs of cells satisfying conditions A and B, and cutting off edges that admit a terminal vertex when condition B is satisfied.

2-torsion subcomplex components	counted by	3-torsion subcomplex components	counted by
$oldsymbol{O}\mathbb{Z}/2$	o_2	$\mathbf{O}\mathbb{Z}/3$	03
$\mathcal{A}_4 ldotharpoonup \mathcal{A}_4$	ι_2	$\mathcal{D}_3 \bullet \bullet \mathcal{D}_3$	ι_3
$\mathcal{D}_2oldsymbol{\Theta}\mathcal{D}_2$	θ		
$\mathcal{D}_2 \bigcirc \longrightarrow \mathcal{A}_4$	ρ		

Table 1. Connected components of reduced torsion subcomplex quotients for the Bianchi groups

The following theorem, stating that Proposition 7 still holds after reducing, is proved in [16].

Theorem 9. There is an isomorphism between the ℓ -primary parts of the Farrell cohomology of Γ and the Γ -equivariant Farrell cohomology of the reduced ℓ -torsion subcomplex.

In the case of a trivial kernel of the action on the Γ -cell complex, this allows one to establish general formulae for the Farrell cohomology of Γ [16].

Table 1 displays the types of connected components of reduced torsion subcomplex quotients for the action of the Bianchi groups on hyperbolic space: Norbert Kraemer [10, Satz 8.3 and Satz 8.4] has shown that the types \bigcirc , \bigcirc , and \longrightarrow are all possible homeomorphism types which connected components of the 2-torsion subcomplex of the action of a Bianchi group on hyperbolic space can have. For 3-torsion, the existence of only the two specified types was already prove in [17].

4. Representation ring splitting

Recall the following classification of Felix Klein [9].

Lemma 10 (Klein). The finite subgroups in $PSL_2(\mathcal{O})$ are exclusively of isomorphism types the cyclic groups of orders one, two and three, the 2-dihedral group $\mathcal{D}_2 \cong \mathbb{Z}/2 \times \mathbb{Z}/2$, the 3-dihedral group \mathcal{D}_3 or the tetrahedral group isomorphic to the alternating group \mathcal{A}_4 .

We further use the existence of geometric models for the Bianchi groups in which all edge stabilisers are finite cyclic and all cells of dimension 2 and higher are trivially stabilised. Therefore, the system of finite subgroups of the Bianchi groups admits inclusions only emanating from cyclic groups. This makes the Bianchi groups and their subgroups subjects to the splitting of Bredon homology stated in Theorem 1.

The proof of Theorem 1 is based on the above particularities of the Bianchi groups, and applies the following splitting lemma for the involved representation rings to a Bredon complex for $(\underline{E}\Gamma, \Gamma)$.

Lemma 11. Consider a group Γ such that every one of its finite subgroups is either cyclic of order at most 3, or of one of the types $\mathcal{D}_2, \mathcal{D}_3$ or \mathcal{A}_4 . Then there exist bases of the complex representation rings of the finite subgroups of Γ , such that simultaneously every morphism of representation rings induced by inclusion of cyclic groups into finite subgroups of Γ , splits as a matrix into the following diagonal blocks.

- (1) A block of rank 1 induced by the standard representations,
- (2) a block induced by the 2-torsion subgroups

(3) and a block induced by the 3-torsion subgroups.

As this splitting holds simultaneously for every morphism of representation rings, we have such a splitting for every morphism of formal sums of representation rings, and hence for the differential maps of the Bredon complex for any Bianchi group and any of their subgroups.

Proof. We consider the complex representation ring of these finite groups as the free \mathbb{Z} -module the basis of which are the irreducible characters of the group (here and in the following, we identity representations with their associated characters, basing ourselves on [24]). The trivial group admits only the representations by the identity matrix, so its only irreducible character is given by the trace 1. For the other finite subgroups of the Bianchi groups, we make the below choices of conjugacy representatives of their elements, and specify below the irreducible characters by the values they take on these elements. For $\mathbb{Z}/2 = \langle g | g^2 = 1 \rangle$, we transform the tables of irreducible characters into the following basis for the representation ring.

Let $j = e^{\frac{2\pi i}{3}}$. Then for $\mathbb{Z}/3 = \langle h | h^3 = 1 \rangle$, we transform

$$\begin{pmatrix}
\mathbb{Z}/3 & 1 & h & h^2 \\
\hline
\sigma_1 & 1 & 1 & 1 \\
\sigma_2 & 1 & j & j^2 \\
\sigma_3 & 1 & j^2 & j
\end{pmatrix}
\mapsto
\begin{pmatrix}
\mathbb{Z}/3 & 1 & h & h^2 \\
\hline
\sum_i \sigma_i & 3 & 0 & 0 \\
\sigma_2 & 1 & j & j^2 \\
\sigma_3 & 1 & j^2 & j
\end{pmatrix},$$

and for the Klein four-group $\mathcal{D}_2 = \langle a, b | a^2 = b^2 = (ab)^2 = 1 \rangle$,

$$\begin{pmatrix}
\mathcal{D}_2 & 1 & a & b & ab \\
\xi_1 & 1 & 1 & 1 & 1 \\
\xi_2 & 1 & -1 & -1 & 1 \\
\xi_3 & 1 & -1 & 1 & -1 \\
\xi_4 & 1 & 1 & -1 & -1
\end{pmatrix}
\mapsto
\begin{pmatrix}
\mathcal{D}_2 & 1 & a & b & ab \\
\xi_1 & 1 & 1 & 1 & 1 \\
\xi_2 - \xi_1 & 0 & -2 & -2 & 0 \\
\xi_3 - \xi_1 & 0 & -2 & 0 & -2 \\
\xi_4 - \xi_1 & 0 & 0 & -2 & -2
\end{pmatrix}.$$

In all these three cases, we encounter either only 2-torsion or only 3-torsion. In the cases of \mathcal{D}_3 and \mathcal{A}_4 , where we have both types of torsion, we split the representation ring into a direct sum of submodules associated to respectively the trivial subgroup, 2-torsion and 3-torsion. We achieve this in the following way.

• We write the symmetric group $\mathcal{D}_3 = \langle (12), (123) |$ cycle relations \rangle in cycle type notation. Then we apply the following base transformation to its character table.

$$\begin{pmatrix} \begin{array}{c|cccc} \mathcal{D}_3 & 1 & (12) & (123) \\ \hline \pi_1 & 1 & 1 & 1 \\ \pi_2 & 1 & -1 & 1 \\ \pi_3 & 2 & 0 & -1 \\ \end{array} \end{pmatrix} \mapsto \begin{pmatrix} \begin{array}{c|cccc} \mathcal{D}_3 & 1 & (12) & (123) \\ \hline \pi_1 & 1 & 1 & 1 \\ \hline \widetilde{\pi_2} := \pi_2 - \pi_1 & 0 & -2 & 0 \\ \hline \widetilde{\pi_3} := \pi_3 - \pi_2 - \pi_1 & 0 & 0 & -3 \\ \end{array} \end{pmatrix}$$

• We also write the alternating group A_4 in cycle type notation, and let again $j = e^{\frac{2\pi i}{3}}$. Then we transform

The above transformed tables consist no more only of irreducible characters, but clearly, they still are bases for the complex representation rings of the concerned groups.

For an injective morphism $H \hookrightarrow G$ of finite groups, we compute as follows the map induced on the complex representation rings. We restrict the characters ϕ_i of G to the image of H, and write $\phi_i \downarrow$ for the restricted character. Then we consider the scalar products

$$(\phi_i \downarrow | \tau_j) := \frac{1}{|H|} \sum_{h \in H} \phi_i \downarrow (h) \cdot \overline{\tau_j(h)}$$

with the characters τ_j of H. By Frobenius reciprocity, the induced map of representation rings is given by the matrix $(\phi_i \downarrow | \tau_j)_{i,j}$. When H is the trivial group, this matrix is the one-column-matrix of values of the characters of G on the neutral element. For the non-trivial inclusions amongst finite subgroups of the Bianchi groups, let us compute this matrix case by case.

• Any inclusion $\mathbb{Z}/\ell \hookrightarrow \mathcal{D}_3$ maps the generator of \mathbb{Z}/ℓ to the only conjugacy class of elements of order ℓ in \mathcal{D}_3 . So it induces the map obtained by restricting to two cycles, – for $\ell = 2$, the cycles (1) and (12):

- for $\ell = 3$, the cycles (1) and (123):

• There are three possible inclusions $\mathbb{Z}/2 \hookrightarrow \mathcal{D}_2$, namely $g \mapsto a$, $g \mapsto b$ and $g \mapsto ab$. For each of these inclusions, we restrict to the image of $\mathbb{Z}/2$:

• Any inclusion $\mathbb{Z}/2 \hookrightarrow \mathcal{A}_4$ maps the generator of $\mathbb{Z}/2$ to the only conjugacy class of elements of order 2 in \mathcal{A}_4 . So it induces the map obtained by restricting to the two cycles (1) and (12)(34).

$\mathbb{Z}/2 \hookrightarrow \mathcal{A}_4$	1	(12)(34)	$(\chi_i \downarrow \rho_1 + \rho_2)$	$(\chi_i \downarrow \rho_2)$
$\chi_1 \downarrow$	1	1	1	0
$(\chi_2-\chi_1-\chi_3-\chi_4)\downarrow$	0	-4	0	2
$(\chi_3-\chi_1)\downarrow$	0	0	0	0
$(\chi_4-\chi_1)\downarrow$	0	0	0	0

An inclusion $\mathbb{Z}/3 \hookrightarrow \mathcal{A}_4$ can either map the generator h of $\mathbb{Z}/3$ to the conjugacy class of (123), or to the conjugacy class of its square (132). So we have the two possibilities

and

So we observe the claimed simultaneous diagonal block splitting.

Remark 12. It has been pointed out in [17, observation 50] that there are only two homeomorphy types of connected components which can occur in the orbit space of the 3-torsion subcomplex. An observation which facilitates our Bredon homology computations can be made on the connected components which are homeomorphic to a closed interval. Let us make a consideration on the preimage of such a component.

Concerning our refined cell complex, by [17, lemma 16] at each vertex v of stabiliser type \mathcal{A}_4 , we have two adjacent edges of stabiliser type $\mathbb{Z}/3$ modulo the action of the vertex stabiliser. We attribute the cycle (123) $\in \mathcal{A}_4$ to the image of the generator of one of the two stabilisers of type $\mathbb{Z}/3$ of representative edges adjacent to v. Then we choose the preimage of (123) under the inclusion of the other copy of $\mathbb{Z}/3$ to be the generator h. Since we have assumed that v maps to a point on a connected component homeomorphic to a closed interval in the quotient the 3-torsion subcomplex, v is the only point at which h can be related to our first copy of $\mathbb{Z}/3$. So, we have obtained bases in which all the inclusions $\mathbb{Z}/3 \hookrightarrow \mathcal{A}_4$ induce the first of the two possibilities in the last item of the proof of Lemma 11.

5. Reduction of the torsion subcomplexes

Proof of Theorem 2. The 2-torsion part of the Bredon complex is carried by the 2-torsion sub-complex of the action of Γ on hyperbolic space, and has the shape

$$0 \to \bigoplus_{1-\text{cell orbits}} R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2) \stackrel{\Psi_1^{(2)}}{\longrightarrow} \bigoplus_{0-\text{cell}}^{\text{orbits}} R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2) \bigoplus_{0-\text{cell}}^{\text{orbits}} R_{\mathbb{C}}^{(2)}(\mathcal{D}_2) \bigoplus_{0-\text{cell}}^{\text{orbits}} R_{\mathbb{C}}^{(2)}(\mathcal{D}_3) \bigoplus_{0-\text{cell}}^{\text{orbits}} R_{\mathbb{C}}^{(2)}(\mathcal{A}_4) \to 0,$$

where the direct sums run over cells with the respective stabiliser. At any vertex which is stabilised by a copy of $\mathbb{Z}/2$, we have two adjacent edges with the same stabiliser type, and the cell stabiliser inclusions $\mathbb{Z}/2 \hookrightarrow \mathbb{Z}/2$ induce isomorphisms on representation rings. So before splitting the representation rings, in the orbit space we can merge the two edges into one, getting rid of the vertex, without changing the homology of the Bredon complex. The 2-torsion part of the latter then has the partially reduced shape

$$0 \to \bigoplus_{1-\mathrm{cell\ orbits}}^{(\mathrm{less})} R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2) \stackrel{\Psi_{1}^{(2)}}{\longrightarrow} \bigoplus_{j=1}^{o_{2}} R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2) \bigoplus_{0-\mathrm{cell}}^{\mathrm{orbits}} R_{\mathbb{C}}^{(2)}(\mathcal{D}_{2}) \bigoplus_{0-\mathrm{cell}}^{\mathrm{orbits}} R_{\mathbb{C}}^{(2)}(\mathcal{D}_{3}) \bigoplus_{0-\mathrm{cell}}^{\mathrm{orbits}} R_{\mathbb{C}}^{(2)}(\mathcal{A}_{4}) \to 0,$$

where any of the vertices counted by j is the only vertex in a connected component of homeomorphism type O in the quotient of the 2-torsion subcomplex. The splitting of Section 4 implies that the matrix for $\Psi_1^{(2)}$ has blocks

•
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ at inclusions $\mathbb{Z}/2 \hookrightarrow \mathcal{D}_2$, depending on which of the three cyclic subgroups of \mathcal{D}_2 is hit,

- (1) at inclusions $\mathbb{Z}/2 \hookrightarrow \mathcal{D}_3$,
- (2) at inclusions $\mathbb{Z}/2 \hookrightarrow \mathcal{A}_4$.

At any vertex which is stabilised by a copy of \mathcal{D}_3 , we have two adjacent edges with stabiliser type $\mathbb{Z}/2$, and the cell stabiliser inclusions $\mathbb{Z}/2 \hookrightarrow \mathcal{D}_3$ induce isomorphisms on the 2-torsion parts of the splitted representation rings. So we can merge the two edges into one, getting rid of the vertex, without changing the homology of the Bredon complex. The latter then has the completely reduced shape

$$0 \to \bigoplus_{j=1}^{z_2} R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2) \stackrel{\Psi_1^{(2)}}{\longrightarrow} \bigoplus_{j=1}^{o_2} R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2) \bigoplus_{0-\text{cell}}^{\text{orbits}} R_{\mathbb{C}}^{(2)}(\mathcal{D}_2) \bigoplus_{0-\text{cell}}^{\text{orbits}} R_{\mathbb{C}}^{(2)}(\mathcal{A}_4) \to 0,$$

where the vertices of type \mathcal{D}_2 are the bifurcation points in the connected components of types Θ and Θ , and the vertices of type \mathcal{A}_4 are the endpoints in the connected components of types Θ and Θ . Norbert Kraemer [10, Satz 8.3 and Satz 8.4] has shown that the types Θ , Θ , and Θ are all possible homeomorphism types which connected components of the 2-torsion subcomplex of the action of a Bianchi group on hyperbolic space can have.

As the matrix blocks between distinct connected components are zero, we now only need to compute the homology on a component of type \bigcirc , and take it to the multiplicity o_2 , and on components of types \longrightarrow , \bigcirc , and figure out the multiplicities for the latter.

- On a connected component of type \bigcirc , the map $R^{(2)}_{\mathbb{C}}(\mathbb{Z}/2) \xrightarrow{\Psi^{(2)}_1 | \bigcirc} R^{(2)}_{\mathbb{C}}(\mathbb{Z}/2)$ must be the zero map, because of the opposing signs at edge origin and edge end. Therefore, $H_n\left(\Psi^{(2)}_{\bullet}|_{\bigodot}\right) \cong \begin{cases} \mathbb{Z}, & n=0 \text{ or } 1, \\ 0, & \text{otherwise.} \end{cases}$
- \bullet On a connected component of type $\bullet \bullet$ however, the map

$$R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2) \xrightarrow{\Psi_1^{(2)}|} \longrightarrow R_{\mathbb{C}}^{(2)}(\mathcal{A}_4) \oplus R_{\mathbb{C}}^{(2)}(\mathcal{A}_4)$$

must be the diagonal map concatenated with multiplication by 2 and alternating sign, $\mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}, x \mapsto (-2x, 2x)$, because of the matrix block (2) at inclusions $\mathbb{Z}/2 \hookrightarrow \mathcal{A}_4$. This yields $H_n\left(\Psi^{(2)}_{\bullet}\big|_{\bullet \bullet \bullet}\right) \cong \begin{cases} \mathbb{Z} \oplus \mathbb{Z}/2, & n=0, \\ 0, & \text{otherwise.} \end{cases}$

• On a connected component of type Θ , the three maps coming from the three cyclic subgroups in \mathcal{D}_2 do together constitute a matrix block

$$\mathbb{Z}^{3} \cong \left(R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2)\right)^{3} \xrightarrow{\Psi_{1}^{(2)}|_{\bigoplus}} \left(R_{\mathbb{C}}^{(2)}(\mathcal{D}_{2})\right)^{2} \cong \mathbb{Z}^{6}, \qquad \Psi_{1}^{(2)}|_{\bigoplus} = \begin{pmatrix} -1 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

This matrix has elementary divisors 2 of multiplicity one, and 1 of multiplicity two. This yields $H_n\left(\Psi^{(2)}_{\bullet}|_{\bigodot}\right)\cong \begin{cases} \mathbb{Z}^3\oplus\mathbb{Z}/2, & n=0,\\ 0, & \text{otherwise.} \end{cases}$

$$\mathbb{Z}^{2} \cong \left(R_{\mathbb{C}}^{(2)}(\mathbb{Z}/2) \right)^{2} \xrightarrow{\Psi_{1}^{(2)}|_{\mathbf{O}}} R_{\mathbb{C}}^{(2)}(\mathcal{D}_{2}) \oplus R_{\mathbb{C}}^{(2)}(\mathcal{A}_{4}) \cong \mathbb{Z}^{4}, \qquad \Psi_{1}^{(2)}|_{\mathbf{O}} = \begin{pmatrix} 1 - 0 & 1 \\ 1 - 1 & 0 \\ 0 - 1 & 1 \\ 0 & -2 \end{pmatrix}$$

This matrix has elementary divisors 2 and 1, of multiplicity one each. This yields $\operatorname{H}_n\left(\Psi^{(2)}_{\bullet}|_{\bullet}\right)\cong \begin{cases} \mathbb{Z}^2\oplus\mathbb{Z}/2, & n=0,\\ 0, & \text{otherwise.} \end{cases}$

Finally, we observe that precisely for each connected component except for those of type \mathfrak{O} , we obtain one summand $\mathbb{Z}/2$ for $H_0\left(\Psi^{(2)}_{\bullet}\right)$; and that each such connected component admits two orbits of \mathcal{D}_2 , whether contained in \mathcal{A}_4 or not (these orbits are counted by d_2). And precisely for each orbit of reduced edges (i.e., conjugacy classes of $\mathbb{Z}/2$ in Γ , counted by z_2), we have obtained a summand \mathbb{Z} for $H_0\left(\Psi^{(2)}_{\bullet}\right)$.

Proof of Theorem 3. The 3-torsion part of the Bredon complex is carried by the 3-torsion sub-complex of the action of Γ on hyperbolic space, and has the shape

$$0 \to \bigoplus_{1-\text{cell orbits}} R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3) \stackrel{\Psi_1^{(3)}}{\longrightarrow} \bigoplus_{0-\text{cell orbits}} R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3) \bigoplus_{0-\text{cell orbits}} R_{\mathbb{C}}^{(3)}(\mathcal{D}_3) \bigoplus_{0-\text{cell orbits}} R_{\mathbb{C}}^{(3)}(\mathcal{A}_4) \to 0,$$

where the direct sums run over cells with the respective stabiliser. At any vertex which is stabilised by a copy of $\mathbb{Z}/3$, we have two adjacent edges with the same stabiliser type, and the cell stabiliser inclusions $\mathbb{Z}/3 \hookrightarrow \mathbb{Z}/3$ induce isomorphisms on representation rings. So before splitting the representation rings, in the orbit space we can merge the two edges into one, getting rid of the vertex, without changing the homology of the Bredon complex. The 3-torsion part of the latter then has the partially reduced shape

$$0 \to \bigoplus_{1-\text{cell orbits}}^{(\text{less})} R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3) \stackrel{\Psi_1^{(3)}}{\longrightarrow} \bigoplus_{j=1}^{o_3} R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3) \bigoplus_{0-\text{cell orbits}} R_{\mathbb{C}}^{(3)}(\mathcal{D}_3) \bigoplus_{0-\text{cell orbits}} R_{\mathbb{C}}^{(3)}(\mathcal{A}_4) \to 0,$$

where any of the vertices counted by j is the only vertex in a connected component of homeomorphism type Θ in the quotient of the 3-torsion subcomplex. The splitting of Section 4 implies that the matrix for $\Psi_1^{(3)}$ has blocks

- (1,1) at inclusions $\mathbb{Z}/3 \hookrightarrow \mathcal{D}_3$,
- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ at inclusions $\mathbb{Z}/3 \hookrightarrow \mathcal{A}_4$ (by Remark 12, we can choose bases such that we exclusively get the first of these two blocks, if we desire),

At any vertex which is stabilised by a copy of \mathcal{A}_4 , we have two adjacent edges with stabiliser type $\mathbb{Z}/3$, and the cell stabiliser inclusions $\mathbb{Z}/3 \hookrightarrow \mathcal{A}_4$ induce isomorphisms on the 3-torsion parts of the splitted representation rings. So we can merge the two edges into one, getting rid of the vertex, without changing the homology of the Bredon complex. The latter then has the completely reduced shape

$$0 \to \bigoplus_{j=1}^{o_3+\iota_3} R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3) \stackrel{\Psi_1^{(3)}}{\longrightarrow} \bigoplus_{j=1}^{o_3} R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3) \bigoplus_{j=1}^{2\iota_3} R_{\mathbb{C}}^{(3)}(\mathcal{D}_3) \to 0,$$

where the vertices of type \mathcal{D}_3 are the exclusive vertices of connected components of type $\bullet \bullet$. As the matrix blocks between distinct connected components are zero, we now only need to compute the homology on a component of type $\bullet \bullet$, and take it to the multiplicity o_3 , and on a component of type $\bullet \bullet \bullet$, and take it to the multiplicity ι_3 .

- On a connected component of type \mathbf{O} , the map $R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3) \stackrel{\Psi_{1}^{(3)}|}{\longrightarrow} \mathbf{O} R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3)$ must be the zero map, because of the opposing signs at edge origin and edge end. Therefore, $H_{n}\left(\Psi_{\bullet}^{(3)}|_{\mathbf{O}}\right) \cong \begin{cases} \mathbb{Z}^{2}, & n=0 \text{ or } 1, \\ 0, & \text{otherwise.} \end{cases}$
- On a connected component of type ← however, the map

$$R_{\mathbb{C}}^{(3)}(\mathbb{Z}/3) \xrightarrow{\Psi_1^{(3)}} \longrightarrow R_{\mathbb{C}}^{(3)}(\mathcal{D}_3) \oplus R_{\mathbb{C}}^{(3)}(\mathcal{D}_3)$$

must be the the map $\mathbb{Z}^2 \to \mathbb{Z} \oplus \mathbb{Z}$, $(x,y) \mapsto (-x-y,x+y)$, because of the matrix block (1,1) at inclusions $\mathbb{Z}/3 \hookrightarrow \mathcal{D}_3$. This yields $H_n\left(\Psi^{(3)}_{\bullet}|_{\bullet \bullet}\right) \cong \begin{cases} \mathbb{Z}, & n=0 \text{ or } 1, \\ 0, & \text{otherwise.} \end{cases}$

Counting the connected components yields the claimed multiplicities.

6. Representation ring splitting in a more general setting

Representation ring splitting, as introduced in this paper, relies on the groups under study admitting a nice system of subgroups. Without this prerequisite, we can still make the statements in the present section, but this does not essentially improve on what has already been obtained by Lück and Oliver [13] based on the split coefficient systems of Słominska [25].

First, we want to sharpen the following lemma of [15]. This will allow us to apply representation ring splitting to determine the free part of the equivariant K-homology of any group with vanishing geometric torsion dimension, for instance the Hilbert modular groups and the Fuchsian groups.

Lemma 13 ([15]). Let G be an arbitrary group and write FC(G) for the set of conjugacy classes of elements of finite order in G. Then there is an isomorphism

$$\mathrm{H}_0^{\mathfrak{Fin}}(G;R_\mathbb{C})\otimes_\mathbb{Z}\mathbb{C}\cong\mathbb{C}[\mathrm{FC}(G)].$$

Let $\underline{E}G^{\text{sing}}$ denote the singular part of the classifying space $\underline{E}G$ for proper actions of a group G, namely the subcomplex consisiting of all points in $\underline{E}G$ with non-trivial stabiliser. Mislin [15] indicates that up to G-homotopy, $\underline{E}G^{\text{sing}}$ is uniquely determined by G. Hence, dim $\underline{E}G^{\text{sing}}$ can be defined as the minimal dimension of $\underline{E}G^{\text{sing}}$ within its G-homotopy type.

Mislin [15] shows that for any group G, there is a natural map

(1)
$$\mathrm{H}_{q}^{Fin}(\underline{\mathrm{E}}G;\,R_{\mathbb{C}})\to\mathrm{H}_{q}(\underline{\mathrm{B}}G;\,\mathbb{Z}),$$

which is an isomorphism in dimensions $q > \dim \underline{\mathbf{E}} G^{\text{sing}} + 1$,

and injective in dimension $q = \dim \underline{E}G^{\text{sing}} + 1$. In the special case of vanishing geometric torsion dimension, we can sharpen this statement together with Lemma 13 as follows.

Proposition 14. For any group Γ with $\dim \underline{\mathrm{E}}\Gamma^{\mathrm{sing}} = 0$, we have $\mathrm{H}_q^{Fin}(\underline{\mathrm{E}}\Gamma; R_{\mathbb{C}}) \cong \mathrm{H}_q(\underline{\mathrm{B}}\Gamma; \mathbb{Z})$ in degrees q > 0, and $\mathrm{H}_0^{Fin}(\underline{\mathrm{E}}\Gamma; R_{\mathbb{C}}) \cong \mathbb{Z}[\mathrm{FC}(\Gamma)]$.

Proof. Consider a classifying space $\underline{E}\Gamma$ with zero-dimensional $\underline{E}\Gamma^{\text{sing}}$. Here, the Bredon complex of $\underline{E}\Gamma$ is reduced in positive degrees to the cellular chain complex of $\underline{B}\Gamma$. For any stabiliser group of a vertex in $\underline{E}\Gamma^{\text{sing}}$, with character table $\{\xi_1,\ldots,\xi_n\}$, where ξ_1 is the trivial character, we choose the basis

$$\{\xi_1, \xi_2 - \xi_2(1)\xi_1, \dots, \xi_n - \xi_n(1)\xi_1\}$$

for its complex representation ring. Then clearly any morphism induced by inclusions of the trivial edge stabilisers, induces a map with image contained in the submodule generated by ξ_1 in the representation ring. So the Bredon complex splits in degree 0 into a direct sum of the

submodules generated by the bases $\{\xi_2 - \xi_2(1)\xi_1, \dots, \xi_n - \xi_n(1)\xi_1\}$ at each vertex of $\underline{B}\Gamma^{\text{sing}}$, and the image of the trivial characters of the edges. The latter image is isomorphic to the image of the boundary map from 1-cells to 0-cells in $\underline{B}\Gamma$, so we obtain

- a monomorphism $H_1(\underline{B}\Gamma; \mathbb{Z}) \hookrightarrow H_1^{Fin}(\underline{E}\Gamma; R_{\mathbb{C}})$
- and an isomorphism $H_0^{Fin}(\underline{E}\Gamma; R_{\mathbb{C}}) \cong H_0(\underline{B}\Gamma; \mathbb{Z}) \oplus \mathbb{Z}[FC(\Gamma) \setminus \{1\}].$

Using Mislin's map (1), we obtain the claimed result.

For Γ a Hilbert modular group or orientable Fuchsian group, dim $\underline{E}\Gamma^{\text{sing}} = 0$, so we can apply the above proposition.

7. RECALLS ON THE ASSEMBLY MAP

We will only outline the meaning of this assembly map. For any discrete group G, we define its reduced C^* -algebra, $C_r^*(G)$, and the K-theory of the latter as in [27]. According to Georges Skandalis, the algebras $C_r^*(G)$ are amongst the most important and natural examples of C^* -algebras. It is difficult to compute their K-theory directly, so we use a homomorphism constructed by Paul Baum and Alain Connes [1],

$$\mu_i: K_i^G(\underline{E}G) \longrightarrow K_i(C_r^*(G)), \qquad i \in \mathbb{N} \cup \{0\},$$

called the (analytical) assembly map. A model for the classifying space for proper actions, written $\underline{E}G$, is in the case of the Bianchi groups given by hyperbolic three-space (being isomorphic to their associated symmetric space), the stabilisers of their action on it being finite. The Baum—Connes conjecture now states that the assembly map is an isomorphism. The conjecture can be stated more generally, see [1].

The Baum—Connes conjecture implies several important conjectures in topology, geometry, algebra and functional analysis. Groups for which the assembly map is surjective verify the Kaplansky—Kadison conjecture on the idempotents. Groups for which it is injective satisfy the strong Novikov conjecture and one sense of the Gromov—Lawson—Rosenberg conjecture, namely the sense predicting the vanishing of the higher \hat{A} -genera (see the book of Mislin and Valette [15] for details).

The assembly map for the Bianchi groups. Julg and Kasparov [8] have shown that the Baum—Connes conjecture is verified for all the discrete subgroups of SO(n,1) and SU(n,1). The Lobachevski model of hyperbolic three-space gives a natural identification of its orientation preserving isometries, with matrices in PSO(3,1). So especially, the assembly map is an isomorphism for the Bianchi groups; and we have obtained the isomorphism type of $K_i(C_r^*(\Gamma))$.

An alternative way to check that the Baum—Connes conjecture is verified for the Bianchi groups, is using "a-T-menability" in the sense of Gromov, also called the Haagerup property [3]. Cherix, Martin and Valette prove in [4] that among other groups, the Bianchi groups admit a proper action on a space "with measured walls". In [3], Haglund, Paulin and Valette show that groups with such an action have the Haagerup property. Finally Higson and Kasparov [7] prove that the latter property implies the bijectivity of several assembly maps, and in particular the Baum—Connes conjecture.

The assembly map for the Bianchi groups is more deeply studied in [6].

8. APPENDIX On the machine [19], we obtain the following results:

m	class no.	β_1	2-torsion sub- complex, reduced	3-torsion sub- complex, reduced	H_0^{Fin}	H_{1}^{Fin}
·						
7	1	1	•	•••	\mathbb{Z}^3	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
2	1	1	○	•	$\mathbb{Z}^5\oplus \mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
11	1	1	•••	•	$\mathbb{Z}^4\oplus\mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
19	1	1	•••	•••	$\mathbb{Z}^3\oplus \mathbb{Z}/2$	$\mathbb{Z}\oplus\mathbb{Z}^{eta_1}$
15	2	2	•	•	\mathbb{Z}^4	$\mathbb{Z}^3\oplus\mathbb{Z}^{eta_1}$
5	2	2	Θ	•	$\mathbb{Z}^6\oplus\mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
6	2	2	○ ⊷	•	$\mathbb{Z}^5\oplus \mathbb{Z}/2$	$\mathbb{Z}^3\oplus\mathbb{Z}^{eta_1}$
43	1	2	•••	•••	$\mathbb{Z}^3\oplus \mathbb{Z}/2$	$\mathbb{Z}\oplus\mathbb{Z}^{eta_1}$
35	2	3	•	•	\mathbb{Z}^4	$\mathbb{Z}^3 \oplus \mathbb{Z}^{\beta_1}$
10	2	3	Θ	•	$\mathbb{Z}^6\oplus \mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
51	2	3	⊷ ⊷	•	$\mathbb{Z}^5 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
13	2	3	Θ	⊷ ⊷	$\mathbb{Z}^6\oplus \mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
67	1	3	•••	•••	$\mathbb{Z}^3\oplus \mathbb{Z}/2$	$\mathbb{Z}\oplus\mathbb{Z}^{eta_1}$
22	2	5	○ ←	•	$\mathbb{Z}^5\oplus \mathbb{Z}/2$	$\mathbb{Z}^3 \oplus \mathbb{Z}^{\beta_1}$
91	2	5	•	⊷ •••	\mathbb{Z}^4	$\mathbb{Z}^3\oplus\mathbb{Z}^{eta_1}$
115	2	7	\circ	•	\mathbb{Z}^4	$\mathbb{Z}^3 \oplus \mathbb{Z}^{\beta_1}$
123	2	7		•	$\mathbb{Z}^5 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
163	1	7	••	••	$\mathbb{Z}^3\oplus \mathbb{Z}/2$	$\mathbb{Z}\oplus\mathbb{Z}^{eta_1}$
37	2	8	$\Theta \circ \circ$	⊷ ⊷	$\mathbb{Z}^8\oplus\mathbb{Z}/2$	$\mathbb{Z}^4\oplus\mathbb{Z}^{eta_1}$
187	2	9	•••	0	$\mathbb{Z}^5 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
58	2	12	Θ	•	$\mathbb{Z}^6\oplus\mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
235	2	13	$\circ \circ \circ$	•	\mathbb{Z}^6	$\mathbb{Z}^5\oplus\mathbb{Z}^{eta_1}$
267	2	15		•	$\mathbb{Z}^5 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$	$\mathbb{Z}^2\oplus\mathbb{Z}^{eta_1}$
403	2	19	•	⊷ ⊷	\mathbb{Z}^4	$\mathbb{Z}^3\oplus\mathbb{Z}^{eta_1}$
427	2	21	$\circ \circ \circ$	⊷ •••	\mathbb{Z}^6	$\mathbb{Z}^5\oplus\mathbb{Z}^{eta_1}$

References

- [1] Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and K-theory of group C*-algebras, C*-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR1292018 (96c:46070)
- [2] Kenneth S. Brown, *Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR1324339 (96a:20072)
- [3] Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, and Alain Valette, *Groups with the Haagerup property*, Progress in Mathematics, vol. 197, Birkhäuser Verlag, Basel, 2001. Gromov's a-T-menability. MR1852148 (2002h:22007)
- [4] Pierre-Alain Cherix, Florian Martin, and Alain Valette, Spaces with measured walls, the Haagerup property and property (T), Ergodic Theory Dynam. Systems 24 (2004), no. 6, 1895–1908, DOI 10.1017/S0143385704000185. MR2106770 (2005i:22006)
- [5] Dieter Flöge, Dissertation: Zur Struktur der PSL₂ über einigen imaginär-quadratischen Zahlringen, Ph.D. Thesis, 1980 (German).Zbl 0482.20032
- [6] Mathias Fuchs, Equivariant K-homology of Bianchi groups in the case of non-trivial class group, Münster Journal of Mathematics (accepted December 9, 2013, http://wwwmathl.uni-muenster.de/mjm/acc/Fuchs.pdf).

- [7] Nigel Higson and Gennadi Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), no. 1, 23–74, DOI 10.1007/s002220000118. MR1821144 (2002k:19005)
- [8] Pierre Julg and Gennadi Kasparov, Operator K-theory for the group SU(n, 1), J. Reine Angew. Math. 463 (1995), 99–152. MR1332908 (96g:19006)
- [9] Felix Klein, Ueber binäre Formen mit linearen Transformationen in sich selbst, Math. Ann. 9 (1875), no. 2, 183–208. MR1509857
- [10] Norbert Krämer, Imaginärquadratische Einbettung von Maximalordnungen rationaler Quaternionenalgebren, und die nichtzyklischen endlichen Untergruppen der Bianchi-Gruppen, preprint, 2015 http://hal.archives-ouvertes.fr/hal-00720823/en/ (German).
- [11] ______, Die Konjugationsklassenanzahlen der endlichen Untergruppen in der Norm-Eins-Gruppe von Maximalordnungen in Quaternionenalgebren, Diplomarbeit, Mathematisches Institut, Universität Bonn, 1980. http://tel.archives-ouvertes.fr/tel-00628809/ (German).
- [12] Jean-Francois Lafont, Ivonne Ortiz, Alexander D. Rahm, and Ruben Sanchez-Garcia, *Bredon homology and equivariant K-homology of hyperbolic Coxeter groups*, work in advanced progress.
- [13] Wolfgang Lück and Bob Oliver, Chern characters for the equivariant K-theory of proper G-CW-complexes, Cohomological methods in homotopy theory (Bellaterra, 1998), Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 217–247. MR1851256 (2002m:55016)
- [14] Eduardo R. Mendoza, Cohomology of PGL₂ over imaginary quadratic integers, Bonner Mathematische Schriften [Bonn Mathematical Publications], 128, Dissertation, Rheinische Friedrich-Wilhelms-Universität, Mathematisches Institut. MR611515 (82g:22012)
- [15] Guido Mislin and Alain Valette, Proper group actions and the Baum-Connes conjecture, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2003. MR2027168 (2005d:19007), Zbl 1028.46001
- [16] Alexander D. Rahm, Accessing the cohomology of discrete groups above their virtual cohomological dimension, J. Algebra 404 (2014), 152–175, DOI 10.1016/j.jalgebra.2014.01.025. MR3177890
- [17] ______, The homological torsion of PSL₂ of the imaginary quadratic integers, Trans. Amer. Math. Soc. 365 (2013), no. 3, 1603–1635, DOI 10.1090/S0002-9947-2012-05690-X.
- [18] Alexander D. Rahm, Homology and K-theory of the Bianchi groups, C. R. Math. Acad. Sci. Paris 349 (2011), no. 11-12, 615-619, DOI 10.1016/j.crma.2011.05.014. MR2817377 (2012e:20116)
- [19] Alexander D. Rahm, *Bianchi.gp*, Open source program (GNU general public license), validated by the CNRS: http://www.projet-plume.org/fiche/bianchigp Part of the Pari/GP Development Center scripts library, 2010.
- [20] ______, (Co)homologies and K-theory of Bianchi groups using computational geometric models, PhD thesis, Institut Fourier, Universit de Grenoble et Universität Göttingen, soutenue le 15 octobre 2010, http://tel.archives-ouvertes.fr/tel-00526976/.
- [21] Rubén J. Sánchez-García, Bredon homology and equivariant K-homology of SL(3, Z), J. Pure Appl. Algebra 212 (2008), no. 5, 1046−1059. MR2387584 (2009b:19007)
- [22] Rubén J. Sánchez-García, Equivariant K-homology for some Coxeter groups, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 773–790, DOI 10.1112/jlms/jdm035. MR2352735 (2009b:19006)
- [23] Joachim Schwermer and Karen Vogtmann, The integral homology of SL₂ and PSL₂ of Euclidean imaginary quadratic integers, Comment. Math. Helv. **58** (1983), no. 4, 573–598. MR728453 (86d:11046), Zbl 0545.20031
- [24] Jean-Pierre Serre, *Linear representations of finite groups*, Springer-Verlag, New York, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR0450380 (56 #8675)
- [25] Jolanta Słomińska, On the equivariant Chern homomorphism, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. **24** (1976), no. 10, 909–913 (English, with Russian summary). MR0461489 (57 #1474)
- [26] Christophe Soulé, The cohomology of SL₃(**Z**), Topology **17** (1978), no. 1, 1–22. MR0470141 (57 #9908)
- [27] Alain Valette, Introduction to the Baum-Connes conjecture, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002. From notes taken by Indira Chatterji; With an appendix by Guido Mislin. MR1907596 (2003f:58047)