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Abstract. Air traffic management (ATM) aims at providing companies
with a safe and ideally optimal aircraft trajectory planning. Air traffic
controllers act on flight paths in such a way that no pair of aircraft come
closer than the regulatory separation norm. With the increase of traffic,
it is expected that the system will reach its limits in a near future: a
paradigm change in ATM is planned with the introduction of trajectory
based operations. This paper investigate a mean of producing realistic air
routes from the output of an automated trajectory design tool. For that
purpose, an entropy associated with a system of curves is defined and
a mean of iteratively minimizing it is presented. The network produced
is suitable for use in a semi-automated ATM system with human in the
loop.

1 Introduction

Based on recent studies [1], traffic in Europe is expected to grow on an average
yearly rate of 2.6%, yielding a net increase of 2 million flights per year at the 2020
horizon. Long term forecast gives a two fold increase in 2050 over the current
traffic, pointing out the need for a paradigm change in the way flights are man-
aged. Two major framework programs, SESAR (Single European Sky Air traffic
management Research) in Europe and Nextgen in the US have been launched
in order to first investigate potential solutions and to deploy them in a second
phase. One of the main changes that the air traffic management (ATM) system
will undergo is a switch from airspace based to trajectory based operations with
a delegation of the separation task to the crews. Within this framework, trajec-
tories become the basic object of ATM, changing the way air traffic controllers
will be working. In order to alleviate the workload of controllers, trajectories
will be planned several weeks in advance in such a way that close encounters are
minimized and ideally removed. For that purpose, several tools are currently be-
ing developed, most of them coming from the field of robotics [6]. Unfortunately,
flight path issued by these algorithms are not tractable for a human controller
and need to be simplified. The purpose of the present work is to introduce an
automated procedure that takes as input a set of trajectories and outputs a



simplified one that can be used in an operational context. Using an entropy as-
sociated with a curves system, a gradient descent is performed in order to reduce
it so as to straighten trajectories while avoiding areas with low air craft density,
thus enforcing route-like behavior. This effect is related to the fact that entropy
minizing distributions favor concentration.

2 Entropy minimizing curves

2.1 Motivation

As previously mentioned, air traffic management of the future will make an
intensive use of 4D trajectories as a basic object. Full automation is a far reaching
concept that will probably not implemented before 2040-2050 and even in such a
situation, it will be needed to keep humans in the loop so as to gain a wide societal
acceptance of the concept. Starting from SESAR or Nextgen initial deployment
and aiming towards this ultimate objective, a transition phase with human-
system cooperation will take place. Since ATC controllers are used to a well
structured network of routes, it is advisable to post-process the 4D trajectories
issued by automated systems in order to make them as close as possible to
line segments connecting beacons. To perform this task, in an automatic way,
flight paths will be moved Add ”iteratively” to dictionary so as to minimize an
entropy criterion, that enforces avoidance of low density area and at the same
time penalize length. Compared to already available bundling algorithms [3]
that tend to move curves to high density areas, this new procedure generates
geometrically correct curves, without excess curvature.

2.2 Entropy of a system of curves

Let a set γ1, . . . γN of smooth curves be given, that will be aircraft flight paths
for the air traffic application. It will be assumed in the sequel that all curves are
smooth mappings from [0, 1] to a domain Ω of R2 with everywhere non vanishing
derivatives in ]0, 1[. This last condition allows to view trajectories as smooth
immersions with boundaries and is sound from the application point of view as
aircraft velocities cannot be 0 expect at the endpoints. A classical performance
indicator used in ATM is the aircraft density [2], obtained from sampled positions
γi(tj), j = 1 . . . ni. It is constructed from a partition Uk, k = 1 . . . P of Ω by
counting the number of samples occurring a given Uk then dividing out by the
total number of samples n =

∑N
i=1 ni. More formally, the density dk in the

subset Uk of Ω is:

dk = n−1
N∑
i=1

ni∑
j=1

1Uk
(γi(tj)) (1)

with 1Uk
the characteristic function of the set Uk. It seems natural to extend

the density obtained from samples to another one based on the trajectories



themselves using an integral form:

dk = λ−1
N∑
i=1

∫ 1

0

1Uk
(γi(t)) dt (2)

where the normalizing constant λ is obtained as:

λ =

P∑
k=1

N∑
i=1

∫ 1

0

1Uk
(γi(t)) dt =

N∑
i=1

∫ 1

0

P∑
k=1

1Uk
(γi(t)) dt

and since Uk, k = 1 . . . P is a partition:

λ =

N∑
i=1

∫ 1

0

γi(t)dt (3)

Density can be viewed as an empirical probability distribution with the Uk con-
sidered as bins in an histogram. It is thus natural to extend the above compu-
tation so as to give rise to a continuous distribution on Ω. For that purpose, a
kernel function K : R → R+ is selected and a smooth version of the density [5]
is defined as a mapping d from Ω to [0, 1]:

d : x 7→
∑N
i=1

∫ 1

0
K (‖x− γi(t)‖) dt∑N

i=1

∫
Ω

∫ 1

0
K (‖x− γi(t)‖) dtdx

(4)

Standard choices for the K function are the ones used for non-parametric kernel
estimation like the Epanechnikov function:

K : x 7→
(
1− x2

)
1[−1,1](x)

When K is compactly supported, which is the case of the Epanechnikov function
and all its relatives, it comes:∫

Ω

K (‖x− γi(t)‖) dx =

∫
R2

K (‖x‖) dx

provided that Ω contains the set:

{x ∈ R2, inf
i=1...N,t∈[0,1]

‖x− γi(t)‖ ≤ A}

where the interval [−A,A] contains the support ofK. The case of kernels with un-
bounded support, like Gaussian functions, may be dealt with provided Ω = R2.
In the application considered, only compactly supported kernels are used, mainly
to allow fast machine implementation of the density computation. Normalizing
the kernel is not mandatory as the normalization occurs with the definition of
d. It is nevertheless easier to consider only kernels satisfying:∫

R2

K (‖x‖) dx = 1



Using the polar coordinates (ρ, θ) and the rotation invariance of the integrand,
the relation becomes:

2π

∫
R+

K(ρ)ρdρ = 1

Which yields a normalizing constant of 2/π for the Epanechnikov function, in-
stead of the usual 3/4 in the real case. When the normalization condition is
fulfilled, the expression of the density simplifies to:

d : x 7→ N−1
N∑
i=1

∫ 1

0

K (‖x− γi(t)‖) dt (5)

As an example, one day of traffic over France is considered and pictured on figure
2.2 with the corresponding density map, computed on a evenly spaced grid with
a normalized Epanechnikov kernel:

Fig. 1. Traffic over France and associated density

Unfortunately, density computed this way suffers a severe flaw for the ATM
application: it is not related to the shape of trajectories but also to the time
behavior. Formally, it is defined on the set Imm

(
[0, 1],R2

)
of smooth immer-

sions from [0, 1] to R2 while the space of primary interest will be the quotient
by smooth diffeomorphisms of the interval [0, 1], Imm

(
[0, 1],R2

)
/Diff([0, 1]).

Invariance of the density under the action of Diff([0, 1]) is obtained as in [4]
by adding a term related to velocity in the integrals. The new definition of d
becomes:

d̃ : x 7→
∑N
i=1

∫ 1

0
K (‖x− γi(t)‖) ‖γ′i(t)‖dt∑N

i=1

∫
Ω

∫ 1

0
K (‖x− γi(t)‖) ‖γ′i(t)‖dtdx

(6)

Assuming again a normalized kernel and letting li be the length of the curve γi,
is simplifies to:

d̃ : x 7→
∑N
i=1

∫ 1

0
K (‖x− γi(t)‖) ‖γ′i(t)‖dt∑N

i=1 li
(7)



The new Diff -invariant density is pictured on figure 2.2 along with the standard
density. While the overall aspect of the plot is similar, one can observe that
routes are more apparent the right picture and that the density peak located
above Paris area is of less importance and less symmetric is due to the fact that
near airports, aircraft are slowing down and this effect exaggerates the density
with the non-invariant definition.

Fig. 2. Density (left) and Diff invariant density (right) for the 12th February 2013
traffic

Having a density at hand, the entropy of the system of curves γ1, . . . , γN is
defined the usual way as:

E(γ1, . . . , γN ) = −
∫
Ω

d̃(x) log
(
d̃(x)

)
dx

2.3 Minimizing the entropy

In order to fulfill the initial requirement of finding bundles of curve segments as
straight as possible , one seeks after the system of curves minimizing the entropy
E(γ1, . . . , γN ), or equivalently maximizing:∫

Ω

d̃(x) log
(
d̃(x)

)
dx

The reason why this criterion gives the expected behavior will become more ap-
parent after derivation of its gradient at the end of this part. Nevertheless, when
considering a single trajectory its is intuitive that the most concentrated density
distribution is obtained with a straight segment connecting the endpoints.

Letting ε be a perturbation of the curve γj such that ε(0) = ε(1) = 0,
the first order expansion of −E(γ1, . . . , γN ) will be computed in order to get
a maximizing displacement field, analogous to a gradient ascent1 in the finite

1 Choice has been made to maximize the opposite of the entropy, so that the algorithm
will be a gradient ascent one



dimensional setting. The notation:

∂F

∂γj

will be used in the sequel to denote the derivative of a function F of the curve
γj in the sense that for a perturbation ε:

F (γj + ε) = F (γj) +
∂F

∂γj
(ε) + o(‖ε‖2)

First of all, please note that since d̃ has integral 1 over the domain Ω:∫
Ω

∂d̃(x)

∂γj
(ε)dx = 0

so that:

− ∂

∂γj
E(γ1, . . . , γN )(ε) =

∫
Ω

∂d̃(x)

∂γj
(ε) log

(
d̃(x)

)
dx (8)

Starting from the expression of d̃ given in equation 7, the first order expansion of
d̃ with respect to the perturbation ε of γj is obtained as a sum of a term coming
from the numerator: ∫ 1

0

K (‖x− γj(t)‖) ‖γ′j(t)‖dt (9)

and a second one coming from the length of γj in the denominator. This last
term is obtained from the usual first order variation formula of a curve length:∫

[0,1]

∥∥γ′j(t) + ε′(t)
∥∥ dt =

∫
[0,1]

∥∥γ′j(t)∥∥ dt+

∫
[0,1]

〈
γ′j(t)

‖γ′j(t)‖
, ε′(t)

〉
dt+ o(‖ε‖2)

Using an integration by part, the first order term can be written as:∫
[0,1]

〈
γ′j(t)

‖γ′j(t)‖
, ε′(t)

〉
dt = (10)

−
∫
[0,1]

〈(
γ′′j (t)

‖γ′j(t)‖

)
N

, ε

〉
dt (11)

with: (
γ′′j (t)

‖γ′j(t)‖

)
N

=
γ′′j (t)

‖γ′j(t)‖
−

γ′j(t)

‖γ′j(t)‖

〈
γ′j(t)

‖γ′j(t)‖
,
γ′′j (t)

‖γ′j(t)

〉
the normal component of:

γ′′j (t)

‖γ′j(t)‖



for a curve in R2.
The integral in 9 can be expanded in a similar fashion. Using as above the

notation ()N for normal components, the first order term is obtained as:∫
[0,1]

〈(
γj(t)− x
‖γj(t)− x‖

)
N
, ε

〉
K ′ (‖γj(t)− x‖) ‖γ′j(t)‖dt (12)

−
∫
[0,1]

〈(
γ′′j (t)

‖γ′j(t)‖

)
N

, ε

〉
K (‖γj(t)− x‖) dt (13)

From the expressions in 12 and 10, the first order variation of the entropy is:

1∑N
i=1 li

(
(14)∫

[0,1]

〈∫
Ω

(
γj(t)− x
‖γj(t)− x‖

)
N
K ′ (‖γj(t)− x‖) log d̃(x)dx, ε

〉
‖γ′j(t)‖dt (15)

−
∫
[0,1]

(∫
Ω

K (‖γj(t)− x‖) log d̃(x))dx

)〈(
γ′′j (t)

‖γ′j(t)‖

)
N

, ε

〉
dt (16)

+

(∫
Ω

d̃(x) log(d̃(x))dx

)∫
[0,1]

〈(
γ′′j (t)

‖γ′j(t)‖

)
N

, ε

〉
dt

)
(17)

As expected, only moves normal to the trajectory will change at first order the
value of the criterion: the displacement of the curve γj will thus be performed

at t along the normal vector Nγj (t) and is given, up to the (
∑N
i=1 li)

−1 term by:∫
Ω

(
γj(t)− x
‖γj(t)− x‖

)
N
K ′ (‖γj(t)− x‖) log d̃(x)dx‖γ′j(t)‖ (18)

−
(∫

Ω

K (‖γj(t)− x‖) log d̃(x))dx

)(
γ′′j (t)

‖γ′j(t)‖

)
N

(19)

+

(∫
Ω

d̃(x) log(d̃(x))dx

)(
γ′′j (t)

‖γ′j(t)‖

)
N

)
(20)

The first term in the expression will favor moves towards areas of high den-
sity, while the second and third one are moving along normal vector and will
straighten trajectory.

In practical implementation, the scaling factor in front of the whole expres-
sion is dropped and moves are made proportionally to the given vector. As usual
with gradient ascent algorithms, one must carefully select the step taking in the
maximizing direction in order to avoid divergence. A simple fixed step strategy
was selected here and gives satisfactory results.

In the example of figure 3, the problem of automatic conflict solving is ad-
dressed. In the initial situation, aircraft are converging to a single point, which
is unsafe. Air traffic controllers will proceed in such a case by diverting aircraft



from their initial flight path so as to avoid each other, but only using very simple
maneuvers. An automated tool will make a full use of the available airspace and
the resulting set of trajectories may fail to be manageable by a human: in the
event of a system failure, no backup can be provided by controllers. The entropy
minimization procedure was added to an automated conflict solver in order to
end up with flight paths still tractable by humans. The final result is shown
on the right part of figure 3, where encounters no longer exists but aircraft are
bound to simple trajectories, with a merging and a splitting point. Note that
since the automated planner acts on velocity, all aircraft are separated in time
on the inner part.

Fig. 3. Initial flight plans and final ones

3 Conclusion and future work

Algorithms coming from the field of shape spaces emerge as a valuable tool for
applications in ATM. In this work, the foundations of a post processing proce-
dure that may be applied after an automated flight path planner are presented.
Entropy minimization makes straight segments bundle emerge, which fulfills the
operational requirements. Computational efficiency has to be improved in order
to release an usable building block for future ATM systems. One way to address
this issue is to compute kernel density estimators using GPUs which excel in
this kind of task, very similar texture manipulations. Furthermore, theoretical
insights have to be gained in the next step of the work.
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