David Monniaux

Francesco Alberti

A simple abstraction of arrays and maps by program translation

We present an approach for the static analysis of programs handling arrays, with a Galois connection between the semantics of the array program and semantics of purely scalar operations. The simplest way to implement it is by automatic, syntactic transformation of the array program into a scalar program followed analysis of the scalar program with any static analysis technique (abstract interpretation, acceleration, predicate abstraction,. . .). The scalars invariants thus obtained are translated back onto the original program as universally quantified array invariants. We illustrate our approach on a variety of examples, leading to the "Dutch flag" algorithm.

Introduction

Static analysis aims at automatically discovering program properties. Traditionally, it has focused on dataflow properties (e.g. "can this pointer be null?"), then on numerical properties (e.g. "2x + y ≤ 45 at every iteration of this loop"). When it comes to programs operating over arrays, special challenges arise. For instance, the Astrée static analyzer, 1 based on abstract interpretation and commercially used in the avionics, automotive and other industries, supports arrays simplistically: it either "smashes" all cells in a single array into a single 2 Example: the Sentinel Our program transformation consists in i) a replacement of reads and writes parameterized by a number of distinguished indices, formalized in section 4 ii) optionally, some "focusing" on a subset of index values iii) for certain backends (ConcurInterproc), the addition of observer variables implementing a form of partitioning.

Listing 2: A "sentinel value" marks the penultimate array cell c o n s t i n t N= 1 0 0 0 ; i n t i = 0 , t [N] ; i n i t i a l i z e (N, t) ; t [N-2] = -1; while (t [i] >=0) i ++;

Obviously to us humans, this program cannot crash with an array access out of bounds, and the final value of i is, at most, 998 (its value depends on how the " initialize " procedure works). How can we obtain this result automatically?

Let x be a symbolic constant in {0, . . . , N -1}. We abstract array t by the single cell t [x], represented by variable tx: reads and writes at position x in t translates to reads and writes to variable tx and reads and writes at other positions are ignored. Program 2 is thus abstracted as:3 c o n s t i n t N=1000 , x = random () ; assume (x >= 0 && x < N) ; i n t i = 0 , t x = random () ; i f (N-2 == x) t x =-1; while (1) { i n t read = random () ; i f (i == x) { read = t x ; } i f (read < 0) { break ; } i = i + 1 ; } Flata [START_REF] Bozga | Fast Acceleration of Ultimately Periodic Relations[END_REF][START_REF] Hojjat | A Verification Toolkit for Numerical Transition Systems[END_REF] can compute an exact input/output relation of this program (to demonstrate generality, we left N unfixed and replaced N-2 by a parameter p; we thus use a precondition 0 ≤ x < N ∧ 0 ≤ p < N):

(p = x ∧ i ≤ x -1 ∧ i ≥ 0 ∧ N ≥ x + 1) ∨ (i = x ∧ i ≥ 0 ∧ N ≥ p + 1 ∧ i ≤ p -1)∨ (x ≥ p + 1 ∧ i ≤ x -1 ∧ i ≥ 0 ∧ N ≥ x + 1 ∧ p ≥ 0) ∨ (i = x ∧ i ≤ N -1 ∧ i ≥ p + 1 ∧ p ≥ 0)∨ (i ≥ x + 1 ∧ N ≥ p + 1 ∧ i ≤ N -1 ∧ x ≤ p -1 ∧ x ≥ 0)∨ (i ≤ x -1 ∧ i ≥ 0 ∧ N ≥ p + 1 ∧ x ≤ p -1)∨ (i = x ∧ i = p ∧ i ≥ 0 ∧ i ≤ N -1) ∨ (x ≥ p + 1 ∧ i ≥ x + 1 ∧ i ≤ N -1 ∧ p ≥ 0) (F)
Note that our abstraction is valid whatever the value of x. This means that (i, p, N) should be a solution of N > 0 ∧ ∀x (0 ≤ x < N ⇒ F). One can check that this quantified formula entails i ≤ p.

Arguably, we have done too much work: the only cell in the array whose content matters much is at index p (N-2 in the original program). Running Flata with x = p yields a postcondition implying i ≤ p. Again, this is sound, because any choice of x yields a valid postcondition on (i, p).

Galois connections

We shall now see that, for any choice of indices, there is a Galois connection ---→ ← --α γ [START_REF] Cousot | Abstract Interpretation Frameworks[END_REF] between the concrete (the set of possible values of the vector of variables of the original program) and the abstract set of states (the set of possible values of the vector of variables in the transformed program). In general, this Galois connection is not onto: there are abstract elements x ♮ that include "spurious" states, and which may be reduced to a strictly smaller α • γ(x ♮).

If A and B are sets, A → B denotes the set of total functions from A to B, and P (A) the set of parts of A.

If A is finite, A → B denotes the set of arrays indexed by A; specifically, if A is {1, . . . , l 1 } × • • • × {1, . . . , l d } then A → B denotes the d-dimensional arrays of size (l 1 , . . . , l d). f [x] denotes the application f (x)
where f is a program array or map.

Our constructions easily generalize to arbitrary combinations of numbers of arrays and numbers of indices; let us see a few common cases.

Single index

Applied with a single index, our map abstraction is classical [15, §2.1].

Definition Let f ∈ A → B, we abstract it by its graph α 1 (f) = {(a, f [a]) | a ∈ A}; e.g., a constant array {1, . . . , n} → Z with value 42 is abstracted as {(i, 42) | 1 ≤ i ≤ n}.
We lift α 1 (while keeping the same notation) to a function from

P (A → B) to P (A × B): for F ♭ ⊆ A → B, α 1 (F ♭) = f ∈F α 1 (f), otherwise said α 1 (F ♭) = (a, f [a]) | a ∈ A, f ∈ F ♭ (1)
Let F ♮ ⊆ A × B. Then we define its concretization γ 1 (F ♮):

γ 1 (F ♮) = f ∈ A → B | ∀a ∈ A (a, f [a]) ∈ F ♮ (2)
It is easy to see that (P (A → B) , ⊆) ---→ ←---

α1 γ1 P (A × B) is a Galois connection.
Non-surjectivity and reduction Remark that α 1 is not onto (if |A| > 1 and |B| > 0): there exist multiple

F ♮ such that γ 1 (F ♮) = ∅, namely all those such that ∃a ∈ A∀b ∈ B (a, b) / ∈ F ♮ . For instance, if considering arrays of two integer elements (A = {0, 1}, B = Z), then F ♮ = {(1, 0)} yields γ 1 (F ♮) = ∅:
there is no way to fill the array at index 0.

Let us now see the practical implication. Assume that the program has a single array in A → B and a vector of scalar variables ranging in S, then the memory state is an element of X ♭ △ = S × (A → B). The scalar variables are combined into our abstraction as follows:

P (S × (A → B)) ∼ = S → P (A → B) ----→ ← ---- α S 1 γ S 1 S → P (A × B) ∼ = P (S × A × B) △ = X ♮ , (3)
where α S 1 and γ S 1 lift α 1 and γ 1 pointwise. Let s ∈ S. While the absence of any (s, a, b) ∈ x ♮ (x ♮ ∈ X ♮) indicates that there is no (s, f) ∈ γ S 1 (x ♮), that is, scalar state s is unreachable, the converse is not true. Consider a single integer scalar variable s and an array a of length 2, and x ♮ = {(0, 0, 1), (1, 0, 0), (1, 1, 2)}, representing the triples (s, i, a[i]). It would seem that s = 0 is reachable, but it is not, because there is no way to fill the array at position 1: there is no element in x ♮ of the form (0, 1, b).

A reduction is a function ρ : X ♮ → X ♮ such that γ • ρ = γ and ρ(x ♮) ⊆ x ♮ for all x ♮ . The strongest reduction ρ opt (the minimum for the pointwise ordering induced by ⊆) is α • γ. In the above, ρ opt (x ♮) = {(1, 0, 0), (1, 1, 2)}; intuitively, the strongest reduction discards all superfluous elements from the abstract value.

Class of formulas Assume now that the vector of scalar variables s 1 , . . . , s m lies within S = Z m , the index a lies in {1, . . . , l 1 } ×

Z m × Z d × Z .
This construction may be generalized to any theory or combination of theories over the sorts used for scalar variables, array indices, and array contents.

Checking that an invariant γ S 1 (G) entails ψ, when the set G is defined by a formula Γ, just amounts to checking that Γ ∧ ¬ψ is unsatisfiable.

Several indices, one per array

The above settings can be extended to several arrays. Let f, g ∈ A → B, we abstract them by the product of their graphs As an example, the property that up to index k, monodimensional array f of length n has been copied into array g can be expressed as ∀a, a ′ ∈ {1, . . . , n} a < k ∧ a = a ′ ⇒ f [a] = g[a ′] within that class. 2 . Then we define its concretization γ 2 (F ♮):

α 1 (f, g) = {(a, f [a], a ′ , g[a ′]) | a, a ′ ∈ A}, γ 1 (x ♮) = {(f, g) ∈ (A → B) 2 | ∀a, a ′ ∈ A (a, f [a], a ′ , g[a ′]) ∈ x ♮ }.

Dual indices, same array

Definition Let f ∈ A → B, pose α 2 (f) = {(a, f [a], a ′ , f [a ′]) | a, a ′ ∈ A} and lift it to a function from P (A → B) to P (A × B) 2 . Let F ♮ ⊆ (A × B)
γ 2 (F ♮) = f ∈ A → B | ∀a, a ′ ∈ A (a, f [a], a ′ , f [a ′]) ∈ F ♮ (5)
It is easy to see that (P (A → B) , ⊆) ---→ ←---

α2 γ2 P (A × B) is a Galois connection. If A is totally ordered, it seems a waste to include both (a, f [a], a ′ , f [a ′]) and (a ′ , f [a ′], a, f [a]) in the abstraction for a < a ′ . We thus define α 2< (f) = {(a, f [a], a ′ , f [a ′]) | a < a ′ ∈ A} and γ 2< (x ♮) = {f ∈ A → B | ∀a, a ′ ∈ A , a < a ′ ⇒ (a, f [a], a ′ , f [a ′]) ∈ x ♮ }.
Non-surjectivity Remark, again, that α 2 is not onto. Consider an array of integers of length 3, that is, a function f : {1, 2, 3} → Z. An analysis computes its abstraction as x ♮ = {(1, 0, 2, 0), (1, 0, 3, 0), (2, 0, 3, 0), (1, 0, 3, 1)}; recall that each element of that set purports to denote (a, f [a], a ′ , f [a ′]) for a < a ′ . At first sight, it seems that f (3) = 1 is possible, as witnessed by the last element. Yet, there is then no way to fill a [START_REF] Alberti | An extension of lazy abstraction with interpolation for programs with arrays[END_REF]: there is no x such that (2, x, 3, 1) ∈ x ♮ . This last element is therefore superfluous, and we can conclude that ∀x f [x] = 0. (See § 5.5 for a real-life example.)

If x ♮ is defined by a first-order formula (

x ♮ = {(a, b, a ′ , b ′) | φ(a, b, a ′ , b ′)}), then this reduction (removing all a ′ , b ′ such that for some a < a ′ there is no way to fill f [a]) is obtained as: ∀a∃b a < a ′ ⇒ φ(a, b, a ′ , b ′).
Class of formulas Assume now that the vector of scalar variables s 1 , . . . , s m lies within S = Z m , the indices a < a ′ lie in {1, . . . , n}, and the values f

[a], f [a ′] also lie in Z. Consider a formula ψ of the form ∀a, a ′ a < a ′ ⇒ φ(s 1 , . . . , s m , a, f [a], a ′ , f [a ′])
where φ is a first-order arithmetic formula (say, Presburger). For instance, one may express sortedness:

∀a, a ′ a < a ′ ⇒ f [a] ≤ f [a ′]. Then, f |= ψ if and only if α S 2< (f) ∈ {((s 1 , . . . , s m), a, b, a ′ , b ′) | φ(s 1 , . . . , s m , a, b, a ′ , b ′)}. The sets of program states expressible by formulas of the form ∀a, a ′ a < a ′ ⇒ φ(s 1 , . . . , s m , a, f [a], a ′ , f [a ′]) thus map through the Galois connection to a sub-lattice of P Z m × (Z × Z) 2 .

Abstraction of program semantics

Our analysis may be implemented by a syntactic transformation of array operations into purely scalar operations. In this section, for each operation (read, write) we describe the transformed operation and demonstrate the correctness of the transformation. We then discuss precision.

Without loss of generality, we consider only elementary reads and writes (r= f[i]; and f [i]=r ; with i a variable). More complex constructs, e.g. f [e]=r; with e an expression, can always be decomposed into a sequence of scalar operations and elementary read and writes, using temporary variables.

Transformation and Correctness

Reading from the array Consider a program state composed of (s, r, i, f) where r ∈ B, i ∈ A are scalars, s ∈ S is the rest of the state, and f ∈ A → B. Consider the instruction r=f[i]; , its semantics is:

(s, r, i, f) r=f[i]; -----→ (s, f (i), i, f) (6)
We wish to abstract it by the program fragment: ; by the (α S 1 , γ S 1) Galois connection. More generally, a read with several indexes a 1 , a 2 , . . . is abstracted by r=random () ; i f (i ==a1) assume (r ==b1) ; i f (i ==a2) assume (r ==b2) ; . . . The same lemma and proof carry to that setting.

Writing to the array Consider the instruction f [i]=r ; , its semantics is:

(s, r, i, f) f [i]=r ; -----→ (s, r, i, f [i → r]) (7)
We wish to abstract it by the program fragment: --→ (s ′ , f). We abstract P as:

(s, a, b)

P ♮ --→ (s ′ , a, b) if s → P s ′ .
Essentially, operations on scalars are abstracted by themselves. The following result generalizes immediately to (α 2 , γ 2) etc.

Lemma 3. The forward and backward semantics of

P ♮ --→ abstract those of P ♭ --→ by the (α S 1 , γ S 1) Galois connection.

Precision loss

"Forgetting" the value of a scalar variable v corresponds to (s, v, f) → (s, f). This scalar operation may be correctly abstracted, as in Lemma 3, by (s, v, a, b) → (s, a, b). Surprisingly, applying this operation not only forgets the value of v, it may also enlarge the set of represented f . Example:

x ♮ = {(0, v, a, v) | a ∈ A ∧ v ∈ B} abstracts by (α S 1 , γ S 1) the set of triples (0, v, f) where f is a constant function of value v. Forgetting v yields the set of pairs (0, f) where f is a constant function. Applying (s, v, a, b) → (s, a, b) to x ♮ yields y ♮ = {(0, a, v) | A ∈ A ∧ v ∈ B}, which concretizes to the set {(0, f) | f ∈ A → B}.
We have completely lost the "constantness" property.

Relative completeness

We now consider the problem of completeness of this abstraction, assuming that the back-end analysis is perfectly precise (thus relative completeness).

Our analysis is incomplete in general. Consider the following program:

Listing 6: Fill with zero, test zero

i n t t [N] ; f o r (i n t i = 0 ; i <N; i ++) t [i] = 0 ; f o r (i n t i = 0 ; i <N; i ++) i f (t [i] ! = 0) break ;
In the second loop, the break statement is never reached and thus at the end of the loop, i = N . Yet, if we distinguish n < N different indices i 1 , . . . , i n , we cannot prove that this statement is never reached: for there will exist i ∈ {0, . . . , N -1}\{i 1 , . . . , i n } such that t [i] returns, in the abstracted program, an arbitrary value and thus the break statement is considered possibly reachable.

In contrast, when the program is loop-free, the abstraction is exact with respect to the scalar variables, provided the number of indices used for the abstraction is at least the number of array accesses: Theorem 1. Consider a loop-free array program P with arrays a 1 , . . . , a d such that the number of accesses to these arrays are respectively α 1 , . . . , α d . By abstracting these arrays with, respectively, n 1 , . . . , n d indices such that n i ≥ α i for all i, we obtain a Galois connection ---→ ← ---

α γ such that π S • γ • P ♮ • α = π S • P ♭ where π S is
n i t 2 d (i n t m, i n t n , i n t a [m] [n] , i n t v) { f o r (i n t i = 0 ; i < m; i ++) { f o r (i n t j = 0 ; j < n ; j ++) a [i] [j] = v ; } }
Again, we consider cell a[x, y], where 0 ≤ x < m and 0 ≤ y < n, and disregard all other cells. One should not convert this procedure into a single control-flow graph, because the resulting numerical transition system does not have the "flat" structure expected by Flata [START_REF] Bozga | Flat parametric counter automata[END_REF]. Instead, one must encode the inner loop as a separate procedure: void a r r a y i n i t 2 d (i n t m, i n t n , i n t a , i n t v , i n t x , i n t y) { assume (x >= 0 && x < m) ; assume (y >= 0 && y < n) ; f o r (i n t i = 0 ; i <m; i ++) i n n e r l o o p (n , a , v , x , y , i) ; } void i n n e r l o o p (i n t n , i n t a , i n t v , i n t x , i n t y , i n t i) { f o r (i n t j = 0 ; j <n ; j ++) i f (x== i && y== j) a = v ; } Flata then computes the exact input-output relation of inner loop, and finally the exact input-output relation of array init 2d:

(x = 0∧m = 1∧a ′ = v∧y ≥ 0∧n ≥ y+1)∨(a ′ = v∧x ≥ 1∧y ≥ 0∧m ≥ x+1∧n ≥ y+1)∨ (n = 1∧x = 0∧y = 0∧a ′ = v∧m ≥ 2)∨(x = 0∧a ′ = v∧y ≥ 0∧m ≥ 2∧n ≥ 2∧n ≥ y+1)
Each disjunct implies a ′ = v, i.e., the final value of a[x, y] is v. Again, because (x, y) are symbolic constants with no assumption except that they are valid indices for a, this proves that all cells contain v. Assuming 0 ≤ x < m ∧ 0 ≤ y < n this formula may indeed be simplified automatically into a ′ = v. 4

Slice initialization

Listing

8: Initialize a[low . . . high -1] to v void s l i c e i n i t (i n t n , i n t a [n] , i n t low , i n t high , i n t v) { f o r (i n t i =low ; i<high ; i ++) a [i] = v ; }
Again, we transform the program using a single index:

f o r (i n t i =low ; i<high ; i ++) i f (x == i) a = v ;
Flata produces as postcondition (assuming 0 ≤ x < n ∧ 0 ≤ low ≤ high ≤ n):

(high = low ∧ a ′ = a ∧ high ≥ 0 ∧ n ≥ high ∧ n ≥ x + 1 ∧ x ≥ 0)∨ (a ′ = v ∧ low ≤ x ∧ n ≥ high ∧ high ≥ x + 1 ∧ low ≥ 0)∨ (a ′ = a ∧ n ≥ high ∧ high ≥ low + 1 ∧ low ≥ x + 1 ∧ x ≥ 0)∨ (a ′ = a ∧ high ≤ x ∧ n ≥ x + 1 ∧ high ≥ low + 1 ∧ low ≥ 0) (8)
Again, under the assumptions 0 ≤ x < n and 0 ≤ low ≤ high ≤ n, this formula is equivalent to: ((low

≤ x < high) → a ′ = v) ∧ (¬(low ≤ x < high) → a ′ = a).
Thus by quantification, the expected outcome: Flata Flata yields: i n t main () { i n t n , a , b , x , y ; i f (0 <= x && x < n && 0 <= y && y < n && x==y) { f o r (i n t i = 0 ; i<n ; i ++) { i n t tmp ; i f (x== i) tmp=a ; i f (y== i) b=tmp ; } a s s e r t (a==b) ; } }

(∀x ∈ [low , high) a ′ [x] = v) ∧ (∀x / ∈ [low , high) → a ′ [x] = a[x]) (9)

Array copy

(y ≥ x + 1 ∧ n ≥ y + 2 ∧ x ≥ 0) ∨ (n = y + 1 ∧ y ≥ x + 1 ∧ x ≥ 0) ∨ (n = x + 1 ∧ y ≥ 0 ∧ y ≤ x -1) ∨ (y ≥ 0 ∧ y ≤ x -1 ∧ n ≥ x + 2) ∨ (y = x ∧ b ′ = a ∧ n ≥ x + 2 ∧ x ≥ 0) ∨ (y = x ∧ b ′ = a ∧ n = x + 1 ∧ x ≥ 0). Assuming 0 ≤ x < n ∧ 0 ≤ y < n,

In-place array reversal

Listing 10: Array reversal void a r r a y r e v e r s e i n p l a c e (i n t n , c o n t e n t s t [n]) { i n t i =0 , j =n-1; while (i < j) { c o n t e n t s tmp1 = t [i] , tmp2 = t [j] ; t [i] = tmp2 ; t [j] = tmp1 ; i ++; j --; } }

For this program, we need to distinguish the initial values in the array from the values during the computation (which finally yield the final values). We use three indices 0 ≤ x < n, 0 ≤ y ≤ z < n: a is the initial value of t[x], b the current value of t[y], c the current value of t[z].

For each read, we check if the index of the read is equal to y (respectively, z) and return b (respectively, c) if this is the case. If the index is equal to both y and z, it is sound to return either b or c; we chose to return b. For each write, we test if the index is equal to y, in which case we write to b, and equal to z, in which case we write to c. If it is equal to both y and z, we write to both b and c.

Listing 11: Array reversal, transformed c o n t e n t s a , b , c ; i n t x , y , z , i =0 , j =n-1; i f (y == x) b = a ; i f (z == x) c = a ; while (i < j) { c o n t e n t s tmp1 , tmp2 ; i f (i == y) tmp1 = b ; e l s e i f (i == z) tmp1 = c ; i f (j == y) tmp2 = b ; e l s e i f (j == z) tmp2 = c ; i f (i == y) b = tmp2 ; i f (i == z) c = tmp2 ; i f (j == y) b = tmp1 ; i f (j == z) c = tmp1 ; i ++; j --; } Flata Flata takes 480 s7 to process this program, and outputs an inputoutput relation φ in disjunctive normal form with 292 disjuncts (not reprinted). The output formula is very complicated, with explicit enumeration of many particular cases; the reason for the slowness and the size of the output formula seems to be that Flata explicitly enumerates many cases up to saturation, with no attempt at intermediate simplifications. We shall now explain what this formula entails.

Let U be 0 ≤ x, y, z < n ∧ y

+ z = n -1. Let U < be U ∧ y < z ∧ z = x ∧ y + z = n -1, then φ ∧ U < is equivalent to a = b ∧ U < .
This means that under the precondition U < , Prog. 11 has exact postcondition a = b. By universal quantification, this means that ∀x, y, z.U < → t[x] = t ′ [y], where t is the input array to Prog. 10 and t ′ the output. This formula may be simplified into ∀x.0

≤ x ∧ 2x ≤ n -2 → t[x] = t ′ [n -1 -x];
We can obtain similar formulas for the cases y > z and y = z. The three cases can can be summarized into

∀x.0 ≤ x < n → t[x] = t ′ [n -1 -x] (10)
Flata, focused The above execution time and the complexity of the resulting formula seem excessive, if all that matters is when (x = y ∨x = z)∧y +z = n-1. Indeed, some easy static analysis (by Flata or another tool) shows that the array accesses within the loop are done at indices i and j that satisfy 0 ≤ i ≤ j < n and i + j = n -1. Such a pre-analysis suggests to target the main analysis to two positions t[y] and t[z] in the current array, satisfying 0 ≤ y ≤ z < n and y + z = n -1. The only positions a[x] that matter in the original array are those that can be read precisely, that is, x = y and x = z. We therefore re-run the analysis with precondition U : (0 ≤ y ≤ z < n ∧ y + z = n -1 ∧ x = y). Flata runs for 6 s and outputs a formula with 8 disjuncts, with a = c in all disjuncts. We thus have proved that ∀x, y, z.U

→ t[x] = t ′ [z], which can be simplified into ∀z.2z ≥ n -1 ∧ z < n → t ′ [z] = t[n -1 -z].
We may also run with the precondition, (0 ≤ y ≤ z < n∧y+z = n-1∧x = z) and get the remainder of the cases to conclude as in Formula 10.

To summarize, when the exact analysis of the transformed program (that is, an exact analysis in the back-end) is too costly, one may choose to focus the analysis by restricting the range of the indices (x, y, z, . . .) to some area U considered to be "meaningful", for instance obtained by pre-analysis of the relationships between the indices of the array accesses in the program. This is sound, since the quantification in the resulting formula is over the indices satisfying U . Thus, a bad choice for U may only result in a sound, but uninteresting invariant (the worst case is to take an unsatisfiable U : we then obtain a formula talking about an empty set of positions in the arrays, thus a tautology).

ConcurInterproc, focused Interproc 8 applies classical abstract interpretation (Kleene iteration accelerated with widenings, with possible narrowing iterations) over a variety of numerical abstract domains provided by the Apron [30] library 9 (intervals, "octagons" [START_REF] Miné | The octagon abstract domain[END_REF], convex polyhedra [START_REF] Halbwachs | Détermination automatique de relations linéaires vérifiées par les variables d'un programme[END_REF][START_REF] Cousot | Automatic Discovery of Linear Restraints Among Variables of a Program[END_REF]. . .).

ConcurInterproc 10 extends it to concurrency (which we will not use here) and partitioning of the state space according to enumerated types, including Booleans. In a nutshell, while Interproc assigns a single abstract element (product of intervals, octagon, polyhedron) to each program location, ConcurInterproc attaches 2 n abstract elements, where n is the number of Booleans (or,more generally, one per concrete instantiation of the enumerated variables). In order to achieve this at reasonable cost, the BDDApron library uses a compact representation, where identical abstract elements are shared and the associated set of concrete instantiations is represented by a binary decision diagram.

Program 11 contains no Boolean variable (or of any other enumerated type), thus directly applying ConcurInterproc over it will yield one convex polyhedron at the end; yet we need to express a disjunction of such polyhedra (e.g. there is the case where x = y, and the case where x = y, which may be subdivided into x < y and y < z). Furthermore, inside the loop one would have to distinguish i < y, i = y, i > y. This is where, in other analysis of array properties by abstract interpretation [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF][START_REF] Halbwachs | Discovering properties about arrays in simple programs[END_REF][START_REF] Péron | Contributions to the Static Analysis of Programs Handling Arrays[END_REF][START_REF] Perrelle | Analyse statique de programmes manipulant des tableaux[END_REF][START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF] one introduces "slices" or "segments" of programs, often according to syntactic criteria. In our case, we wish to distinguish certain locations in the array (or combinations of several locations, as here with three indices x, y, z) according to more semantic criteria.

Our solution is to introduce observer variables, which are written to but never read and whose final value is discarded, but which will guide the analysis and the partitioning performed. Here, we choose to have one flag variable per access, initially set to "false", and set to "true" when the access has taken place. As previously, we use a precondition y + z = n -1 ∧ x = z.

Listing 12: Array reversal, transformed and instrumented c o n t e n t s a , b , c ; i n t x , y , z ; bool y0 , z0 , y1 , z1 , y2 , z2 , y3 , z3 , y4 , z4 ; x0=y0=y1=z1=y2=z2=y3=z3=y4=z4= f a l s e ; i n t i =0 , j =n-1; assume (y+z == n-1) ; assume (x==z) ; i f (y == x) { b = a ; y0 = t r u e ; } i f (z == x) { c = a ; z0 = t r u e ; } while (i < j) { c o n t e n t s tmp1 , tmp2 ; i f (i == y) {tmp1 = b ; y1 = t r u e ; } e l s e i f (i == z) {tmp1 = c ; z1 = t r u e ; } i f (j == y) {tmp2 = b ; y2 = t r u e ; } e l s e i f (j == z) {tmp2 = c ; z2 = t r u e ; } i f (i == y) {b = tmp2 ; y3 = t r u e ; } i f (i == z) {c = tmp2 ; z3 = t r u e ; } i f (j == y) {b = tmp1 ; y4 = t r u e ; } i f (j == z) {c = tmp1 ; z4 = t r u e ; } 8 http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/ 9 http://apron.cri.ensmp.fr/library/ 10 http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi i ++; j --; } ConcurInterproc, within 0.16 s, concludes that a = b.

Dutch national flag

Quicksort is a divide-and-conquer sorting algorithm: pick a pivot, swap array cells until the array is divided into two areas: elements less than the pivot, and elements greater than or equal to it; then recurse in both areas. An improvement, in case many elements may be identical, is to swap the array into three areas: elements less than the pivot, equal to it, and greater than it, and recurse in the "less" and "greater" areas. This three-way partition is equivalent to the "Dutch national flag problem" [19, ch. 14], of swapping pebbles of colors red, white and blue (corresponding to "less", "equal" and "greater") into three segments.

Listing 13: Dutch flag 11 void t h r e e W a y P a r t i t i o n (i n t data [] , i n t s i z e , i n t low , i n t high)

{ i n t p = -1, q = s i z e ; f o r (i n t i = 0 ; i < q ;) { i f (data [i] < low) {swap(& data [i] , &data [++p]) ; ++ i ; } e l s e i f (data [i]>=high) {swap(& data [i] , &data[--q])
; } e l s e ++ i ; }}

We transform this program with two indices 0 ≤ x < y < n (remark that this is valid only if n ≥ 2) with associated values datax and datay , and instrument it with Boolean observer variables: for each read or write access to an index i, we keep a Boolean recording the value of predicate x ≤ i and one for x ≥ i (respectively for y). The values in the array are encoded as pebble colors LOW, MIDDLE, HIGH.

ConcurInterproc computes a postcondition within 1 min. The resulting formula φ has 52 cases; we will not print it here. We check that φ ∧ x ≤ p → datax = BLUE, meaning that finally, ∀x.0 ≤ x ≤ p → t[x] = BLUE Similarly, φ ∧ y ≥ q → datay = RED, thus ∀y.q ≤ y < n → t[y] = RED. We would expect as well that ∀x.p < x < q → t[x] = WHITE. Yet, this does not immediately follow from φ: φ ∧ p < y < q ∧ datay = RED is satisfiable! Could there be red cells in the supposedly white area?

Note that φ, for fixed values of n, p, q, encodes quadruples (x, datax , y, datay), which encompass all possible values of (x, t[x], y, t[y]) for x < y. In particular, for t[y] = RED to be possible for given n, p, q, one must have suitable t[x] for all x < y, such that (x, t[x], y, RED) satisfies φ for the same n, p, q. In other words, to have a cell t[y] = RED one must be able to find values t[x] for all cells to the left of it. We check that, indeed, p < y < q∧datay = WHITE∧(∀x.0 ≤ x < y → φ) is unsatisfiable, 12 meaning that ∀y.(p < y < q ∧ y > 0) → t[y] = WHITE. Furthermore, φ ∧ x = 0 ∧ x < q ∧ datax = WHITE has no solution. We can thus conclude ∀y.p < y < q → t[y] = WHITE.

Thus, we encountered a case of "spurious" solutions in the abstract element, due to the fact that the abstraction is not onto and that certain abstract elements can be reduced to a smaller element with the same concretization; which was achieved through quantification (see subsection 3.3). This reduction can thus be performed through some form of quantifier elimination.

Related work

Acceleration For certain classes of loops, it is possible to compute exactly the transitive closure τ + of the relation τ encoding the semantics of the loop, within a decidable class. Acceleration for arrays has been studied by Bozga et al. [START_REF] Bozga | Automatic Verification of Integer Array Programs[END_REF], who obtain the transitive closure in the form of a counter automaton. The translation from counter automaton to array properties expressed in first-order logic then requires an abstraction step, resulting in a loss of precision. Alberti et al. [START_REF] Alberti | Definability of Accelerated Relations in a Theory of Arrays and Its Applications[END_REF][START_REF] Alberti | Decision Procedures for Flat Array Properties[END_REF] proposed a template-based solution. Certain classes of τ 's admit a definable acceleration in Presburger arithmetic augmented with free function symbols, at the price of nested quantifiers. The ∃ * ∀ * fragment of this theory is undecidable [START_REF] Halpern | Presburger arithmetic with unary predicates is Π 1 1 complete[END_REF]; thus again abstraction is needed to apply this technique in practice. Yet, there are cases where exact acceleration is possible [START_REF] Alberti | Decision Procedures for Flat Array Properties[END_REF]. Contrary to these approaches, i) ours does not put restrictions on the shape of the loop (and the program in general) ii) we perform the tunable abstraction first, with the rest of the analysis being delegated to a back-end (which can possibly use exact acceleration on scalar programs [START_REF] Bozga | Fast Acceleration of Ultimately Periodic Relations[END_REF]).

Abstract interpretation Various array abstractions [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF][START_REF] Halbwachs | Discovering properties about arrays in simple programs[END_REF][START_REF] Péron | Contributions to the Static Analysis of Programs Handling Arrays[END_REF][START_REF] Perrelle | Analyse statique de programmes manipulant des tableaux[END_REF][START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF] distinguish slices or segments, whose contents is then abstracted by another abstract domain. Depending on the approach, relationships between several slices may or may not be expressed, and the partitioning may be syntactic or based on some pre-analysis. To our best knowledge, none of these approaches work on multidimensional arrays or on maps, contrary to ours. One major difference between these approaches and ours is that ours separates the analysis, both in theory and implementation, into an abstraction that maps array programs to scalar programs and an analysis for the scalar programs, while theirs are more "monolithic". Even though they are parametric in abstract domains for values and possibly indexes, they must be used inside an abstract interpreter based on Kleene iterations with widening. In contrast, ours can use any back-end analysis for scalar programs, including exact acceleration, abstract interpretation with Kleene iterations, policy iteration, and even, if a target property is supplied, predicate abstraction (see CEGAR below).

Cox et al. [START_REF] Cox | Automatic Analysis of Open Objects in Dynamic Language Programs[END_REF] do not target array programs per se, but programs in highly dynamic object-oriented languages such as Javascript, where an object is a map from fields to values and the set of possible field names is not fixed. Dillig et al. [START_REF] Dillig | Fluid Updates: Beyond Strong vs. Weak Updates[END_REF] overcome the dichotomy of strong vs weak updates with liquid updates. Their approach is monolithic and cannot express properties such as sortedness.

Predicate abstraction and CEGAR Predicate abstraction starts from the control structure of a program and incrementally refines it by splitting control states according to predicates chosen by the user [START_REF] Flanagan | Predicate abstraction for software verification[END_REF] or, commonly, obtained by counterexample-guided abstraction refinement (CEGAR). From an abstract counterexample trace not corresponding to a concrete counterexample, they refine the model using local predicates constituting a step-by-step proof that this abstract trace does not match any concrete trace. The hope is that this proof generalizes to more counterexample traces and that the predicates eventually converge to define an inductive invariant. The predicates are obtained from Craig interpolants [START_REF] Kenneth | Applications of Craig Interpolation to Model Checking[END_REF][START_REF] Mcmillan | Lazy Abstraction with Interpolants[END_REF][START_REF] Mcmillan | Interpolants from Z3 proofs[END_REF] extracted from the proof of unsatisfiability produced by a satisfiability modulo theory (SMT) solver. The difficulty here is to generate Craig interpolants that tend to generalize to inductive invariants, on quantified formulas involving arrays [START_REF] Kenneth | Quantified Invariant Generation Using an Interpolating Saturation Prover[END_REF]. We are interested in predicates such as ∀0 ≤ k < i, t[k] = 0, which generalizes to an inductive invariant on Program 1, as opposed to, say, t[0] = 0 ∧ t[1] = 0, which is equivalent for i = 2 but does not generalize to arbitrary i. In order to achieve practical scalability, some work restrict themselves to the inference of array predicates to certain forms, e.g. range predicates [START_REF] Jhala | Array Abstractions from Proofs[END_REF]. Others tune the interpolating procedure towards the generation of better interpolants [START_REF] Alberti | An extension of lazy abstraction with interpolation for programs with arrays[END_REF][START_REF] Alberti | Polyhedra to the rescue of array interpolants[END_REF]. A major difference between our approach and those based on CEGAR is that we do not require a "target" property to prove, which is necessary for having counterexamples, though we can use one if needed. If such a property is provided, our approach can use as a back-end a CEGAR system limited to scalar variables.

Theorem proving and SMT-based approaches

The generation of invariants for programs with arrays has been also studied using automated theorem proving [START_REF] Hoder | Invariant Generation in Vampire[END_REF][START_REF] Hoder | Interpolation and Symbol Elimination in Vampire[END_REF]; this approach is generally limited by the fact that theory reasoning (e.g. arithmetic) and superposition-based deductive reasoning (on which the Vampire first-order theorem prover is based [START_REF] Kovács | First-Order Theorem Proving and Vampire[END_REF]) are not yet efficiently integrated. As opposed to [START_REF] Bjørner | On Solving Universally Quantified Horn Clauses[END_REF], we do not rely on quantifier-instantiation procedures.

Quantification Flanagan et al. [START_REF] Flanagan | Predicate abstraction for software verification[END_REF] also use Skolem constants that they quantify universally after analysis steps. As opposed to us, they require the user to specify the predicates on which the program will be abstracted.

Abstraction of sets of maps Our approach generalizes a classical abstraction of sets of maps [15, §2.1]. Jeannet et al. [START_REF] Jeannet | A Relational Abstraction for Functions[END_REF] considered the problem of abstracting sets of functions of signature D 1 → D 2 , assuming a finite abstract domain A 1 of cardinality n abstracting subsets of D 1 and an abstract domain A 2 abstracting subsets of D n 2 . In contrast, we do not make any cardinality assumption.

Partitioning Rival et al. [START_REF] Rival | The trace partitioning abstract domain[END_REF] introduced partitioning according to an abstraction of the history of the computation. Our approach using observer variables for using ConcurInterproc (subsection 5.4) is akin to considering a finite abstraction of the trace of read/writes into a given array.

Conclusion and Future Work

We have shown that a number of properties of array programs can be proved by abstracting the array a using a few symbolic cells a[x], a[y], . . . by automatically translating the program into a scalar program, running a static analyzer over the scalar program and translating back the invariant for the original program. In some cases, a form of quantifier elimination is used over the resulting formulas.

Our approach is not specific to arrays, and can be applied to any map structure X → Y (e.g. hash tables and other container classes). A possible future extension is multiset properties, a multiset being map X → N.

The main weakness of our approach is the need for a rather precise backend analysis (for the scalar program obtained by translation). Our experiments highlighted some inefficiencies in e.g. Flata and ConcurInterproc: in the former, many paths can be enumerated and complicated formulas generated even though a much simpler equivalent form exists; in the latter, polyhedra that are only slightly different (say, one constraint is different) are handled wholly separately. This gives immediate directions for research for improving exact acceleration, as in Flata, or disjunctions of polyhedra, as in ConcurInterproc. Another difficulty, if using ConcurInterproc or other tools focusing on convex sets of integer vectors, is the need to use observer variables and/or an auxiliary pre-analysis to "focus" the main analysis.

We stress again that we obtained our results using unmodified versions of very different back-end analyzers (ConcurInterproc, Flata, CPAChecker), which testifies to the flexibility of our approach. Performance and precision improvements can be expected by modifying the back-end analyzers (e.g. precision could be improved by performing reduction steps during the analysis, rather than after the computation of the invariants).

Listing 3 :Lemma 1 .

 31 Read from array r = random () ; i f (i ==a) { r =b ; } The forward and backward semantics of Program 3 abstract the forward and backwards semantics of r=f[i]

Listing 4 :Lemma 2 . 1)

 421 Write to array i f (i ==a) { b= r ; } The forward and backward semantics of Program 4 abstract the forward and backwards semantics of f [i]=r ; by the (α S 1 , γ S Galois connection. The same carries over to writing to an array with several indices, abstracted as: Listing 5: Write to array, multiple indexes i f (i ==a1) { b1= r ; } i f (i ==a2) { b2= r ; } . . . Operations on scalars Consider a program state composed of (s, f) where f ∈ A → B is an array and s ∈ S is the rest of the state. Consider a scalar instruction s P -→ s ′ and thus (s, f) P ♭

 the projection of the state to the scalar variables.This completeness results extends to universally quantified array properties ∀i 1 , . . . P (i 1 , . . .) → Q(a 1 [i 1], . . .): one appends to the original program (assuming i 1 , . . . , i n are fresh, nondeterministically initialized): assume ((P (i1, . . .)) ; a s s e r t (Q(i1, . . .)) ; 5 More examples 5.1 Matrix initialization Listing 7: Initialization of m × n matrix a with value v void a r r a y i

Listing 9 :

 9 Copy array a into array b void a r r a y c o p y (i n t n , i n t a [n] , i n t b [n]) { f o r (i n t i = 0 ; i <n ; i ++) b [i] = a [i] ; } Take a single cell a[x] in a and a single cell b[y] in b; after transformation: i n t n , a , b , x , y , tmp ; assume (0 <= x && x < n && 0 <= y && y < n) ; f o r (i n t i = 0 ; i <n ; i ++) { i f (x== i) tmp=a ; i f (y== i) b=tmp ; }

 this is equivalent to x = y → a = b. Thus by quantification, ∀x, y.x = y → a[x] = b[y], simplifiable into ∀x.a[x] = b[x]. Software model checking Many software model checkers, including CPAChecker 5 , do not handle universally quantified array properties; yet we can use them as back-end analyses! We translate the target property (here ∀x.0 ≤ x < n → a[x] = b[x]) into a precondition x = y and an assertion on the postcondition a = b. CPAChecker then proves the property. 6

 • • • × {1, . . . , l D }, and the values f [a] also lie in Z. Consider a formula ψ of the form ∀a 1 , . . . , a d φ(s 1 , . . . , s m , a 1 , . . . , a d , f [a 1 , . . . , a d]) , . . . , s m), (a 1 , . . . , a d), b) | φ(s 1 , , . . . , , s m , a 1 , , . . . , , a d , b)}. The sets of program states expressible by formulas of form 4 thus map through the Galois connection to a sub-lattice of P

	(4)
	where φ is a first-order arithmetic formula (say, Presburger).
	Then, f |= ψ if and only if α S 1 (f) ⊆ {((s 1

This abstraction can express properties of the form

	∀a1, . . . , a d , a ′ 1 , . . . , a ′ d φ(s1, . . . , sm, a1, . . . , a d , f [a1, . . . , a d], a ′ 1 , . . . , a ′ d , g[a ′ 1 , . . . , a ′ d])

Possible since Astrée targets safety-critical embedded systems where array sizes are typically fixed at system design and dynamic memory allocation is prohibited.

We have left out, for the sake of brevity, tests for array accesses out of bounds.

We implemented a simplification algorithm for quantifier-free Presburger arithmetic inspired by[START_REF] Monniaux | A Quantifier Elimination Algorithm for Linear Real Arithmetic[END_REF] so as to understand the output of Flata and ConcurInterproc.

http://cpachecker.sosy-lab.org/

scripts/cpa.sh -predicateAnalysis after preprocessing with assert.h

All timings using one core of a 2.4 GHz Intel Core TM i3 running 32-bit Linux.

From Presburger arithmetic, a decidable theory.

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 "STATOR"

† This work has been carried out while the author was affiliated to the Università della Svizzera Italiana and supported by the Swiss National Science Foundation under grant no. P1TIP2 152261.

1 [17,7,8] http://www.astree.ens.fr http://absint.de/astree/ 1

A Proofs

Lemma 1. The forward and backward semantics of Program 3 abstract the forward and backwards semantics of r=f [i]; by the (α S 1 , γ S 1) Galois connection.

Proof. Consider an abstraction x ♮ ⊆ S × B × A × (A × B) of (s, r, i, f): ∀a ∈ A (s, r, i, a, f [a]) ∈ x ♮ . The image of the set x ♮ by that program is

then there is no such (s, r, i, f), thus any such (s, r, i, f) ∈ γ(z ♮)Th • either r ′ = f (i), then any (s, r, i, f) fits; let us now prove (s, r, i, f

Lemma 2. The forward and backward semantics of Program 4 abstract the forward and backwards semantics of

The pre-image of the set x ♮ by that program is

Theorem 1. Consider a loop-free array program P with arrays a 1 , . . . , a d such that the number of accesses to these arrays are respectively α 1 , . . . , α d . By abstracting these arrays with, respectively, n 1 , . . . , n d indices such that n i ≥ α i for all i, we obtain a Galois connection ---→ ← ---

where π S is the projection of the state to the scalar variables.

Proof. Consider an execution trace T in P , and record the indices ξ i,j of the j-th (numbered syntactically) access to the i-th array. Consider now the program P ′ obtained by abstracting P according to α i indices for each array a i , i.e. each read r := a i [e] is transformed into r = random () ; i f (e==xi,1) { assume (r ==bi,1) ; } i f (e==xi,2) { assume (r ==bi,2) ; } . . . and each write a i [e] := w as i f (e==xi,1) { bi,1 = w ; } i f (e==xi,2) { bi,2 = w ; } . . . Now replay T in P ′ , with the same initial values, the same external and nondeterministic choices, and x i,j = ξ i,j . Then, for any array access in the execution of P ′ , at least one of the tests is taken (the program does not fall into the case where none of the selected indices match the index for the read/write instruction). In the case of a read r := a i [e], the value read in P ′ is then the same as the one read in P . Then, the execution of P ′ faithfully mimics that of P . The final values for the execution of T in P ′ are thus the same as those in P , which proves the statement.