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Abstract

We present an approach for the static analysis of programs handling
arrays, with a Galois connection between the semantics of the array pro-
gram and semantics of purely scalar operations. The simplest way to
implement it is by automatic, syntactic transformation of the array pro-
gram into a scalar program followed analysis of the scalar program with
any static analysis technique (abstract interpretation, acceleration, predi-
cate abstraction,. . . ). The scalars invariants thus obtained are translated
back onto the original program as universally quantified array invariants.
We illustrate our approach on a variety of examples, leading to the “Dutch
flag” algorithm.

1 Introduction

Static analysis aims at automatically discovering program properties. Tradi-
tionally, it has focused on dataflow properties (e.g. “can this pointer be null?”),
then on numerical properties (e.g. “2x+y ≤ 45 at every iteration of this loop”).
When it comes to programs operating over arrays, special challenges arise. For
instance, the Astrée static analyzer,1 based on abstract interpretation and
commercially used in the avionics, automotive and other industries, supports
arrays simplistically: it either “smashes” all cells in a single array into a single
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abstract value, or expands an array of n cells into n variables; in many cases it
is necessary to fully unroll loops operating over an array in order to prove the
desired property2.

In general, however, analyzing arrays programs entails exhibiting inductive
loop invariants with universal quantification over array indices. Neither smash-
ing nor expansioncan prove, in general, that a simple initialization loop truly
does work:

Listing 1: Simple array initialization

i n t t [ n ] ; fo r ( i n t i =0; i<n ; i ++) t [ i ] = 0 ;

To derive the postcondition ∀k.0 ≤ k < n→ t[k] = 0, one uses the loop invariant
(in the Floyd-Hoare sense) 0 ≤ i ≤ n ∧ ∀k.0 ≤ k < i→ t[k] = 0. The 0 ≤ i ≤ n
part (or generalizations, e.g., filling the upper triangular part of a matrix) can
be automatically inferred by many existing numeric analysis techniques. In
contrast, the ∀k.0 ≤ k < i → t[k] = 0 part is trickier and is the focus of this
article.

Contribution We propose a generic method for analyzing array programs,
which can be implemented i) as a normal abstract domain ii) or by translat-
ing the program with arrays into a scalar program (a program without arrays),
analyzing this program by any method producing invariants (back-end), and
then recovering the array properties. Its precision depends on the back-end
analysis. Our method has tunable precision and is formalized by Galois connec-
tions [14] and, contrary to most others, is not guided by a target property (here
∀k.0 ≤ k < n → t[k] = 0), though it can take advantage of it. It can therefore
be used to supply information to the end-user “what does this program do?” as
opposed to be useful only for proving properties. We demonstrate the flexibil-
ity of our approach on examples, using the acceleration procedure Flata, the
abstract interpreter ConcurInterproc and CPAChecker as back-ends.

We also show a form of completeness : for any loop-free program, the preci-
sion of the analysis can be chosen so that it is exact with respect to universally
quantified array properties (§4.3).

Our approach also applies to general maps keys → values , though certain
optimizations apply only to totally ordered index types.

Contents Section 2 introduces our approach on one example. Section 3 dis-
cusses the Galois connections, and section 4 gives the formal definition of our
transformation algorithm and associated correctness and partial completeness
proofs. Section 5 discusses the use of various backends on more examples. We
finish with related work and conclusion.

2Possible since Astrée targets safety-critical embedded systems where array sizes are typ-
ically fixed at system design and dynamic memory allocation is prohibited.
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2 Example: the Sentinel

Our program transformation consists in i) a replacement of reads and writes
parameterized by a number of distinguished indices, formalized in section 4
ii) optionally, some “focusing” on a subset of index values iii) for certain back-
ends (ConcurInterproc), the addition of observer variables implementing a
form of partitioning.

Listing 2: A “sentinel value” marks the penultimate array cell

const i n t N=1000; i n t i = 0 , t [N] ;
i n i t i a l i z e (N, t ) ; t [N−2] = −1;
while ( t [ i ]>=0) i ++;

Obviously to us humans, this program cannot crash with an array access out of
bounds, and the final value of i is, at most, 998 (its value depends on how the
“ initialize ” procedure works). How can we obtain this result automatically?

Let x be a symbolic constant in {0, . . . , N − 1}. We abstract array t by
the single cell t [x], represented by variable tx: reads and writes at position x

in t translates to reads and writes to variable tx and reads and writes at other
positions are ignored. Program 2 is thus abstracted as:3

const i n t N=1000 , x = random ( ) ; assume ( x >= 0 && x < N) ;
i n t i = 0 , tx = random ( ) ; i f (N−2 == x ) tx =−1;
while ( 1 ) { i n t read = random ( ) ; i f ( i == x ) { read = tx ; }

i f ( read < 0) { break ; } i = i +1; }

Flata [9, 28] can compute an exact input/output relation of this program
(to demonstrate generality, we left N unfixed and replaced N−2 by a parameter
p; we thus use a precondition 0 ≤ x < N ∧ 0 ≤ p < N):

(p = x ∧ i ≤ x − 1 ∧ i ≥ 0 ∧N ≥ x + 1) ∨ (i = x ∧ i ≥ 0 ∧ N ≥ p + 1 ∧ i ≤ p − 1)∨

(x ≥ p + 1 ∧ i ≤ x− 1 ∧ i ≥ 0 ∧ N ≥ x + 1 ∧ p ≥ 0) ∨ (i = x ∧ i ≤ N − 1 ∧ i ≥ p + 1 ∧ p ≥ 0)∨

(i ≥ x + 1 ∧ N ≥ p + 1 ∧ i ≤ N − 1 ∧ x ≤ p − 1 ∧ x ≥ 0)∨

(i ≤ x − 1 ∧ i ≥ 0 ∧ N ≥ p + 1 ∧ x ≤ p − 1)∨

(i = x ∧ i = p ∧ i ≥ 0 ∧ i ≤ N − 1) ∨ (x ≥ p + 1 ∧ i ≥ x + 1 ∧ i ≤ N − 1 ∧ p ≥ 0) (F )

Note that our abstraction is valid whatever the value of x. This means that
(i, p,N) should be a solution of N > 0 ∧ ∀x (0 ≤ x < N ⇒ F ). One can check
that this quantified formula entails i ≤ p.

Arguably, we have done too much work: the only cell in the array whose
content matters much is at index p (N−2 in the original program). Running
Flata with x = p yields a postcondition implying i ≤ p. Again, this is sound,
because any choice of x yields a valid postcondition on (i, p).

3 Galois connections

We shall now see that, for any choice of indices, there is a Galois connection−−−→←−−−α
γ

[12] between the concrete (the set of possible values of the vector of variables of

3We have left out, for the sake of brevity, tests for array accesses out of bounds.
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the original program) and the abstract set of states (the set of possible values
of the vector of variables in the transformed program). In general, this Galois
connection is not onto: there are abstract elements x♮ that include “spurious”
states, and which may be reduced to a strictly smaller α ◦ γ(x♮).

If A and B are sets, A → B denotes the set of total functions from A to
B, and P (A) the set of parts of A. If A is finite, A → B denotes the set
of arrays indexed by A; specifically, if A is {1, . . . , l1} × · · · × {1, . . . , ld} then
A → B denotes the d-dimensional arrays of size (l1, . . . , ld). f [x] denotes the
application f(x) where f is a program array or map.

Our constructions easily generalize to arbitrary combinations of numbers of
arrays and numbers of indices; let us see a few common cases.

3.1 Single index

Applied with a single index, our map abstraction is classical [15, §2.1].

Definition Let f ∈ A → B, we abstract it by its graph α1(f) = {(a, f [a]) |
a ∈ A}; e.g., a constant array {1, . . . , n} → Z with value 42 is abstracted as
{(i, 42) | 1 ≤ i ≤ n}.

We lift α1 (while keeping the same notation) to a function from P (A→ B)
to P (A×B): for F ♭ ⊆ A→ B, α1(F

♭) =
⋃

f∈F α1(f), otherwise said

α1(F
♭) =

{

(a, f [a]) | a ∈ A, f ∈ F ♭
}

(1)

Let F ♮ ⊆ A×B. Then we define its concretization γ1(F
♮):

γ1(F
♮) =

{

f ∈ A→ B | ∀a ∈ A (a, f [a]) ∈ F ♮
}

(2)

It is easy to see that (P (A→ B) ,⊆) −−−→←−−−
α1

γ1

P (A×B) is a Galois connection.

Non-surjectivity and reduction Remark that α1 is not onto (if |A| > 1
and |B| > 0): there exist multiple F ♮ such that γ1(F

♮) = ∅, namely all those
such that ∃a ∈ A∀b ∈ B (a, b) /∈ F ♮. For instance, if considering arrays of two
integer elements (A = {0, 1}, B = Z), then F ♮ = {(1, 0)} yields γ1(F

♮) = ∅:
there is no way to fill the array at index 0.

Let us now see the practical implication. Assume that the program has a
single array in A → B and a vector of scalar variables ranging in S, then the

memory state is an element of X♭ △

= S × (A → B). The scalar variables are
combined into our abstraction as follows:

P (S × (A→ B)) ∼= S → P (A→ B) −−−−→←−−−−
αS
1

γS
1

S → P (A×B) ∼= P (S × A×B)
△

= X
♮
,

(3)

where αS
1 and γS1 lift α1 and γ1 pointwise. Let s ∈ S. While the absence of

any (s, a, b) ∈ x♮ (x♮ ∈ X♮) indicates that there is no (s, f) ∈ γS1 (x
♮), that is,

scalar state s is unreachable, the converse is not true. Consider a single integer
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scalar variable s and an array a of length 2, and x♮ = {(0, 0, 1), (1, 0, 0), (1, 1, 2)},
representing the triples (s, i, a[i]). It would seem that s = 0 is reachable, but it
is not, because there is no way to fill the array at position 1: there is no element
in x♮ of the form (0, 1, b).

A reduction is a function ρ : X♮ → X♮ such that γ ◦ρ = γ and ρ(x♮) ⊆ x♮ for
all x♮. The strongest reduction ρopt (the minimum for the pointwise ordering
induced by ⊆) is α ◦ γ. In the above, ρopt(x

♮) = {(1, 0, 0), (1, 1, 2)}; intuitively,
the strongest reduction discards all superfluous elements from the abstract value.

Class of formulas Assume now that the vector of scalar variables s1, . . . , sm
lies within S = Z

m, the index a lies in {1, . . . , l1} × · · · × {1, . . . , lD}, and the
values f [a] also lie in Z. Consider a formula ψ of the form

∀a1, . . . , ad φ(s1, . . . , sm, a1, . . . , ad, f [a1, . . . , ad]) (4)

where φ is a first-order arithmetic formula (say, Presburger).
Then, f |= ψ if and only if αS

1 (f) ⊆ {((s1, . . . , sm), (a1, . . . , ad), b) | φ(s1, ,
. . . , , sm, a1, , . . . , , ad, b)}. The sets of program states expressible by formulas of
form 4 thus map through the Galois connection to a sub-lattice of P

(

Z
m × Z

d × Z
)

.
This construction may be generalized to any theory or combination of theories
over the sorts used for scalar variables, array indices, and array contents.

Checking that an invariant γS1 (G) entails ψ, when the set G is defined by a
formula Γ, just amounts to checking that Γ ∧ ¬ψ is unsatisfiable.

3.2 Several indices, one per array

The above settings can be extended to several arrays. Let f, g ∈ A → B, we
abstract them by the product of their graphs α1(f, g) = {(a, f [a], a′, g[a′]) |
a, a′ ∈ A}, γ1(x

♮) = {(f, g) ∈ (A → B)2 | ∀a, a′ ∈ A (a, f [a], a′, g[a′]) ∈ x♮}.
This abstraction can express properties of the form

∀a1, . . . , ad, a
′
1, . . . , a

′
d φ(s1, . . . , sm, a1, . . . , ad, f [a1, . . . , ad], a

′
1, . . . , a

′
d, g[a

′
1, . . . , a

′
d])

As an example, the property that up to index k, monodimensional array f of
length n has been copied into array g can be expressed as ∀a, a′ ∈ {1, . . . , n} a <
k ∧ a = a′ ⇒ f [a] = g[a′] within that class.

3.3 Dual indices, same array

Definition Let f ∈ A → B, pose α2(f) = {(a, f [a], a′, f [a′]) | a, a′ ∈ A} and
lift it to a function from P (A→ B) to P

(

(A×B)2
)

. Let F ♮ ⊆ (A×B)2. Then
we define its concretization γ2(F

♮):

γ2(F
♮) =

{

f ∈ A→ B | ∀a, a′ ∈ A (a, f [a], a′, f [a′]) ∈ F ♮
}

(5)

It is easy to see that (P (A→ B) ,⊆) −−−→←−−−
α2

γ2

P (A×B) is a Galois connection.

If A is totally ordered, it seems a waste to include both (a, f [a], a′, f [a′])
and (a′, f [a′], a, f [a]) in the abstraction for a < a′. We thus define α2<(f) =
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{(a, f [a], a′, f [a′]) | a < a′ ∈ A} and γ2<(x♮) = {f ∈ A → B | ∀a, a′ ∈ A , a <
a′ ⇒ (a, f [a], a′, f [a′]) ∈ x♮}.

Non-surjectivity Remark, again, that α2 is not onto. Consider an array of
integers of length 3, that is, a function f : {1, 2, 3} → Z. An analysis computes
its abstraction as x♮ = {(1, 0, 2, 0), (1, 0, 3, 0), (2, 0, 3, 0), (1, 0, 3, 1)}; recall that
each element of that set purports to denote (a, f [a], a′, f [a′]) for a < a′. At first
sight, it seems that f(3) = 1 is possible, as witnessed by the last element. Yet,
there is then no way to fill a[2]: there is no x such that (2, x, 3, 1) ∈ x♮. This
last element is therefore superfluous, and we can conclude that ∀x f [x] = 0.
(See § 5.5 for a real-life example.)

If x♮ is defined by a first-order formula (x♮ = {(a, b, a′, b′) | φ(a, b, a′, b′)}),
then this reduction (removing all a′, b′ such that for some a < a′ there is no way
to fill f [a]) is obtained as: ∀a∃b a < a′ ⇒ φ(a, b, a′, b′).

Class of formulas Assume now that the vector of scalar variables s1, . . . , sm
lies within S = Z

m, the indices a < a′ lie in {1, . . . , n}, and the values f [a], f [a′]
also lie in Z. Consider a formula ψ of the form ∀a, a′ a < a′ ⇒ φ(s1, . . . , sm, a,
f [a], a′, f [a′]) where φ is a first-order arithmetic formula (say, Presburger). For
instance, one may express sortedness : ∀a, a′ a < a′ ⇒ f [a] ≤ f [a′].

Then, f |= ψ if and only if αS
2<(f) ∈ {((s1, . . . , sm), a, b, a′, b′) | φ(s1, . . . ,

sm, a, b, a
′, b′)}. The sets of program states expressible by formulas of the form

∀a, a′ a < a′ ⇒ φ(s1, . . . , sm, a, f [a], a
′, f [a′]) thus map through the Galois

connection to a sub-lattice of P
(

Z
m × (Z× Z)2

)

.

4 Abstraction of program semantics

Our analysis may be implemented by a syntactic transformation of array oper-
ations into purely scalar operations. In this section, for each operation (read,
write) we describe the transformed operation and demonstrate the correctness
of the transformation. We then discuss precision.

Without loss of generality, we consider only elementary reads and writes (r=

f[ i ]; and f [ i]=r; with i a variable). More complex constructs, e.g. f [e]=r; with
e an expression, can always be decomposed into a sequence of scalar operations
and elementary read and writes, using temporary variables.

4.1 Transformation and Correctness

Reading from the array Consider a program state composed of (s, r, i, f)
where r ∈ B, i ∈ A are scalars, s ∈ S is the rest of the state, and f ∈ A→ B.
Consider the instruction r=f[ i ]; , its semantics is:

(s, r, i, f)
r=f[ i ];
−−−−−→ (s, f(i), i, f) (6)

We wish to abstract it by the program fragment:

6



Listing 3: Read from array

r = random ( ) ; i f ( i ==a ) { r=b ; }

Lemma 1. The forward and backward semantics of Program 3 abstract the
forward and backwards semantics of r=f[ i ]; by the (αS

1 , γ
S
1 ) Galois connection.

More generally, a read with several indexes a1, a2, . . . is abstracted by

r=random ( ) ; i f ( i ==a1 ) assume ( r==b1 ) ; i f ( i ==a2 ) assume ( r==b2 ) ; . . .

The same lemma and proof carry to that setting.

Writing to the array Consider the instruction f [ i]=r; , its semantics is:

(s, r, i, f)
f [ i]=r ;
−−−−−→ (s, r, i, f [i 7→ r]) (7)

We wish to abstract it by the program fragment:

Listing 4: Write to array

i f ( i ==a ) { b=r ; }

Lemma 2. The forward and backward semantics of Program 4 abstract the
forward and backwards semantics of f [ i]=r ; by the (αS

1 , γ
S
1 ) Galois connection.

The same carries over to writing to an array with several indices, abstracted as:

Listing 5: Write to array, multiple indexes

i f ( i ==a1 ) { b1=r ; } i f ( i ==a2 ) { b2=r ; } . . .

Operations on scalars Consider a program state composed of (s, f) where
f ∈ A → B is an array and s ∈ S is the rest of the state. Consider a

scalar instruction s
P
−→ s′ and thus (s, f)

P ♭

−−→ (s′, f). We abstract P as:

(s, a, b)
P ♮

−−→ (s′, a, b) if s → Ps′. Essentially, operations on scalars are ab-
stracted by themselves. The following result generalizes immediately to (α2, γ2)
etc.

Lemma 3. The forward and backward semantics of
P ♮

−−→ abstract those of
P ♭

−−→
by the (αS

1 , γ
S
1 ) Galois connection.

4.2 Precision loss

“Forgetting” the value of a scalar variable v corresponds to (s, v, f) → (s, f).
This scalar operation may be correctly abstracted, as in Lemma 3, by (s, v, a, b)→
(s, a, b). Surprisingly, applying this operation not only forgets the value of v, it
may also enlarge the set of represented f .

Example: x♮ = {(0, v, a, v) | a ∈ A ∧ v ∈ B} abstracts by (αS
1 , γ

S
1 ) the set of

triples (0, v, f) where f is a constant function of value v. Forgetting v yields the
set of pairs (0, f) where f is a constant function. Applying (s, v, a, b)→ (s, a, b)
to x♮ yields y♮ = {(0, a, v) | A ∈ A ∧ v ∈ B}, which concretizes to the set
{(0, f) | f ∈ A→ B}. We have completely lost the “constantness” property.
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4.3 Relative completeness

We now consider the problem of completeness of this abstraction, assuming that
the back-end analysis is perfectly precise (thus relative completeness).

Our analysis is incomplete in general. Consider the following program:

Listing 6: Fill with zero, test zero

i n t t [N] ; fo r ( i n t i =0; i<N; i ++) t [ i ] = 0 ;
fo r ( i n t i =0; i<N; i ++) i f ( t [ i ] ! = 0 ) break ;

In the second loop, the break statement is never reached and thus at the end
of the loop, i = N . Yet, if we distinguish n < N different indices i1, . . . , in,
we cannot prove that this statement is never reached: for there will exist i ∈
{0, . . . , N−1}\{i1, . . . , in} such that t [ i ] returns, in the abstracted program, an
arbitrary value and thus the break statement is considered possibly reachable.

In contrast, when the program is loop-free, the abstraction is exact with
respect to the scalar variables, provided the number of indices used for the
abstraction is at least the number of array accesses:

Theorem 1. Consider a loop-free array program P with arrays a1, . . . , ad such
that the number of accesses to these arrays are respectively α1, . . . , αd. By ab-
stracting these arrays with, respectively, n1, . . . , nd indices such that ni ≥ αi for

all i, we obtain a Galois connection −−−→←−−−α
γ

such that πS ◦ γ ◦ P ♮ ◦ α = πS ◦ P ♭

where πS is the projection of the state to the scalar variables.

This completeness results extends to universally quantified array properties
∀i1, . . . P (i1, . . . ) → Q(a1[i1], . . . ): one appends to the original program (as-
suming i1, . . . , in are fresh, nondeterministically initialized):

assume ( (P (i1, . . . ) ) ; a s s e r t (Q(i1, . . . ) ) ;

5 More examples

5.1 Matrix initialization

Listing 7: Initialization of m× n matrix a with value v

void a r r a y i n i t 2 d ( i n t m, i n t n , i n t a [m] [ n ] , i n t v ) {
fo r ( i n t i = 0 ; i < m; i ++) {

fo r ( i n t j = 0 ; j < n ; j ++) a [ i ] [ j ] = v ; } }

Again, we consider cell a[x, y], where 0 ≤ x < m and 0 ≤ y < n, and
disregard all other cells. One should not convert this procedure into a single
control-flow graph, because the resulting numerical transition system does not
have the “flat” structure expected by Flata [10]. Instead, one must encode the
inner loop as a separate procedure:

8



void a r r a y i n i t 2 d ( i n t m, i n t n , i n t a , i n t v , i n t x , i n t y ) {
assume ( x >= 0 && x < m) ;
assume ( y >= 0 && y < n ) ;
fo r ( i n t i =0; i<m; i ++) inner loop ( n , a , v , x , y , i ) ; }

void inner loop ( i n t n , i n t a , i n t v , i n t x , i n t y , i n t i ) {
fo r ( i n t j =0; j<n ; j ++) i f ( x== i && y== j ) a = v ; }

Flata then computes the exact input-output relation of inner loop, and finally
the exact input-output relation of array init 2d :

(x = 0∧m = 1∧a′ = v∧y ≥ 0∧n ≥ y+1)∨(a′ = v∧x ≥ 1∧y ≥ 0∧m ≥ x+1∧n ≥ y+1)∨

(n = 1∧x = 0∧y = 0∧a′ = v∧m ≥ 2)∨(x = 0∧a′ = v∧y ≥ 0∧m ≥ 2∧n ≥ 2∧n ≥ y+1)

Each disjunct implies a′ = v, i.e., the final value of a[x, y] is v. Again, because
(x, y) are symbolic constants with no assumption except that they are valid
indices for a, this proves that all cells contain v. Assuming 0 ≤ x < m ∧ 0 ≤
y < n this formula may indeed be simplified automatically into a′ = v.4

5.2 Slice initialization
Listing 8: Initialize a[low . . . high − 1] to v

void s l i c e i n i t ( i n t n , i n t a [ n ] , i n t low , i n t high , i n t v ) {
fo r ( i n t i =low ; i<high ; i ++) a [ i ] = v ; }

Again, we transform the program using a single index:

fo r ( i n t i =low ; i<high ; i ++) i f ( x == i ) a = v ;

Flata produces as postcondition (assuming 0 ≤ x < n ∧ 0 ≤ low ≤ high ≤ n):

(high = low ∧ a
′ = a ∧ high ≥ 0 ∧ n ≥ high ∧ n ≥ x+ 1 ∧ x ≥ 0)∨

(a′ = v ∧ low ≤ x ∧ n ≥ high ∧ high ≥ x+ 1 ∧ low ≥ 0)∨

(a′ = a ∧ n ≥ high ∧ high ≥ low + 1 ∧ low ≥ x+ 1 ∧ x ≥ 0)∨

(a′ = a ∧ high ≤ x ∧ n ≥ x+ 1 ∧ high ≥ low + 1 ∧ low ≥ 0) (8)

Again, under the assumptions 0 ≤ x < n and 0 ≤ low ≤ high ≤ n, this
formula is equivalent to: ((low ≤ x < high)→ a′ = v) ∧ (¬(low ≤ x < high)→
a′ = a). Thus by quantification, the expected outcome:

(∀x ∈ [low , high) a′[x] = v) ∧ (∀x /∈ [low , high) → a′[x] = a[x]) (9)

5.3 Array copy
Listing 9: Copy array a into array b

void array copy ( i n t n , i n t a [ n ] , i n t b [ n ] ) {
fo r ( i n t i =0; i<n ; i ++) b [ i ] = a [ i ] ; }

Take a single cell a[x] in a and a single cell b[y] in b; after transformation:

4We implemented a simplification algorithm for quantifier-free Presburger arithmetic in-
spired by [38] so as to understand the output of Flata and ConcurInterproc.
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i n t n , a , b , x , y , tmp ;
assume (0 <= x && x < n && 0 <= y && y < n ) ;
fo r ( i n t i =0; i<n ; i ++) { i f ( x== i ) tmp=a ; i f ( y== i ) b=tmp ; }

Flata Flata yields: (y ≥ x + 1 ∧ n ≥ y + 2 ∧ x ≥ 0) ∨ (n = y + 1 ∧ y ≥
x + 1 ∧ x ≥ 0) ∨ (n = x + 1 ∧ y ≥ 0 ∧ y ≤ x − 1) ∨ (y ≥ 0 ∧ y ≤ x − 1 ∧ n ≥
x+2)∨ (y = x∧b′ = a∧n ≥ x+2∧x ≥ 0)∨ (y = x∧b′ = a∧n = x+1∧x ≥ 0).
Assuming 0 ≤ x < n ∧ 0 ≤ y < n, this is equivalent to x = y → a = b. Thus by
quantification, ∀x, y.x = y → a[x] = b[y], simplifiable into ∀x.a[x] = b[x].

Software model checking Many software model checkers, including CPAChecker5,
do not handle universally quantified array properties; yet we can use them as
back-end analyses! We translate the target property (here ∀x.0 ≤ x < n →
a[x] = b[x]) into a precondition x = y and an assertion on the postcondition
a = b. CPAChecker then proves the property.6

i n t main ( ) {
i n t n , a , b , x , y ;
i f (0 <= x && x < n && 0 <= y && y < n && x==y ) {

fo r ( i n t i =0; i<n ; i ++) {
i n t tmp ; i f ( x== i ) tmp=a ; i f ( y== i ) b=tmp ; }

a s s e r t ( a==b ) ; } }

5.4 In-place array reversal
Listing 10: Array reversal

void a r r a y r e v e r s e i n p l a c e ( i n t n , contents t [ n ] ) {
i n t i =0 , j =n−1;
while ( i < j ) {

contents tmp1 = t [ i ] , tmp2 = t [ j ] ;
t [ i ] = tmp2 ; t [ j ] = tmp1 ; i ++; j−−; } }

For this program, we need to distinguish the initial values in the array from
the values during the computation (which finally yield the final values). We use
three indices 0 ≤ x < n, 0 ≤ y ≤ z < n: a is the initial value of t[x], b the
current value of t[y], c the current value of t[z].

For each read, we check if the index of the read is equal to y (respectively,
z) and return b (respectively, c) if this is the case. If the index is equal to both
y and z, it is sound to return either b or c; we chose to return b. For each write,
we test if the index is equal to y, in which case we write to b, and equal to z, in
which case we write to c. If it is equal to both y and z, we write to both b and
c.

Listing 11: Array reversal, transformed

contents a , b , c ;
i n t x , y , z , i =0 , j =n−1;

5http://cpachecker.sosy-lab.org/
6scripts/cpa.sh -predicateAnalysis after preprocessing with assert.h
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i f ( y == x ) b = a ; i f ( z == x ) c = a ;
while ( i < j ) { contents tmp1 , tmp2 ;

i f ( i == y ) tmp1 = b ; else i f ( i == z ) tmp1 = c ;
i f ( j == y ) tmp2 = b ; else i f ( j == z ) tmp2 = c ;
i f ( i == y ) b = tmp2 ; i f ( i == z ) c = tmp2 ;
i f ( j == y ) b = tmp1 ; i f ( j == z ) c = tmp1 ; i ++; j−−;

}

Flata Flata takes 480 s7 to process this program, and outputs an input-
output relation φ in disjunctive normal form with 292 disjuncts (not reprinted).
The output formula is very complicated, with explicit enumeration of many
particular cases; the reason for the slowness and the size of the output formula
seems to be that Flata explicitly enumerates many cases up to saturation,
with no attempt at intermediate simplifications. We shall now explain what
this formula entails.

Let U be 0 ≤ x, y, z < n ∧ y + z = n − 1. Let U< be U ∧ y < z ∧ z =
x ∧ y + z = n − 1, then φ ∧ U< is equivalent to a = b ∧ U<. This means
that under the precondition U<, Prog. 11 has exact postcondition a = b. By
universal quantification, this means that ∀x, y, z.U< → t[x] = t′[y], where t is
the input array to Prog. 10 and t′ the output. This formula may be simplified
into ∀x.0 ≤ x∧2x ≤ n−2→ t[x] = t′[n−1−x]; We can obtain similar formulas
for the cases y > z and y = z. The three cases can can be summarized into

∀x.0 ≤ x < n → t[x] = t′[n− 1− x] (10)

Flata, focused The above execution time and the complexity of the resulting
formula seem excessive, if all that matters is when (x = y∨x = z)∧y+z = n−1.
Indeed, some easy static analysis (by Flata or another tool) shows that the
array accesses within the loop are done at indices i and j that satisfy 0 ≤ i ≤
j < n and i+j = n−1. Such a pre-analysis suggests to target the main analysis
to two positions t[y] and t[z] in the current array, satisfying 0 ≤ y ≤ z < n and
y + z = n − 1. The only positions a[x] that matter in the original array are
those that can be read precisely, that is, x = y and x = z.

We therefore re-run the analysis with precondition U : (0 ≤ y ≤ z < n∧ y+
z = n− 1 ∧ x = y). Flata runs for 6 s and outputs a formula with 8 disjuncts,
with a = c in all disjuncts. We thus have proved that ∀x, y, z.U → t[x] = t′[z],
which can be simplified into ∀z.2z ≥ n− 1∧ z < n → t′[z] = t[n− 1− z].

We may also run with the precondition, (0 ≤ y ≤ z < n∧y+z = n−1∧x = z)
and get the remainder of the cases to conclude as in Formula 10.

To summarize, when the exact analysis of the transformed program (that
is, an exact analysis in the back-end) is too costly, one may choose to focus
the analysis by restricting the range of the indices (x, y, z, . . . ) to some area
U considered to be “meaningful”, for instance obtained by pre-analysis of the
relationships between the indices of the array accesses in the program. This is
sound, since the quantification in the resulting formula is over the indices satis-
fying U . Thus, a bad choice for U may only result in a sound, but uninteresting

7All timings using one core of a 2.4GHz Intel r CoreTM i3 running 32-bit Linux.
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invariant (the worst case is to take an unsatisfiable U : we then obtain a formula
talking about an empty set of positions in the arrays, thus a tautology).

ConcurInterproc, focused Interproc8 applies classical abstract interpre-
tation (Kleene iteration accelerated with widenings, with possible narrowing it-
erations) over a variety of numerical abstract domains provided by the Apron

[30] library9 (intervals, “octagons” [37], convex polyhedra [23, 13]. . . ).
ConcurInterproc10 extends it to concurrency (which we will not use

here) and partitioning of the state space according to enumerated types, in-
cluding Booleans. In a nutshell, while Interproc assigns a single abstract
element (product of intervals, octagon, polyhedron) to each program location,
ConcurInterproc attaches 2n abstract elements, where n is the number of
Booleans (or,more generally, one per concrete instantiation of the enumerated
variables). In order to achieve this at reasonable cost, the BDDApron library
uses a compact representation, where identical abstract elements are shared and
the associated set of concrete instantiations is represented by a binary decision
diagram.

Program 11 contains no Boolean variable (or of any other enumerated type),
thus directly applying ConcurInterproc over it will yield one convex poly-
hedron at the end; yet we need to express a disjunction of such polyhedra (e.g.
there is the case where x = y, and the case where x 6= y, which may be sub-
divided into x < y and y < z). Furthermore, inside the loop one would have
to distinguish i < y, i = y, i > y. This is where, in other analysis of array
properties by abstract interpretation [22, 24, 39, 40, 16] one introduces “slices”
or “segments” of programs, often according to syntactic criteria. In our case,
we wish to distinguish certain locations in the array (or combinations of several
locations, as here with three indices x, y, z) according to more semantic criteria.

Our solution is to introduce observer variables, which are written to but
never read and whose final value is discarded, but which will guide the analysis
and the partitioning performed. Here, we choose to have one flag variable per
access, initially set to “false”, and set to “true” when the access has taken place.
As previously, we use a precondition y + z = n− 1 ∧ x = z.

Listing 12: Array reversal, transformed and instrumented
co ntents a , b , c ;
i n t x , y , z ;
bool y0 , z0 , y1 , z1 , y2 , z2 , y3 , z3 , y4 , z4 ;
x0=y0=y1=z1=y2=z2=y3=z3=y4=z4= f a l s e ;
i n t i =0 , j =n−1;
assume ( y+z == n−1) ; assume ( x==z ) ;
i f ( y == x ) { b = a ; y0 = true ; } i f ( z == x ) { c = a ; z0 = true ; }
while ( i < j ) {

co ntents tmp1 , tmp2 ;
i f ( i == y ) {tmp1 = b ; y1 = true ;} else i f ( i == z ) {tmp1 = c ; z1 = true ;}
i f ( j == y ) {tmp2 = b ; y2 = true ;} else i f ( j == z ) {tmp2 = c ; z2 = true ;}
i f ( i == y ) {b = tmp2 ; y3 = true ;} i f ( i == z ) {c = tmp2 ; z3 = true ;}
i f ( j == y ) {b = tmp1 ; y4 = true ;} i f ( j == z ) {c = tmp1 ; z4 = true ;}

8http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
9http://apron.cri.ensmp.fr/library/

10http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
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i ++; j −−; }

ConcurInterproc, within 0.16 s, concludes that a = b.

5.5 Dutch national flag

Quicksort is a divide-and-conquer sorting algorithm: pick a pivot, swap array
cells until the array is divided into two areas: elements less than the pivot,
and elements greater than or equal to it; then recurse in both areas. An im-
provement, in case many elements may be identical, is to swap the array into
three areas: elements less than the pivot, equal to it, and greater than it, and
recurse in the “less” and “greater” areas. This three-way partition is equivalent
to the “Dutch national flag problem” [19, ch. 14], of swapping pebbles of colors
red, white and blue (corresponding to “less”, “equal” and “greater”) into three
segments.

Listing 13: Dutch flag11

void threeWayParti t ion ( i n t data [ ] , i n t s ize , i n t low , i n t high )
{

i n t p = −1, q = s i z e ;
fo r ( i n t i = 0 ; i < q ; ) {

i f ( data [ i ] < low ) {swap(&data [ i ] , &data [++p ] ) ; ++ i ;}
else i f ( data [ i ]>=high ) {swap(&data [ i ] , &data[−−q ] ) ;} else ++ i

;
}}

We transform this program with two indices 0 ≤ x < y < n (remark that this
is valid only if n ≥ 2) with associated values datax and datay , and instrument
it with Boolean observer variables: for each read or write access to an index
i, we keep a Boolean recording the value of predicate x ≤ i and one for x ≥ i
(respectively for y). The values in the array are encoded as pebble colors LOW,
MIDDLE, HIGH.

ConcurInterproc computes a postcondition within 1min. The resulting
formula φ has 52 cases; we will not print it here. We check that φ ∧ x ≤
p → datax = BLUE, meaning that finally, ∀x.0 ≤ x ≤ p → t[x] = BLUE
Similarly, φ∧ y ≥ q → datay = RED, thus ∀y.q ≤ y < n → t[y] = RED. We
would expect as well that ∀x.p < x < q → t[x] = WHITE. Yet, this does not
immediately follow from φ: φ ∧ p < y < q ∧ datay = RED is satisfiable! Could
there be red cells in the supposedly white area?

Note that φ, for fixed values of n, p, q, encodes quadruples (x, datax , y, datay),
which encompass all possible values of (x, t[x], y, t[y]) for x < y. In particular,
for t[y] = RED to be possible for given n, p, q, one must have suitable t[x] for all
x < y, such that (x, t[x], y,RED) satisfies φ for the same n, p, q. In other words,
to have a cell t[y] = RED one must be able to find values t[x] for all cells to the
left of it. We check that, indeed, p < y < q∧datay 6= WHITE∧(∀x.0 ≤ x < y →
φ) is unsatisfiable,12 meaning that ∀y.(p < y < q ∧ y > 0) → t[y] = WHITE.

11Courtesy of Wikipedia
12From Presburger arithmetic, a decidable theory.
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Furthermore, φ∧x = 0∧x < q∧datax 6= WHITE has no solution. We can thus
conclude ∀y.p < y < q → t[y] = WHITE.

Thus, we encountered a case of “spurious” solutions in the abstract element,
due to the fact that the abstraction is not onto and that certain abstract ele-
ments can be reduced to a smaller element with the same concretization; which
was achieved through quantification (see subsection 3.3). This reduction can
thus be performed through some form of quantifier elimination.

6 Related work

Acceleration For certain classes of loops, it is possible to compute exactly
the transitive closure τ+ of the relation τ encoding the semantics of the loop,
within a decidable class. Acceleration for arrays has been studied by Bozga et al.
[11], who obtain the transitive closure in the form of a counter automaton. The
translation from counter automaton to array properties expressed in first-order
logic then requires an abstraction step, resulting in a loss of precision. Alberti
et al. [4, 1] proposed a template-based solution. Certain classes of τ ’s admit
a definable acceleration in Presburger arithmetic augmented with free function
symbols, at the price of nested quantifiers. The ∃∗∀∗ fragment of this theory
is undecidable [25]; thus again abstraction is needed to apply this technique in
practice. Yet, there are cases where exact acceleration is possible [3]. Contrary
to these approaches, i) ours does not put restrictions on the shape of the loop
(and the program in general) ii) we perform the tunable abstraction first, with
the rest of the analysis being delegated to a back-end (which can possibly use
exact acceleration on scalar programs [9]).

Abstract interpretation Various array abstractions [22, 24, 39, 40, 16] dis-
tinguish slices or segments, whose contents is then abstracted by another ab-
stract domain. Depending on the approach, relationships between several slices
may or may not be expressed, and the partitioning may be syntactic or based
on some pre-analysis. To our best knowledge, none of these approaches work
on multidimensional arrays or on maps, contrary to ours. One major difference
between these approaches and ours is that ours separates the analysis, both in
theory and implementation, into an abstraction that maps array programs to
scalar programs and an analysis for the scalar programs, while theirs are more
“monolithic”. Even though they are parametric in abstract domains for values
and possibly indexes, they must be used inside an abstract interpreter based on
Kleene iterations with widening. In contrast, ours can use any back-end analysis
for scalar programs, including exact acceleration, abstract interpretation with
Kleene iterations, policy iteration, and even, if a target property is supplied,
predicate abstraction (see CEGAR below).

Cox et al. [18] do not target array programs per se, but programs in highly
dynamic object-oriented languages such as Javascript, where an object is a map
from fields to values and the set of possible field names is not fixed. Dillig et
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al. [20] overcome the dichotomy of strong vs weak updates with liquid updates.
Their approach is monolithic and cannot express properties such as sortedness.

Predicate abstraction and CEGAR Predicate abstraction starts from the
control structure of a program and incrementally refines it by splitting control
states according to predicates chosen by the user [21] or, commonly, obtained
by counterexample-guided abstraction refinement (CEGAR). From an abstract
counterexample trace not corresponding to a concrete counterexample, they re-
fine the model using local predicates constituting a step-by-step proof that this
abstract trace does not match any concrete trace. The hope is that this proof
generalizes to more counterexample traces and that the predicates eventually
converge to define an inductive invariant. The predicates are obtained from
Craig interpolants [33, 36, 35] extracted from the proof of unsatisfiability pro-
duced by a satisfiability modulo theory (SMT) solver. The difficulty here is to
generate Craig interpolants that tend to generalize to inductive invariants, on
quantified formulas involving arrays [34]. We are interested in predicates such as
∀0 ≤ k < i, t[k] = 0, which generalizes to an inductive invariant on Program 1,
as opposed to, say, t[0] = 0∧ t[1] = 0, which is equivalent for i = 2 but does not
generalize to arbitrary i. In order to achieve practical scalability, some work
restrict themselves to the inference of array predicates to certain forms, e.g.
range predicates [31]. Others tune the interpolating procedure towards the gen-
eration of better interpolants [2, 5]. A major difference between our approach
and those based on CEGAR is that we do not require a “target” property to
prove, which is necessary for having counterexamples, though we can use one if
needed. If such a property is provided, our approach can use as a back-end a
CEGAR system limited to scalar variables.

Theorem proving and SMT-based approaches The generation of invari-
ants for programs with arrays has been also studied using automated theorem
proving [26, 27]; this approach is generally limited by the fact that theory rea-
soning (e.g. arithmetic) and superposition-based deductive reasoning (on which
the Vampire first-order theorem prover is based [32]) are not yet efficiently inte-
grated. As opposed to [6], we do not rely on quantifier-instantiation procedures.

Quantification Flanagan et al. [21] also use Skolem constants that they
quantify universally after analysis steps. As opposed to us, they require the
user to specify the predicates on which the program will be abstracted.

Abstraction of sets of maps Our approach generalizes a classical abstrac-
tion of sets of maps [15, §2.1]. Jeannet et al. [29] considered the problem of
abstracting sets of functions of signature D1 → D2, assuming a finite abstract
domain A1 of cardinality n abstracting subsets of D1 and an abstract domain
A2 abstracting subsets of Dn

2 . In contrast, we do not make any cardinality
assumption.
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Partitioning Rival et al. [41] introduced partitioning according to an abstrac-
tion of the history of the computation. Our approach using observer variables
for using ConcurInterproc (subsection 5.4) is akin to considering a finite
abstraction of the trace of read/writes into a given array.

7 Conclusion and Future Work

We have shown that a number of properties of array programs can be proved by
abstracting the array a using a few symbolic cells a[x], a[y], . . . by automatically
translating the program into a scalar program, running a static analyzer over the
scalar program and translating back the invariant for the original program. In
some cases, a form of quantifier elimination is used over the resulting formulas.

Our approach is not specific to arrays, and can be applied to any map struc-
ture X → Y (e.g. hash tables and other container classes). A possible future
extension is multiset properties, a multiset being map X → N.

The main weakness of our approach is the need for a rather precise back-
end analysis (for the scalar program obtained by translation). Our experiments
highlighted some inefficiencies in e.g. Flata and ConcurInterproc: in the
former, many paths can be enumerated and complicated formulas generated
even though a much simpler equivalent form exists; in the latter, polyhedra that
are only slightly different (say, one constraint is different) are handled wholly
separately. This gives immediate directions for research for improving exact
acceleration, as in Flata, or disjunctions of polyhedra, as in ConcurInter-

proc. Another difficulty, if using ConcurInterproc or other tools focusing
on convex sets of integer vectors, is the need to use observer variables and/or
an auxiliary pre-analysis to “focus” the main analysis.

We stress again that we obtained our results using unmodified versions of
very different back-end analyzers (ConcurInterproc, Flata, CPAChecker),
which testifies to the flexibility of our approach. Performance and precision im-
provements can be expected by modifying the back-end analyzers (e.g. precision
could be improved by performing reduction steps during the analysis, rather
than after the computation of the invariants).
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A Proofs

Lemma 1. The forward and backward semantics of Program 3 abstract the
forward and backwards semantics of r=f[ i ]; by the (αS

1 , γ
S
1 ) Galois connection.

Proof. Consider an abstraction x♮ ⊆ S × B × A × (A × B) of (s, r, i, f): ∀a ∈
A (s, r, i, a, f [a]) ∈ x♮. The image of the set x♮ by that program is y♮ =
{(s, r′, i, a, b) | r′ ∈ B∧i 6= a∧(s, r, i, a, b) ∈ x♮}∪{(s, b, i, i, b) | (s, r, i, i, b) ∈ x♮}.
It is clear that (s, f(i), i, f) ∈ γ(y♮), otherwise said ∀a ∈ A (s, f(i), i, a, f [a]) ∈
y♮.

The pre-image of the set x♮ by that program is z♮ = {(s, r, i, a, b) | r ∈
B ∧ i 6= a∧ (s, r′, i, a, b) ∈ x♮}∪ {(s, r, i, i, b) | r ∈ B ∧ (s, b, i, i, b) ∈ x♮}. Assume

(s, r′, i, f) ∈ γ(x♮) and (s, r, i, f)
r:=f[ i ]
−−−−−→ (s, r′, i, f); then • either r′ 6= f(i):

then there is no such (s, r, i, f), thus any such (s, r, i, f) ∈ γ(z♮)Th • either
r′ = f(i), then any (s, r, i, f) fits; let us now prove (s, r, i, f) ∈ γ(z♮): let a ∈ A,
then either i = a and (s, r, i, a, f [a]) ∈ z♮ (second disjunct), or i 6= a and
(s, r, i, a, f [a]) ∈ z♮ (first disjunct).

Lemma 2. The forward and backward semantics of Program 4 abstract the
forward and backwards semantics of f [ i]=r ; by the (αS

1 , γ
S
1 ) Galois connection.

Proof. Consider an abstraction x♮ ⊆ S × B × A × (A × B) of (s, r, i, f): ∀a ∈
A (s, r, i, a, f [a]) ∈ x♮. The image of the set x♮ by that program is y♮ =
{(s, r, i, a, b) | i 6= a ∧ (s, r, i, a, b) ∈ x♮} ∪ {(s, r, i, i, r) | (s, r, i, a, b) ∈ x♮}.
Let us prove that (s, r, i, f [i 7→ r]) ∈ γ(y♮). Let a ∈ A. If a 6= i, then
(s, r, i, a, f [i 7→ r](a)) = (s, r, i, a, f(a)) ∈ y♮ (first disjunct); if a = i, then
(s, r, i, a, f [i 7→ r](a)) = (s, r, i, i, r) ∈ y♮ (second disjunct).
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The pre-image of the set x♮ by that program is z♮ = {(s, r, i, i, b′ | b′ ∈
B ∧ (s, r, i, i, b) ∈ x♮} ∪ {(s, r, i, a, b) | i 6= a ∧ (s, r, i, a, b) ∈ x♮}. Assume

(s, r, i, f ′) ∈ γ(x♮) and (s, r, i, f)
r:=f [ i ]
−−−−−→ (s, r, i, f ′); let us prove (s, r, i, f) ∈

γ(z♮). Let a ∈ A. If a = i, then (s, r, i, i, f(i)) ∈ z♮ (first disjunct) If a 6= i, then
(s, r, i, a, f(a)) = (s, r, i, a, f ′(a)) ∈ z♮ (second disjunct).

Theorem 1. Consider a loop-free array program P with arrays a1, . . . , ad such
that the number of accesses to these arrays are respectively α1, . . . , αd. By ab-
stracting these arrays with, respectively, n1, . . . , nd indices such that ni ≥ αi for

all i, we obtain a Galois connection −−−→←−−−α
γ

such that πS ◦ γ ◦ P ♮ ◦ α = πS ◦ P ♭

where πS is the projection of the state to the scalar variables.

Proof. Consider an execution trace T in P , and record the indices ξi,j of the j-th
(numbered syntactically) access to the i-th array. Consider now the program
P ′ obtained by abstracting P according to αi indices for each array ai, i.e. each
read r := ai[e] is transformed into

r = random ( ) ;
i f (e==xi,1 ) { assume ( r==bi,1 ) ; } i f (e==xi,2 ) { assume ( r==bi,2 ) ; }
. . .

and each write ai[e] := w as

i f (e==xi,1 ) { bi,1 = w ; } i f (e==xi,2 ) { bi,2 = w ; } . . .

Now replay T in P ′, with the same initial values, the same external and
nondeterministic choices, and xi,j = ξi,j . Then, for any array access in the
execution of P ′, at least one of the tests is taken (the program does not fall into
the case where none of the selected indices match the index for the read/write
instruction). In the case of a read r := ai[e], the value read in P ′ is then the
same as the one read in P . Then, the execution of P ′ faithfully mimics that of
P . The final values for the execution of T in P ′ are thus the same as those in
P , which proves the statement.

20


	Introduction
	Example: the Sentinel
	Galois connections
	Single index
	Several indices, one per array
	Dual indices, same array

	Abstraction of program semantics
	Transformation and Correctness
	Precision loss
	Relative completeness

	More examples
	Matrix initialization
	Slice initialization
	Array copy
	In-place array reversal
	Dutch national flag

	Related work
	Conclusion and Future Work
	Proofs

