
DeltaScaling : How resources scalability/termination can be taken place
Economically?

Yousri Kouki∗, Md Sabbir Hasan†‡ and Thomas Ledoux‡
∗ Linagora, Paris, France, Email: ykouki@linagora.com
† Myriads team (Insa Rennes, Inria, IRISA), France

‡ Ascola team (Mines Nantes, Inria, LINA), France, Email: firstname.lastname@mines-nantes.fr

Abstract—Cloud Computing promises to completely rev-
olutionize the capacity management of resources. The elas-
ticity and the economy of scale are the intrinsic elements
that differentiate it from traditional computing paradigm.
A good capacity planning method is a necessary factor
but not sufficient to fully exploit Cloud elasticity. This
paper proposes innovative policies for resource manage-
ment to achieve the optimal balance between capacity
and quality of Cloud services while supporting Cloud
technical and conceptual limitations. The main idea is to
control finely the scalability and the termination of virtual
machines in regards of several criteria such as the life-
cycle of the instances (e.g. initialization time) or their cost.
The approach was evaluated with a real infrastructure
(Amazon EC2) and an application testbed. Experimental
results illustrate the soundness of the proposed approach
and the impact of scalability/termination resource policies.
Using DeltaScaling, the cost saving of as much as 30%
can be achieved while causing the minimum number of
violations, as small as 1%.

Keywords-Cloud Computing, Elasticity, Service Level
Agreement (SLA), Auto-Scaling, Capacity Planning, Scala-
bility, Termination

I. Introduction

Cloud computing promises to completely revolu-
tionize the way to manage resources. Thanks to elas-
ticity, resources can be provisioned within minutes to
satisfy a required level of Quality of Service (QoS) for-
malized by Service Level Agreements (SLAs) between
different Cloud actors. Then, finding the best capacity
management to maintain the consumer’s satisfaction
level while minimizing the service costs due to re-
sources fees, becomes the main challenge of service
providers.

A good capacity planning method is a necessary
key but not sufficient enough to fully exploit Cloud
elasticity. With respect to the existing work such as [2]
[3], proposed solutions focused on capacity planning
method accuracy but ignore Cloud technical limita-
tions such as the non-negligible resource initiation
time and Cloud conceptual constraints such as the
billing model. Indeed, the non-negligible virtual ma-
chine (VM) initiation time [15] may prevent just-in-
time provisioning to absorb workload peaks and thus

avoid SLA violations. This can be even worse during
oscillating scenarios of workload as it may have a
”ping-pong effect” in the request/release of resources.
In addition, the time granularity of resource reser-
vation and the implied resource billing model (e.g.,
hourly, daily, etc.) may also lead service providers
to either pay more than they actually consume (e.g.,
when it requests resource during a workload peak and
releases it right after) which is known as partial usage
waste [19], or to take into consideration the reservation
duration before deciding to request more resources.

To have efficient capacity management model, the
following questions have to be addressed: how many
resources to add or terminate? and how resources
scalability/termination can be taken place economically
while respecting the Service Level Agreement (SLA)?
This paper focuses more on the second question since
existing work proposed solutions about the first ques-
tion (i.e. capacity planning) [2] [3]. In order to address
this issue, we propose a new auto-scaling architecture,
called DeltaScaling, driven by policies which controls
finely the scalability and the termination of VMs in
regards of several criteria such as the life-cycle of the
instances (e.g., initialization time) or their cost.

DeltaScaling is an extension of our previous work
that can be found in [1]. The key contributions of
this paper are the design of a flexible capacity man-
agement architecture, the development and validation
of innovative policies: i) scalability policies to absorb
the non-negligible resource initiation time. Usually
resource initiation time refers to start-up time of a
new VM to meet the current resources demand on the
fly, if needed and ii) termination policies to harmonize
capacity management with the economic model of the
resource fees. Our proposed DeltaScaling is capacity
planning model agnostic since the proposed policies
are independent of any capacity planning method. In
this paper, we illustrate both with static threshold-
based rules method and Queuing Networks based
method. We validate DeltaScaling through case studies
and extensive experiments with on-line services hosted
in Amazon EC2.



The remainder of this paper is organized as follows.
Section 2 illustrates the assumptions, which are used
to ease the understanding of our approach. Section 3
describes DeltaScaling in more details. The results ob-
tained from experimental evaluation are presented and
discussed in Section 4. Related research is discussed in
Section 5. Finally, Section 6 concludes this paper and
provides some discussion on future work.

II. Background and assumptions

In this section, we present the assumptions we made
on Cloud applications and elasticity models to build
our auto-scaling architecture.

A. SaaS Service model

SaaS services are mostly designed with multi-
tier Web applications hosted by VMs for flexibility,
reusability and scalability. Usually, we distinguish be-
tween two types of scalability: i) vertical scaling – scale
up/down – typically refers to resizing existing resources
of existing VM instances (e.g., CPU or RAM); and
ii) horizontal scaling – scale out/in – usually refers to
adjusting (add/remove) the number of VM instances.
In this paper, for the sake of simplicity, we consider
only horizontal scaling. The main challenge of a SaaS
provider is to ensure that the number of used instances
increases seamlessly during demand spikes to main-
tain performance, and decreases automatically during
demand lulls to minimize costs.

B. Service-Level Agreement model

The response time and the availability are key met-
rics of interest for quantifying the performance and
dependability of SaaS services. One might want a ser-
vice level to attain a given objective that is the Service
Level Objective (SLO). A SLO has usually one of the
following form: a QoS metric with a value higher/lower
than a given threshold. Therefore, a SLA is a set of
SLOs to meet and is negotiated between two parties,
the Cloud service provider and its customer. We use
the CSLA language [1] to express SLA. CSLA allows
defining SLA in any language (e.g., XML, Java). CSLA
features such as confidence and fuzziness have been in-
troduced to deal with QoS uncertainty in unpredictable
Cloud environment. These concepts will be explained
in Section IV.

C. Capacity Planning Model

Capacity planning is the activity within auto-scaling
task with determining the capacity plan: defining how
many instances to add or remove to adjust automat-
ically according to a workload pattern. DeltaScaling
embeds two models: i) Threshold-based rules model
and ii) Queuing Network model. The first one is

user-friendly but requires a deep understanding of
the workload. The second one is more efficient but
computational times and memory requirements are
important.

Threshold-based rules Model. Static threshold-
based rules model is the most popular for capacity
planning and it has been used by Cloud providers like
Amazon EC2.

The main idea behind this method is that the ca-
pacity of resources might vary according to a set of
rules, where each rule is based on one or more metrics
(e.g., response time, availability or CPU usage). A rule
may be composed of an upper threshold upper, a lower
threshold lower, two time values (timeupper, timelower),
during which the metric is greater/lower than the cor-
responding threshold, and two calm durations: calmadd
and calmterminate during which no scaling decisions can
be committed in order to prevent system oscillations.
Based on those parameters, the rules can be defined as
follows:
If m > upper for timeupper then capacity = capacity + kadd

Do nothing for calmadd

If m < lower for timelower then capacity = capacity − kterminate

Do nothing for calmterminate

where m is the metric (i.e., response time, availabil-
ity), capacity is the current capacity, kadd and kterminate
are respectively the number of resources to add and to
terminate.

Queuing Network Model. The capacity planning
problem can be formulated using a queuing model or a
Queuing Network Model (QNM). A multi-tier system
(implementing the SaaS application) can be modeled as
a multi-server queueing model where their services are
considered as closed loops to reflect the synchronous
communication model that underlies these services.
That is a client waits for a response before sending
another request. Then, we rely on Mean Value Analysis
(MVA) algorithm [5] for evaluating the performance of
the queuing network. The MVA algorithm predicts the
response time and the availability based on the current
service workload and the capacity. A utility function
is defined to combine performance, availability and
financial cost objectives:

θ(t) =
ζ(t)
ω(t)

(1)

where ω corresponds to the cost of the service at time t
and ζ corresponds to the SLA function (predicate) that
checks SLA objectives (response time and availability).

ζ(t) = (Rt(t) ≤ Rtmax) ∧ (Av(t) ≥ Avmax) (2)

where Rt, Av are respectively the current response time



Figure 1. Top-level view of the DeltaScaling Architecture

and availability. Note that ∀Rt,∀Av, ζ(Rt,Av) ∈ {0, 1}.

ω(t) =

N∑
n=1

CostVM/Tn (t) +

N∑
n=1

CostSo f tware/Tn (t) (3)

where CostVM,n is the cost of VM at tier Tn and
CostSo f tware,n is the software pricing and licensing costs
at tier Tn.
The demanded capacity is the one that provides the
highest utility (Equation 1). To compute it, we can use
any search algorithm. In our implementation, we used
a dichotomic search.

III. DeltaScaling Architecture

In this section, we first provide an overview of
the DeltaScaling architecture before introducing the
scalability/termination policies.

A. Overview
In order to cope up with a dynamic environment

which is intrinsic to Cloud computing systems, it
becomes imperative to rely on models that allow the
system to react to the execution context so as to keep
it running in an optimized way (in terms of QoS and
cost). For this purpose we rely on autonomic comput-
ing [4]. Figure 1 illustrates the main components of the
DeltaScaling architecture. On the highest level, sensors
gather data from the managed elements (Cloud App),
which allow the Autonomic Manager (Scaler) to moni-
tor (Watch) and perform changes on them via effectors
(Wrapper). The component Repository is in charge of
maintaining some information about infrastructure,
workload, SLA and elasticity policies that determine
the scope within which decisions can be taken by the
Scaler. Our solution presents a high level of reusability
and extensibility in particular to the capacity planning
method and elasticity (e.g., scalability, termination)
policies.

B. Auto-scaling Lifecycle
The component Watch permits the monitoring of

Cloud application via two modes: pull and push. Us-
ing the pull mode, the Watch gathers information about
infrastructure, workload and service performance. The

gathered information is raised periodically to the Scaler
component. In addition, we developed a push mode to
take into account the deferred terminations (see Section
III-D). Indeed, the Watch is notified of started/stopped
instances events and send full-time-instance consump-
tion notification to the Scaler. Then, the Scaler ana-
lyzes gathered information whether it is necessary to
(re)plan capacity. Scaler is based on a capacity planning
method to calculate the optimal configuration that
guarantees the SLA constraints while minimizing the
cost of the service according to elasticity policies. The
Scaler considers the result of capacity planning method
to produce the optimal plan: a set of actions have an
effect on the Cloud application in immediate and/or
deferred manner. Finally, having the new optimal plan,
the Wrapper takes this plan and executes it.

C. Scalability Policies

Cloud elasticity is the ability to automatically scale
out resources as you need to accommodate varied
workloads while maintaining QoS. To absorb the non-
negligible VM initiation time [15], we propose three
scalability policies: Reactive (with/without Application
Elasticity), Proactive and Hybrid.

Reactive. A reactive policy refers to a run-time deci-
sion – based on the current demand and system state
– to add resources on the fly. This policy can be easily
designed and implemented when decisions are taken
based on monitored performance metrics.

On the contrary, a reactive policy cannot absorb
the non-negligible resource initiation time. To address
this issue, we rely on Application Elasticity which has
proven to be efficient in our previous work [1]. Appli-
cation elasticity allows a SaaS application to support
resource elasticity limitations by degrading vs upgrad-
ing services between different modes (e.g., 2D vs 3D
display, a degree of security levels). In our proposal,
we propose to degrade the functionality of the Cloud
service in order to absorb the maximum requests until
all resources have been activated.

Proactive. Proactive policy can be used to predict
future demands in order to overcome the issues that
may be raised by the non-negligible resource initiation
time by adding resources in advance.

In our implementation, we used a prediction-based
model (using the past history to predict future de-
mand). The time-series analysis [16] offers a number of
methods for predicting values at certain specific future
times (prediction interval), based on a set of previously
observed values (prediction window).

We rely on OpenForecast1 package to predict future
values. We propose a Forecaster component to obtain

1http://openforecast.sourceforge.net/



the best forecasting model for the given workload
history. Finally, to take into account the non-negligible
resource initiation time, we customize the prediction
window according to the instance initiation time.

Hybrid. In order to be benefited from the advantages
of both policies and thus be able to finely adjust
the capacity, a hybrid approach (i.e., combination of
reactive and proactive policies) would be necessary.
For instance, proactive policy can be applied for a long-
term demand prediction; in case of prediction error, the
capacity can be reactively adjusted for the short-term.

D. Termination Policies

Cloud computing is typically based on full-hour
billing model234. For example, with Amazon EC2,
pricing is per instance-hour consumed for each in-
stance, thus each partial instance-hour consumed will
be charged as a full hour! In order to harmonize
capacity management with the economic model, we
introduce deferred policies. Then, we distinguish two
types of policies: immediate and deferred.

Immediate. When a scale in condition is met (i.e.
fewer resources are required), the termination is im-
mediate. The Scaler component can configure a policy
to terminate the oldest, the newest, the closest to next
instance hour or a specific instance for the immediate
termination.

Deferred. We propose a termination policy driven
by the billing model called ”Use as you Pay” (UaP) [6].
UaP policy is constructed to use the full-instance pe-
riod before terminating any instance. For example, if
a SaaS provider uses a instance for 2.5 hours, they
will still have the flexibility to use remainder minutes
of the hour to handle other workloads. In this way,
SaaS providers pay exactly according to their usage.
In contrast to the UaP policy, the Amazon EC2 billing
policy can be described as: if SaaS providers terminate
an instance and then start the same instance again, they
are charged for another hour upon starting it, even if
it is still within the same 60 minutes period. Further-
more, UaP policy allows to avoid system oscillations
particularly for On and Off workload [7]. According to
the auto-scaling lifecycle, UaP policy notifies stopped
instances events to the Watch component (push mode).
We can consider UaP policy as a proactive strategy:
an instance waiting for the end of an instance-hour
to terminate can be reused in the presence of a new
increasing workload.

2http://aws.amazon.com/fr/ec2/pricing/
3https://azure.microsoft.com/en-us/pricing/overview/
4https://cloud.google.com/pricing/

IV. Experiments
This section presents results obtained from some

experiments performed with the proposed approach.
This work exploits the execution of a real use case
scenario running on a real physical infrastructure.

A. Experimental Testbed
In this section, we describe the testbed used in the

experiments.
SaaS application. In recent years, cryptography ser-

vices are on high demand since banks, e-commerce
sites and normal users need data protection for online
transactions against identity theft and cyber crimes.
Therefore, we prefer to design a simple cryptography
service in a SaaS fashion that is deployed on Amazon
infrastructure (EC2 instances). Our cryptography ser-
vice is architecturally organized in 3-tier architecture5,
distributed and replicated in the Cloud: i) a load
balancer tier that is responsible to distribute incoming
application traffic across multiple application servers,
ii) an application server tier that implements business
logic functionality, and iii) a back-end database.

In this paper, we consider the SaaS provider offers
Application Elasticity (see Section III-C): that proposes
two cryptography services offering the same function-
ality but not the same quality. S1 may operate on
only one mode (normal), whereas S2 may operate on
two (normal and degraded). In the normal mode, the
service uses 3DES algorithm, while in the degraded
one, the service uses DES algorithm.

Table I
SLA between SaaS provider and its consumers

metric oper. value fuzz. % of fuzz. conf. penalty

S1/S2 Rt ≤ 0.1s 0.05 s
11.11% 90%

0.003$/req
Av ≥ 99% 2% 0.002$/req

S2 Mu ≤ 30% 5% 0.0015$/req

Table II
Most relevant combinations

implementation planning scalability termination app.
elastic.

QN-UaP QN Reactive
Proactive

UaP Yes

QN-Newest QN Reactive Newest Yes
AmazonUaP
(TBR-UaP)

TBR Reactive UaP No

AmazonLike
(TBR-Newest)

TBR Reactive Newest No

SLA. A SLA is established between the SaaS
provider and each one of its clients stating that the
provider has to guarantee a minimum level of ser-
vice with respect to usage mode (normal/degraded)

5http://support.rightscale.com/03-Tutorials/02-AWS/02-
Website Edition



and other quality of service criteria such as response
time or availability. Upon contract violations, penalties
should be paid back to clients as compensation.

The SLA is expressed using the language CSLA [1]
as it is shown in Table I. It is composed of three
Service Level Objectives (SLOs): a performance SLO
(response time Rt), a dependability SLO (availability
Av) and a mode usage SLO (Mu). All metrics are
measured within an observation interval of 1 min and
evaluated on a time window of 10 min. We distinguish
three states of a time interval: ideal, degraded and
inadequate. Ideal means that the objective threshold
is respected. The QoS degradation consists of utilizing
a error margin (fuzziness value). Beyond this margin, it
is an inadequate state.

In the use case, the SaaS provider should guarantee
an average response time less than or equal to 0.1s,
with confidence, fuzziness and percentage of fuzzi-
ness are 90%, 0.05s and 11.11%, respectively. It means
that in the ten observation intervals of the evaluation
window, we accept 1 inadequate interval (Rt > 0.15s),
1 degraded interval (0.1s < Rt < 0.15s) and 8 ideal
intervals (Rt < 0.1s). Regarding the availability, it is
defined as the number of accepted requests divided
by the total number of requests in interval of 1 min.
The SLA states that at least 99% of availability should
be guaranteed, with 2% of fuzziness, meaning that we
accept 1 inadequate interval (Av < 97%), 1 degraded
interval (97% < Av < 99%) and 8 ideal intervals (Av
> 99%). Concerning the functionality of degradation,
for S1, only normal mode is accepted (i.e., 3DES),
whereas for S2, up to 30% of the observation periods
may be accepted on degraded mode (i.e., DES).

A violation of the response time SLO (resp.
the availability and mode usage SLOs) implies a
penalty equal to 0.003$/request (resp. 0.002$/request
and 0.0015$/request).

Evaluation Scenarios. We evaluate DeltaScaling and
its elasticity policies with representative workload pat-
terns in the Cloud environment such as Unpredictable
Bursting [7]. We use Apache JMeter as load injection
system.

The initial architecture of our experiments for each
workload pattern is composed of one instance per
tier. The following experiments are conducted with
EC2 small on-demand instances. The duration of the
experiments is fixed at two hours. We evaluate reactive
and proactive scalability policies combined with two
termination policies : i) immediate (Newest) and ii)
deferred (UaP). We also use the Application Elasticity
to absorb the requests until resources have been acti-
vated which suggests, we degraded the functionality
of service to accept more user requests until a new
VM is activated, thus non-negligible resource initiation

time is handled. Finally, since our approach is capacity
planning model agnostic, we experiment with two
capacity planning methods: Queuing Network (QN)
and threshold-based rules (TBR). Table II summarizes
the most relevant combinations.

B. Results and Discussion

We present the results obtained from an extensive
set of experiments. Results show how scalability/ter-
mination policies can be used so as to cope with
some technical and conceptual limitations of Cloud
elasticity. The impact of these policies is shown in
Figure 2 according to different workload patterns. We
observe their pertinence considering Customer Sat-
isfaction Level (CSL) and SaaS provider profit. CSL
refers to the percentage of SLOs compliance (evalu-
ation windows without penalty / total of evaluation
windows) . The SaaS provider’s profit is calculated
from the difference between income (service price) and
expense (resources cost and penalties).

Unpredictable Bursting workload. Figure 2 depicts
the results for the experiments with the Unpredictable
Bursting workload considering the SLA given in Ta-
ble I. As shown in the graphs in Figure 2(a), a variable
number of clients was used in this experiment (initially
200, then 750, 800 and finally 200 again). The Figures
2(a), 2(b), and 2(c) show respectively the resource cost,
the percentage of exceeded thresholds and the ratio of
provider profit vs customer satisfaction level (CSL) for
each combination from Table II. In Figure 2(a), QN-
UaP and QN-newest have cushioned the addition of
resources during peak load at t=10 min using the Ap-
plication Elasticity. Further, the UaP termination policy
performs best to reduce #instance − hour to 9 only vs
11 for Newest policy as shown in Figure 2(a). At t=29
min, thanks to Queuing Network (QN) model, the SaaS
service needs nearly 3 minutes only to meet SLA re-
quirements (performance, availability and mode) while
it needs at least 6 minutes using AmazonLike policy.

All this will influence the number of SLA violations.
The SLOs evaluation is performed on windows of
10 minutes. Each minute interval can be classified
as i) degraded if one or more objectives (response
time, availability or usage mode) use the associated
fuzziness or ii) inadequate if one or more objectives
(SLOs) exceeds the threshold +/- fuzziness. The SLA
is calibrated in order to accept 1 inadequate interval
and 1 degraded interval every 10 minutes, otherwise
a penalty will be applied.

In Figure 2(c), using AmazonLike, SaaS provider
profit is the least important with a customer satis-
faction level of 93.6%. Indeed, the termination pol-
icy ”Newest” causes the instability of the system.
Such instability occurs more exceeded thresholds (see



(a) Resource cost for Unpre-
dictable Bursting

(b) Thresholds exceeded for Un-
predictable Bursting

(c) Provider profit vs CSL for Un-
predictable Bursting

(d) Resource cost for On and Off (e) Thresholds exceeded for On
and Off

(f) Provider profit vs CSL for On
and Off

(g) Resource cost for Predictable (h) Thresholds exceeded for Pre-
dictable

(i) Provider profit vs CSL for Pre-
dictable

Figure 2. Results with different workloads

Figure 2(b)). In addition, the immediate termination
causes more instance-hour to pay. The SaaS provider
profit is almost the same using QN-UaP or QN-Newest
and with customer satisfaction of 100%. Nevertheless,
QN-UaP presents the best QoS perceived by customers:
there are fewer requests with a functionality degrada-
tion (3 min vs 5 min in a time window of 120 min as
show in Table III).
On and Off workload. Figure 2 presents the second
workload pattern (On and Off ) that we apply to the
Cloud service. The workload fluctuates between 500
and 900 clients. The results are presented in the same
manner as for the first workload pattern. In the case of
On and Off workload, the maximum saving cost and
the minimum SLA violations can be reached using our
policies. It can be observed in Figure 2(d) that during
the variation of demands, UaP policy minimizes cost
to 12 instance−hour only vs 17 instance−hour for Newest
policy. Figure 2(e) shows that QN model generates
less number of SLA violations than TBR model (Ama-
zonLike). In fact, UaP policy allows avoiding system
oscillations and implicitly SLA violations.

In Figure 2(f), as for the unpredictable workload, the
SaaS provider profit using AmazonLike is the least
important with customer satisfaction of 91.67%. We

note that the UaP policy allows minimizing the use
of degraded mode: 2 min in a time window of 120
min while degraded mode is used 12 min with Newest
policy (see Table III). The SaaS provider profit is the
best using QN-UaP with customer satisfaction of 100%.

Predictable workload. The last experiment shows
the result of the scalability of Proactive policy (see
Figure 2) as we to compare both the reactive and the
proactive policies. Figure 2(g) presents the workload
that we apply to the service. The experimentation starts
with a moderate load corresponding to 100 clients.
Workload rises with a trend between t=20 min and
t=100 min. The duration of the experiment is equal
to 120 min. A history of at least 60 observations is
necessary for the prediction, which is why we use the
first 60 min as prediction window. The results pre-
sented are related to the second hour of the experiment
(61 min - 120 min). Figure 2(g) illustrates the result
of prediction using our Forecaster in the interval 61
min - 120 min. The predicted values were accurate
with an average error of 0.35% (see Figure 2(g)). The
prediction interval was fixed to 2 min (i.e., the average
value of instances initiation time or VM start up time).
The proactive scalability uses the result of prediction to
anticipate the increase in capacity allowing to avoid the



overspending thresholds. While the reactive scalability
adds resources following a overrun and after having
tried the use of mode degradation for 1 minute.

In Figure 2(i), the SaaS provider profit is almost the
same using reactive or proactive policy with customer
satisfaction of 100%. However, the reactive policy
produces overruns thresholds. In addition, with this
policy, the functionality degradation is used 4 min in
a time window of 60 min (see Table III).

Table III
CSLA and Application Elasticity

workload implementation total
duration
(min)

degraded
mode
(min)

Unpredictable Bursting QN-Newest (reactive) 120 5
QN-UaP (reactive) 120 3

On and Off
QN-Newest (reactive) 120 12

QN-UaP (reactive) 120 2

Predictable QN-UaP (reactive) 60 4
QN-UaP (proactive) 60 0

Discussion. To sum up, the results show that the
proposed scalability/termination policies are very effec-
tive to improve Cloud elasticity as well as provider’s
profit. The use case scenario suggests how elasticity
of application can be taken into consideration to over-
come the resource initiation time and scalability issues.
However, in real world, using DES algorithm instead
of 3DES might be a bit skeptical, but it was worth
validating our approach where CPU usage intensive-
ness is different between the two algorithms. Since
3DES needs thrice the computing power as DES, any
application which inherits elasticity capability in terms
of increasing/decreasing computing power (CPU inten-
sivity), can be benefited by our approach. Among the
most relevant combinations, the different benchmarks
show that the association between the capacity plan-
ning based on Queuing Network and the ”UaP” policy,
with the Application Elasticity feature (i.e., QN-UaP),
is always the best combination without depending on
the any kind of workload characteristics. It is evident
from the results that, QN model is better than TBR
model in terms of profit and customer’s satisfaction
level, but different termination policy in QN model can
affect the total performance of the system divergently.
The idea behind introducing QN-Newest policy is
to validate the aforementioned statement since QN-
Newest policy exceeds more thresholds in run-time,
thus might create instability to the system. Therefore,
effective termination policy of cloud resources is more
important for capacity management. We found it nec-
essary to illustrate that, using QN model can increase
the system performance (i.e. response time, availability
etc.) but associating UaP policy with QN model can
out perform other capacity planning method in terms

of provider’s profit while causing minimum number
of SLA violation.

V. Related work

Capacity management is the process tasked with
adjusting the capacity of a system, to meet changing
demands, at the right time and at optimal cost. With
respect to the time resources should be added/released,
capacity management can be conceived in three ways:
i) reactive [8], ii) proactive [12] or iii) hybrid [13].
Several works has been done to provide solution for
capacity management in Cloud environments. How-
ever, only a few works provide a combination of reac-
tion (reactive, proactive or hybrid) [20]. Our solution
is more complete and includes three types of above
mentioned reactions.
Capacity planning is the sub-activity within Capacity
management task with determining the optimal capac-
ity of resources. It may be achieved in a completely ad-
hoc manner by dynamically adjusting the allocation
of resources (e.g., by adding or releasing resources)
according to a set of predefined rules. Examples of
such kind of approach are implemented in leading
industrial solutions such as Amazon Auto Scaling and
Autoscaling Application Block (Microsoft Azure) or
research works [8] [9].
Capacity planning may combine techniques from dif-
ferent fields in order to be effective. For example,
in order to effectively model systems performance,
Queuing Theory [14] can be applied. Alternatively,
Reinforcement Learning [11] and Game Theory [10]
might also be used respectively to give a more ef-
fective performance profiles or to deal with economy
equilibrium and thus improve estimations on resource
requirements. Those techniques can be combined along
with operational research techniques like Constraint
and Linear Programming so as to find solutions that
respect the constraints (e.g., imposed by SLAs) or even
solution that optimizes a certain criterion such as the
Quality of Service or cost.
With respect to these works, most focus only on
method accuracy and ignore Cloud technical and con-
ceptual limitations. Some initiatives contributed to
solve technical limitations, such as [17] and [18] while
conceptual limitations (e.g., economic model) is not
addressed. [17] proposes an approach based on vertical
scaling to absorb duplicating time for data-base tier.
However, the vertical scaling is not provided by all
IaaS providers and even when offered it can be only
cold scaling. So, the initialization time is not fully ad-
dressed. [18] presents a predictive model to absorb the
initialization time. The accuracy of prediction method
depends on the input window size and the prediction
interval whereas the authors do not detail these values.



The originality of our contribution is to focus on the
life-cycle of the instances (e.g., initialization, termi-
nation time) and on the impact of the pay-as-you-
go pricing in elasticity management. In addition, all
the related work concentrate only at the infrastructure
level by optimizing resource scaling, whereas in this
paper we take into account both levels: application
– via Application Elasticity – and infrastructure. For
example, this extra elasticity capability can be used
as an alternative solution for short workload peaks
instead of either paying a full usage cycle.

VI. Conclusion and future work

In this paper, we propose a new auto-scaling archi-
tecture, called DeltaScaling, driven by elasticity poli-
cies which is flexible enough to work with several
capacity planning methods such as Threshold-based
rules or Queuing Network models in a economic way.
Experimenting DeltaScaling in a real infrastructure
(Amazon EC2) illustrates that, 30% cost saving can
be achieved while causing the minimum number of
violations, as small as 1%. In the near future, we
propose to extend our solution to help any Cloud
provider to select the best capacity planning method
from a catalog according to the service context (service
topology, workload characteristics, SLA). This service
is based on the capacity planning methods evaluation
criteria (e.g., system stability, method scalability, so-
lution optimality, implementation simplicity) applied
to the Cloud providers context to propose the right
method to choose.

References

[1] Y. Kouki, F. Alvares, S. Dupont and T. Ledoux. A
Language Support for Cloud Elasticity Management.
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), May 2014.

[2] S. Dutta, S. Gera, A. Verma, and B. Viswanathan.
SmartScale: Automatic Application Scaling in Enterprise
Clouds. IEEE 5th International Conference on Cloud
Computing (CLOUD), June 2012.

[3] Z. Shen, S. Subbiah, X. Gu, J. Wilkes. CloudScale: Elastic
Resource Scaling for Multi-Tenant Cloud Systems. ACM
Symposium on Cloud Computing (SOCC), October 2011.

[4] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. Computer, vol.36, no.1, pp.41-50, Jan 2003.

[5] M. Reiser, S. S. Lavenberg. Mean-Value Analysis of
Closed Multichain Queuing Networks. J. ACM vol.27, no.
2, April 1980.

[6] Y. Kouki and T. Ledoux. RightCapacity: SLA-driven
Cross-Layer Cloud Elasticity Management. International
Journal of Next-Generation Computing (IJNGC), vol. 4,
no. 3, November 2013.

[7] Cloud workload patterns. watdenkt.veenhof.nu/2010/ 07
/13/ workload-patterns-for-cloud-computing/, 2012.

[8] R. Han, L. Guo, M. M. Ghanem, and Y. Guo. Lightweight
Resource Scaling for Cloud Applications. IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2012.

[9] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and
S. L. D. Gudreddi. Integrated and autonomic cloud re-
source scaling. IEEE Network Operations and Manage-
ment Symposium (NOMS), April 2012.

[10] D. Ardagna, B. Panicucci and M. Passacantando. A
Game Theoretic Formulation of the Service Provisioning
Problem in Cloud Systems. International conference on
World Wide Web (WWW), 2011.

[11] E. Barrett, E. Howley, and J. Duggan. Applying rein-
forcement learning towards automating resource alloca-
tion and application scalability in the cloud. Concurrency
and Computation: Practice and Experience, vol. 25, no.
12, August 2013.

[12] N. Roy, A. Dubey, and A. Gokhale. Efficient Autoscaling
in the Cloud Using Predictive Models for Workload
Forecasting. IEEE International Conference on Cloud
Computing (CLOUD), July 2011.

[13] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek. Adap-
tive resource provisioning for read intensive multi-tier
applications in the cloud. Future Generation Computer
Systems, vol. 27, no 6, June 2011.

[14] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive
hybrid elasticity controller for cloud infrastructures. Net-
work Operations and Management Symposium (NOMS),
April 2012.

[15] M. Mao and M. Humphrey. A Performance Study on
the VM Startup Time in the Cloud. IEEE International
Conference on Cloud Computing (CLOUD), June 2012.

[16] G. E. P. Box and G. M. Jenkins. Time Series Analysis
: Forecasting and Control. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 3rd edition, 1994

[17] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. A. B. Fortes. Fuzzy
Modeling Based Resource Management for Virtualized
Database Systems. IEEE International Symposium on
Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), July 2011.

[18] S. Islam, J. Keung, K. Lee, and A. Liu. Empirical pre-
diction models for adaptive resource provisioning in the
cloud. Future Generation Computer Systems, vol. 28, no.
1, January 2012.

[19] H. Jin, X. Wang, S. Wu, S. Di, and X. Shi. Towards
Optimized Fine-Grained Pricing of IaaS Cloud Platform.
IEEE Transactions on Cloud Computing, 2014.

[20] L. Moore, K. Bean, and T. Ellahi. A Coordinated Reactive
and Predictive Approach to Cloud Elasticity. Interna-
tional Conference on Cloud Computing, GRIDs, and
Virtualization (CLOUD COMPUTING), May 2013.


