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Abstract

The research presented here is devoted to the construction of a probabilistic
reduced-order computational model adapted to the low- and mid-frequency
structural dynamics. The methodology presented here is based on a global/lo-
cal separation of the space of admissible displacements by solving two sep-
arated eigenvalue problems in which the kinetic energy is modified. This
paper presents a general framework for constructing the modified kinetic
energy by introducing classes of kinematic reductions. The global/local sep-
aration allows the construction of a probabilistic model of uncertainties for
which the fluctuations of the global displacements and the fluctuations of the
local displacements can be controlled separately.

Keywords: High modal density, Low-frequency range, Mid-frequency
range, Uncertainty quantification

1. Introduction

The dynamical analysis of complex structures in the low- and mid-frequen-
cy range often requires the construction of computational models having mil-
lions degrees of freedom (DOF) in order to compute the dynamical response
with a sufficient accuracy. In automotive industry for instance, in order to
take into account all the geometric and structural details, the computational
models which are used today can reach tens of millions of DOFs. The dy-
namical analysis of structures using so large computational models directly
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yields two main problems. The first one is related to the computational cost
of such a dynamical analysis. It is then necessary to reduce the size of the
computational model without decreasing its accuracy in the frequency band
of analysis. The second problem is related to the robustness of the com-
putational model with respect to uncertainties. There are several sources
of uncertainties: The first one concerns the existing variability within the
specimens that the computational model has to represent. Indeed between
two nominally identical structures, there may exist some slight differences
due for instance to manufacturing tolerances, differences in the equipments
(for instance different options for a car), the damages during the life cycle
and so on (see [16, 10] for experimental frequency responses of nominally
identical automotive vehicles). The second source of uncertainties concerns
the computational model for which some parameters may not be perfectly
known and for which there may exist some model uncertainties induced by
the modeling choices related for instance to the constitutive laws, the type
of elements, the modeling of the boundary conditions and so on. It is then
necessary to take into account these two sources of uncertainties in order to
compute the dynamical response with a good robustness.

The objective of this paper concerns the construction of a stochastic
reduced-order computational model adapted to the low- and mid-frequency
analysis of complex structures. For the low-frequency range, if the reso-
nances are well-separated, the modal analysis method [23] allows a small-size
reduced-order model to be constructed. In general the computed elastic
modes are global and robust with respect to uncertainties. In the mid-
frequency range, due to the numerous local displacements of the flexible parts
or embedded equipments, the modal density is higher and then the modal
analysis method becomes less efficient because of the large number of modes
that have to be calculated. For complex structures, which are made up of
several structural scales (for instance a master stiff part and several flexible
substructures), the low-frequency range and the mid-frequency overlap and
sometimes structures can exhibit a high modal density even for low frequen-
cies. A feature of the mid-frequency range concerns the high sensitivity of the
response with respect to uncertainties. Several classes of methods have been
proposed in the literature to construct a reduced-order model adapted to the
mid-frequency range. Among these methods one can find fuzzy attachments
methods [27, 33, 34, 36], Trefftz methods [18, 9, 7, 35, 5, 3, 17, 25], hybrid
Finite Element/Statistical Energy methods, [28, 6, 19, 8, 20, 37, 24, 22] and
methods using stochastic computational models [31, 14, 21].
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The methodology presented in this paper belongs to the class of method-
ologies using a stochastic computational model. In [4, 32] a new methodology
has been proposed in order to construct a reduced-order model for dynami-
cal structures having a high modal density in the low-frequency range. This
methodology consists in splitting the admissible displacement space into two
subspaces: a space of global displacements and a space of local displace-
ments. The basis of each of these spaces is constructed separately by solving
an eigenvalue problem in which the kinetic energy is modified while the elastic
energy is kept exact. The modified kinetic energies of theses two eigenvalue
problems are obtained by introducing a projection operator than defines a
kinematic reduction. In the previous papers [4, 32] this kinematic reduction
consists in an averaging of the displacement in non-overlapping subdomains
of the whole domain. In the present paper, a general framework is introduced
in order to construct more accurate kinematic reductions. This extension of
the previous researches allows to obtain (1) a global response of the struc-
ture in a larger frequency including the mid-frequency range and (2) a better
global/local separation (a better filtering of the local displacements is per-
formed for the global basis and a better filtering of the global displacements
is performed for the local basis). Then a probabilistic model of uncertainties
can be introduced for each scale (global and local) separately so that the
global fluctuations and the local fluctuations can be controlled separately.

In Section 2, the reference boundary value problem is developed then
in Section 3 the construction of the reduced-order problem is constructed
and analysed for the continuous formulation. The global eigenvalue problem
and the local eigenvalue problem are presented. In Section 4, the reduced-
order computational model is derived using the Finite Element (FE) method.
Section 5 is devoted to the construction of the probabilistic model of uncer-
tainties for the global contributions of for the local contributions. Finally in
Section 6, the methodology is illustrated on a numerical application which
exhibits a high modal density in both the low- and mid-frequency range.

2. Variational formulation of the boundary value problem

The structure we are interested in is made up of a linear viscoelastic (with
instantaneous memory) elastic medium occupying the domain Ω of R3, with
boundary ∂Ω. Let x be any point in Ω. The external unit normal to ∂Ω
is denoted by n. In this paper, the dynamical response of the structure is
constructed in the frequency domain, in the frequency band B = [ωmin, ωmax].
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Let u(x, ω) be the displacement field defined on Ω with values in C3. The
boundary ∂Ω is made up of two parts. On the part Γ0 of the boundary ∂Ω,
there is a Dirichlet condition u = 0. On the part Γ of the boundary ∂Ω,
a surface force field, f surf(x, ω) with values in C3, is applied. In addition,
there is a volume force field, f vol(x, ω) with values in C3, applied in Ω. We
are interested in the linear response around a static equilibrium considered
as the reference configuration defined by Ω. The boundary value problem in
the frequency domain is written, for all real ω, as

−ω2ρu− divσ = f vol in Ω ,
u = 0 on Γ0 ,

σ n = f surf on Γ ,
(1)

where ρ(x) is the positive-valued mass density, σ(x, ω) is the second-order
stress tensor, in which {divσ(x, ω)}j =

∑3
k=1 ∂σjk(x, ω)/∂xk. Let ε(x, ω) be

the strain tensor defined by εjk(x, ω) = (∂uj(x, ω)/∂xk + ∂uk(x, ω)/∂xj) /2.
The stress tensor σ(x, ω) is related to the strain tensor ε(x, ω) by a consti-
tutive equation which is written for a nonhomogeneous anisotropic dissipa-
tive elastic medium as σhℓ(x, ω) = ahℓjk(x) εjk(x, ω)+ iω bhℓjk(x) εjk(x, ω), in
which ahℓjk(x) and bhℓjk(x) are the fourth-order real tensors related to the
elastic and dissipative parts and which must satisfy symmetry and positive-
ness properties. Since u = 0 on the part Γ0 of the boundary, there will be
no rigid body displacements.

Let Hcomp be the space of all the square integrable functions defined on
Ω with values in C3 equipped with inner-product 〈u,v〉 =

∫

Ω
u (x) .v (x)dx,

in which u.v =
∑3

i=1 uivi is the Euclidean inner product in R
3. Let Vcomp

be the admissible displacements space (subspace of Hcomp). The variational
formulation of the boundary value problem defined by Eq. (1) consists in
finding, for all ω in B, the function u(ω) with values in Vcomp such that for
all v in Vcomp,

−ω2m (u,v) + iωd (u,v) + k (u,v) = g (v;ω) . (2)

In Eq. (2), the mass sesquilinear form m in defined on Hcomp × Hcomp by
m (u,v) =

∫

Ω
ρu.vdx. The damping sesquilinear form d is defined on Vcomp×

Vcomp by d (u,v) =
∫

Ω
bijkh (x) ǫkh (u) ǫij (v) dx. The stiffness sesquilinear

form k is defined on Vcomp×Vcomp by k (u,v) =
∫

Ω
aijkh (x) ǫkh (u) ǫij (v) dx.

4



The antilinear form g of the external forces is defined on Vcomp by g (v;ω) =
∫

Γ
fsurf, i(x, ω)vi(x)ds+

∫

Ω
fvol, i(x, ω)vi(x)dx.

3. Construction of the reduced-order model.

3.1. Physical insights and summary of the methodology.

As explained in the introduction, we are interested in complex dynami-
cal structures which are made up of several structural scales (for instance a
master stiff part and several flexible substructures) and then for which the
low-frequency range and the mid-frequency overlap. Then the well-separated
global modes classically encountered in LF band and the numerous local
modes classically encountered in the MF and HF bands are intertwined and
mixed the ones with the others. In general, the global displacements of a
structure are robust with respect to uncertainties (except for uncertainties
related to boundary conditions). On the contrary the local displacements are
more sensitive with respect to uncertainties related to the numerous local de-
tails of the structure which are generally not perfectly modeled. Therefore, it
is interesting to separate the global displacement from the local displacements
in order to model the uncertainties related to global displacements indepen-
dently from the uncertainties related to the local displacements. For the
complex structures we are interested in, the elastic modes are combinations
of global displacements and local displacements and therefore a separation is
not possible.
The objective here is to construct a basis for the global displacements and a
basis for the local displacements separately. The key idea for this construc-
tion consists in modifying dynamically the mass distribution of the structure
in order to either (1) lock the local displacements and then keep only global
displacements or (2) lock the global displacements and then keep only local
displacements. We then obtain two new computational models corresponding
to these two modifications of the mass distribution and for which the stiffness
properties are kept unchanged with respect to the original structure. Then
the global basis and the local basis correspond to the elastic modes associated
with each of these two new computational models. It is important to keep
the stiffness of the structure exact so that the global basis and the local basis
return the boundary conditions and the static deformations of the original
structure and then the union these two basis provides a good projection ba-
sis for the original structure. This locking methodology is directly inspired
by the lumping mass method [13] which consists in concentrating the mass
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at given master points in order to extract a global basis. Nevertheless, the
methodology we propose is more general and allows the global basis to be
completed by constructing separately a local basis.
The dynamical modification of the mass distribution is performed by reduc-
ing the kinematics of the displacement associated with the kinetic energy
(while the kinematics associated with the elastic energy is not modified).
For instance, if for a deformable structure the kinematics of the kinetic en-
ergy is reduced to homogeneous displacements for the three directions, then
the total mass of the structure is equivalent a point mass associated with
three DOFs corresponding to three spacial averagings of the displacement
along the three directions (see first particular case below). As a consequence
the structure associated with this new kinetic energy will only exhibit three
global elastic modes. A complementary kinematic reduction can be associ-
ated with each kinematic reduction. Then the kinematic reduction and the
complementary kinetic reduction allows to split the kinetic energy into (1)
a reduced kinetic which is used for the construction of the global basis and
(2) a complementary kinetic energy which is used for the construction of the
local basis.
From a mathematical point of view, the kinematic reduction and the com-
plementary kinematic reduction correspond to a projection operator and its
complementary projection operator respectively. This framework allows :
- to construct kinematic reductions that make the reduced kinetic energy as
closed as possible to the original kinetic energy.
- to split properly the kinetic energy into a reduced kinetic and a comple-
mentary kinetic energy.
- to obtain a global basis and a local basis for which the union forms a basis
of the admissible displacements space.
In this Section, we first present the construction of the kinematic reduc-
tions using projection operators. For a given class of kinematic reductions,
the optimal one is constructed as the one that minimizes the kinetic energy
associated with the errors introduced by the kinetic reduction. Three par-
ticular interesting cases are developed. Then the reduced kinetic energy and
the complementary reduced kinetic energy are constructed by projecting the
initial kinetic energy using the kinematic reduction and the complementary
kinetic reduction. Finally, a global eigenvalue problem and a local eigenvalue
problem can be constructed by replacing the original kinetic energy by the
reduced kinetic energy and the complementary kinetic energy respectively
(the elastic energy is kept exact). These two eigenvalue problems are solved
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separately and their solutions provide a global basis and a local basis which
are independent and for which the union forms a basis of the admissible
displacements space.

3.2. Kinematic reduction of the kinetic energy.

3.2.1. General methodology

Let H be the subspace of Hcomp of real square integrable functions and
V be the subspace of Vcomp made of real functions. The kinematic reduction
is performed using the projection operator u 7→ hr(u) defined on H with
values in a nr-finite dimension subspace Hr of H. Then the complementary
projection operator u 7→ hc(u) = u − hr(u) defined on H with values in a
subspace Hc of H can also be constructed. Let ur = hr(u) and uc = hc(u).
By construction we have H = Hr ⊕Hc.

We now have to construct the projection operator hr. Let m(u,v) =
∫

R3 ρ(x)u(x).v(x)dx be the mass symmetric positive-definite bilinear form
defined onH×H. Let endow the spaceH with the inner-product < u,v >m=
m(u,v) with associate norm ‖ u ‖m= m(u,u)1/2. Then the projection ur(x)
of function u(x) is constructed as the function minimizing the distance ‖
u− ur ‖m in which ur belongs to Hr. Physically, this construction consists
in minimizing the kinetic energy of the error associated to the projection.
Let {gr

1(x), . . . , g
r
nr
(x)} be a basis of Hr and let [G] = [gr

1 . . . gr
nr
]. Then any

function ur of Hr can be written as

ur(x) = [G(x)] δ(u) , (3)

where the vector δ(u) contains the coordinates of ur in the basis {gr
1(x), . . . ,

gr
nr
(x)} which correspond to dynamical degrees of freedom related to the

kinematic reduction. We then have to calculate the optimal vector δopt(u)
which is solution of the minimization problem

δopt(u) = arg min
δ∈Rnr

‖ u− [G] δ ‖2m . (4)

It can easily be shown that the solution of the mean-square minimization
problem (4) is given by

δopt(u) = [M]−1 c(u) , (5)
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where the matrix [M] and the vector c(u) are defined by

[M] = [

∫

R3

ρ(x) [G(x)]T [G(x)]dx] et c(u) =

∫

R3

ρ(x) [G(x)]Tu(x)dx .

(6)
Then the projection ur is written as

ur = hr(u) = [G][M]−1 c(u) , (7)

and the complementary projection uc is written as

uc = hc(u) = u− [G][M]−1 c(u) . (8)

The orthogonal projection theorem [2] states that (1) the solutions ur and
uc given by Eqs.(7) and (8) exist and are unique and (2) for all vr in Hr

m(uc,vr) = 0, (9)

and thus
m(uc,ur) = 0. (10)

The reduced mass bilinear form mr(u,v) is defined by

mr(u,v) = m(ur,vr) , (11)

Then using the decomposition u = ur + uc and Eq.(10), we have

mr(u,v) = m(u,vr) = m(ur,v) . (12)

This reduced mass bilinear form can be expressed as

mr(u,v) = δopt(u)T [M]δopt(v) = c(u)T [M]−1c(v) . (13)

Similarly, the complementary bilinear form mc(u,v) is defined by

mc(u,v) = m(uc,vc) = m(u,vc) = m(uc,v) . (14)

Using Eq.(10), we then have

mc(u,v) = m(u,v)−mr(u,v). (15)
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This relation shows that the initial kinetic energy (represented by the mass
bilinear form) is split into a reduced kinetic energy (represented by the re-
duced mass bilinear form) and a complementary kinetic energy (represented
by the complementary mass bilinear form).

3.2.2. Particular cases

The matrix [M] and the vector c(u) depend on the choice for the sub-
space Hr. The particular case that are developed below correspond to ap-
proximations which are based on the decomposition of the domain Ω into
nJ non-overlapping subdomains Ωj . The size of these subdomains controls
the size of the smallest spatial wavelengths for the displacements that will
be kept in the global basis. For these particular cases, only the projection
operators are derived. The complementary projection operators are deduced
easily using Eq. (8).
Particular case 1: Uniform displacement in each subdomain.

For this first case, the displacement u is approximated by a displacement ur

which is uniform in each subdomain Ωj:

ur(x) =

nJ
∑

j=1

1lΩj
(x)u0,j(u) . (16)

In this case δ(u) = (u0,1(u)
T , . . . ,u0,nJ

(u)T )T and nr = 3nJ . We then have
[G(x)] = [1lΩ1

(x) [I3], . . . , 1lΩnJ
(x) [I3]] and it can be shown that

[M] =







m1[I3] · · · 0
...

. . .
...

0 · · · mnJ
[I3]






, δopt(u) =







1
m1

∫

Ω1
ρ(x′)u(x′) dx′

...
1

mnJ

∫

ΩnJ

ρ(x′)u(x′) dx′






,(17)

where mj =
∫

Ωj
ρ(x) dx is the mass of subdomain Ωj . In Eq. (17), the

matrix [M] corresponds to the mass matrix of nJ uncoupled point masses
m1, . . . , mnJ

and the dynamical degrees of freedom δopt(u) correspond to
averagings, in each subdomain, of the displacement u with respect to the
mass density ρ. Finally, the projection ur of the displacement u is written
as

ur(x) =

nJ
∑

j=1

1lΩj
(x)

1

mj

∫

Ωj

ρ(x′)u(x′) dx′ , (18)
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and the corresponding reduced mass bilinear form is written as

mr(u,v) =

nJ
∑

j=1

mj ‖
1

mj

∫

Ωj

ρ(x′)u(x′) dx′‖2 . (19)

The projection defined by Eq. (18) for this first particular case corresponds
to the projection operator that has been presented in the previous papers
[4, 32] and can be interpreted as an averaging of the displacement u, in
each subdomain. It should be noted that the reduction of the kinetic energy
defined by Eq. (19) does not correspond to a classical mass lumping for which
the masses of the subdomains are concentrated at given master points. Here
the masses of the subdomains are distributed to dynamical degrees of freedom
which corresponds to averagings of the displacement.
Particular case 2: Rigid body displacement in each subdomain.

The previous particular case can be enriched by taking into account the
rotations of the subdomains which can become large in the mid-frequency
range. For this second particular case, these rotations are taken into account
by approximating the displacement u by a (small) rigid body displacement
in each subdomain Ωj:

ur(x) =

nJ
∑

j=1

1lΩj
(x) {u0,j(u) + u1,j(u)× (x− rj)} , (20)

in which (·×·) denotes the cross-product and where ri = (1/mj)
∫

Ωj
x ρ(x) dx

is the center of mass of subdomain Ωj . In this case, δ(u) = (u0,1(u)
T ,u1,1(u)

T , . . . ,
u0,nJ

(u)T ,u1,nJ
(u)T )T and nr = 6nJ . The reduced mass matrix is then de-

fined by

[M] =















m1[I3] 0 · · · 0 0
0 [J1] · · · 0 0
...

...
. . .

...
...

0 0 · · · mnJ
[I3] 0

0 0 · · · 0 [JnJ
]















, (21)

where [Jj] is the inertia matrix of subdomain Ωj such that

[Jj] = tr([Zj]) [I3]− [Jj], (22)
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in which [Zj ] is the (3× 3) matrix related to the Euler tensor and is defined
by

[Zj] =

∫

Ωj

(x− ri)(x− ri)
T ρ(x) dx. (23)

In Eq. (21), the reduced matrix [M] corresponds to the mass matrix of nJ

uncoupled rigid bodies. Finally, the projection ur of the displacement u is
written as

ur(x) =

nJ
∑

j=1

1lΩj
(x) {

1

mj

∫

Ωj

ρ(x′)u(x′) dx′

+ [Jj ]
−1(

∫

Ωj

ρ(x′)(x′ − rj)× u(x′) dx′)× (x− rj)} . (24)

It should be noted that the displacement u could be approximated by a large
rigid body displacement in each subdomain Ωj :

ur(x) =

nJ
∑

j=1

1lΩj
(x) {u0,j(u) + [Rotj(u)](x− rj)} , (25)

where [Rotj(u)] would be a rotation matrix. Unfortunately, using such an
approximation, the subspace Hr would not be a subspace of H (the linear
combination of two rotation matrix is not, in general, a rotation matrix).
Nevertheless, such an approximation, which corresponds to the construction
of Tisserand axes (see [11]) can be constructed under some hypotheses [11,
12] which ensure the existence and the uniqueness of the solution of the
minimization problem (4).
Particular case 3: Linear displacement in each subdomain.

This third particular case corresponds to a linear approximation of the dis-
placement u is each subdomain Ωj :

ur(x) =

nJ
∑

j=1

1lΩj
(x) {u0,j(u) + [T (u)] (x− rj)} , (26)

where [T (u)] is a (3 × 3) real matrix. Thus this third case corresponds
to a generalization of the previous case (for which the slope matrices were
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restricted to (3 × 3) real antisymmetric matrices). In this case, it can be
shown that the projection ur is written as

ur(x) =

nJ
∑

j=1

1lΩj
(x) {

1

mj

∫

Ωj

ρ(x′)u(x′) dx′

+ (

∫

Ωj

ρ(x′)u(x′) (x′ − rj)
T dx′)[Zj]

−1(x− rj)} , (27)

This third particular case could be generalized to higher-order polynomial
approximations in each subdomain Ωj .

3.3. Global eigenvalue problem and local eigenvalue problem.

The global basis and the local basis are constructed by solving two sep-
arated eigenvalue problem for which the kinetic energy (represented by the
mass bilinear form) is modified while the elastic energy (represented by the
stiffness bilinear form) is kept exact:
(1) The global basis is constituted of the global eigenmodes ϕg in V associated
with the global eigenvalues λg verifying for all v in V the following global
eigenvalues problem

−λgmr(ϕg, v) + k(ϕg, v) = 0 . (28)

By replacing the kinetic energy by the reduced kinetic energy (which is chosen
sufficiently rough) the mass is distributed to a small number of dynamical
degrees of freedom representing the global displacements of the structure.
Therefore the local displacements become massless and only global displace-
ments are kept in the global basis.
(2) The local basis is constituted of the local eigenmodes ϕℓ in V associ-
ated with the local eigenvalues λℓ verifying for all v in V the following local
eigenvalues problem

−λℓmc(ϕℓ, v) + k(ϕℓ, v) = 0 . (29)

By replacing the kinetic energy by the complementary reduced kinetic energy
the mass is distributed to local dynamical degrees of freedom. Therefore the
global displacements become massless and only local displacements are kept
in the local basis.
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The properties of these two eigenvalue problems have been studied in [32]
for the particular case 1 presented in Section 3.2.2 (uniform displacement
in each subdomain) only. It was proven that the global eigenvalue problem
admits nr finite solutions 0 < λg

1 ≤ . . . ≤ λg
nr

associated with the family
of global eigenmodes {ϕg

1, . . . , ϕ
g
nr
} and that the local eigenvalue problem

admits an infinite increasing sequence of solutions 0 < λℓ
1 ≤ λℓ

2 ≤ . . ., asso-
ciated with the family of local eigenmodes {ϕℓ

1, ϕ
ℓ
2, . . .}. It was also proven

in [32] that the family {ϕg
1, . . . , ϕ

g
nr
, ϕℓ

1, ϕ
ℓ
2, . . .} containing both the global

eigenmodes and the local eigenmodes is a basis of the space V and then any
function u in V can written as

u =

nr
∑

α=1

ϕg
αq

g
α +

+∞
∑

α′=1

ϕℓ
α′qlα′ . (30)

In [32], the proofs concerning these properties are based on the property
H = Hr⊕Hc . In the present paper, this property is verified by construction
and then the properties of the eigenvalue problems listed hereinbefore are
still verified.

A reduced-order model can then be constructed by truncation of the
global and local bases:

u ≃

ng
∑

α=1

ϕg
αq

g
α +

nℓ
∑

α′=1

ϕℓ
α′qℓα′ , (31)

in which ng ≤ nr is the number of global eigenmodes which are kept in the
global reduced-order basis and nℓ is the number of local eigenmodes which
are kept in local reduced-order basis.

4. Reduced-order computational model.

4.1. Full-order computational model.

The computational model is constructed using the FE method applied
to the variational formulation defined by Eq. (2). Let m be the number of
DOFs. Then, for all ω ∈ B, the vector U(ω) in Rm is the solution of the
following matrix equation

(−ω2[M] + iω[D] + [K])U(ω) = F (ω) , (32)
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in which [M], [D] and [K] are the (m ×m) positive-definite mass, damping
and stiffness matrices corresponding to the FE discretization of the mass,
damping and stiffness sesquilinear forms (m, d and k) and where F(ω) is the
vector of the external forces corresponding to the FE discretization of the
antilinear form g of the external forces.

4.2. Global and local reduced-order bases.

For the FE discretization, the kinetic energy is represented by the mass
matrix [M]. We then have to reduce the kinematic for the mass matrix in
order to construct a reduced mass matrix [Mr] and a complementary matrix
[Mc]. There are three strategies in order to construct these two modified
mass matrices:
(1) The first one consists in directly constructing a FE discretization of the
reduced mass bilinear form mr and the complementary mass bilinear form
mc defined by Eqs. (11) and (14).
(2) The second one consists in constructing a FE discretization of the pro-
jection operators hr and hc defined by Eqs. (7) and (8) yielding the (m×m)
projection matrices [Hr] and [Hc] respectively. Then the reduced and com-
plementary matrices are constructed such that [Mr] = [Hr]T [M][Hr] and
[Mc] = [Hc]T [M][Hc].
(3) The third one, which is the one adopted here, consists in directly con-
structing a projection operator U 7→ hr(U) with values in a nr-dimension
subspace Yr of Rm and a complementary projection operator U 7→ hc(U) =
U − hr(U) with values in a nc-dimension subspace Yc of Rm such that
m = nr + nc and Rm = Yr ⊕ Yc. Then by equipping Rm with the inner-
product < U,V >M= U

T [M]V with associated norm ‖ U ‖M=< U,U >
1/2
M

and by introducing a basis {gr
1, . . . , g

r
nr
} of Yr, the projection Ur of vec-

tor U is constructed by minimizing the error ‖ U − [G] δ ‖2
M
, in which

[G] = [gr
1, . . . , g

r
nr
] and where δ is the vector of the coordinates of Ur in

the basis {gr
1, . . . , g

r
nr
}. It can then be shown that Ur = [Hr]U in which

[Hr] = [G]([G]T [M][G])−1[G]T [M] is a (m × m) nr-rank matrix and U
c =

[Hc]U in which [Hc] = [Im]− [Hr] is a (m ×m) nc-rank matrix. This third
strategy is easier to implement than the two previous one. Furthermore it
allows the orthogonality property

(Uc)T [M]Ur = 0

to be verified exactly. Then, similarly to the second strategy, the reduced
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and complementary mass matrices are constructed such that

[Mr] = [Hr]T [M][Hr] = [M][Hr] = [Hr]T [M]. (33)

and
[Mc] = [Hc]T [M][Hc] = [M][Hc] = [Hc]T [M]. (34)

The rank of [Mr] is nr and the rank of [Mc] is nc.
The global eigenvectors φg ∈ Rm which form the global basis are solutions

the following global generalized eigenvalue problem

[K]φg = λg[Mr]φg . (35)

This problems admits a family of nr positive finite eigenvalues 0 < λg
1 ≤

. . . ≤ λg
nr
, associated with the family of global eigenvectors {φg

1, . . . ,φ
g
nr
}.

The local eigenvectors φℓ ∈ Rm which form the local basis are solutions
the following local generalized eigenvalue problem

[K]φℓ = λℓ[Mc]φℓ . (36)

This problems admits a family of nc positive finite eigenvalues 0 < λℓ
1 ≤

. . . ≤ λℓ
nc
, associated with the family of global eigenvectors {φℓ

1, . . . ,φ
ℓ
nc
}. It

should be noted that by using a subspace iteration algorithm to solve these
two eigenvalue problems, the full matrices [Mr] et [Mc] do not need to be
assembled.

It is shown in Appendix A that the global basis and the local basis are
linearly independent. Then, since m = nr + nc, the union of these two bases
is a basis of Rm and can be used to construct an approximation of vector U
at order (ng, nℓ) such that

U
(ng,nℓ) =

ng
∑

α=1

qgαφ
g
α +

nℓ
∑

β=1

qℓβ φ
ℓ
β , (37)

where qg1 , . . . , q
g
ng

are the global coordinated qℓ1, . . . , q
ℓ
nℓ

are the local coordi-
nates. The latter equation can be rewritten as

U
(ng ,nℓ) = [Φg]qg + [Φℓ]qℓ , (38)

where [Φg] = [φg
1, . . . ,φ

g
ng
], [Φℓ] = [φℓ

1, . . . ,φ
ℓ
nℓ
], qg = (qg1 , . . . , q

g
ng
) and qℓ =
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(qℓ1, . . . , q
ℓ
nℓ
).

4.3. Reduced-order matrix equation.

The reduced-order model is constructed by projecting matrix equation
(32) using the global basis and the local basis. Let nt = ng + nℓ and let
q(ω) = (qg(ω) ,qℓ(ω)) be the vector of the nt generalized coordinates. Then,
for all ω in B, vector q(ω) is solution the following reduced matrix equation

(−ω2[M ] + iω[D] + [K])q(ω) = f̃(ω) , (39)

where [M ], [D] and [K] are the (nt×nt) positive-definite mass, damping and
stiffness generalized matrices defined by block as follows

[M ] =

[

Mgg Mgℓ

(Mgℓ)T M ℓℓ

]

, [D] =

[

Dgg Dgℓ

(Dgℓ)T Dℓℓ

]

, [K] =

[

Kgg Kgℓ

(Kgℓ)T Kℓℓ

]

.

(40)
Let A (or A) denote M , D or K (or M, D or K). Then the global, local and
coupling blocks are respectively defined by

[Agg]αβ = (φg
α)

T [A]φg
β , [A

ℓℓ]αβ = (φℓ
α)

T [A]φℓ
β , [A

gℓ]αβ = (φg
α)

T [A]φℓ
β . (41)

The blocks [Kgg] and [Kℓℓ] are diagonal by construction. The vector of
the generalized forces is written as f̃(ω) = (f̃g(ω) , f̃ ℓ(ω)) where f̃gα(ω) =
(φg

α)
T
F(ω) and f̃ ℓα(ω) = (φℓ

α)
T
F(ω).

5. Stochastic reduced-order computational model.

Several types of uncertainties may exist for a computational model rep-
resenting a family of nominally identical dynamical structures:
- The parameters uncertainties are induced by (1) the variability of some
parameters of the structure that may exist between two specimens of the
structure (induced by the manufacturing tolerances, damage or transforma-
tion occurring during the life cycle, ...), (2) by the lack of knowledge related
to these parameters (such epistemic uncertainties may be reduced if more
experimental data are available) and (3) by a natural randomness that may
exist inside one specimen of the structure (random forces, random configu-
rations during the cycle of life, ...).
- The model uncertainties are due to the modelling choices that have been
done during the construction of the computational model: constitutive laws,
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geometry details, boundary conditions, and so on.
- The experimental uncertainties are concerned if the computational model
is updated using experimental data. In this case, the experimental data may
be uncertain due to the measurement errors, the choice of the experimental
configuration, and so on.
The present paper is only focused of parameters uncertainties and model un-

certainties. In a complex system such as an automotive vehicle, there exit a
large amount of possible sources of both parameters uncertainties and model

uncertainties. It is then very difficult to try to model separately each source
of uncertainty. In the present paper, all the sources of uncertainties are
taken into account by constructing a probabilistic model of uncertainties at
the reduced-order model level directly by using a non-parametric probabilis-
tic approach for which the matrices of the reduced-order model are replaced
by random matrices (see [30]). One of the advantages of this method is that
the probabilistic model of all the sources of uncertainties are controlled by
a small numbers of dispersion parameters. This feature facilitates an ex-
perimental identification (if experimental data are available) or a sensitivity
analysis.

The objective here is to take the advantages of the global/local separa-
tion that has been introduced previously in order to control separately the
level of fluctuations for the global displacements and the level of fluctuations
for the local displacements. In [32], a global/local probabilistic model was
proposed in which only the global and local blocks of the generalized ma-
trices are replaced by random matrices while the coupling blocks are kept
deterministic. In the approach that is proposed below the probabilistic mod-
eling is improved by adding a probabilistic modeling of the coupling blocks.
The proposed construction ensures the positive-definiteness of the random
generalized matrices.

The blocks of the generalized matrices in Eq. (41) can be rewritten as

[Agg] = [P g]T [A][P g], [Agℓ] = [P g]T [A][P ℓ], [Aℓℓ] = [P ℓ]T [A][P ℓ], (42)

where [P g] and [P ℓ] are projection matrices on the global coordinates and
local coordinates respectively and are then such that [P g] = [Ing

0nℓ
] et [P ℓ] =

[0ng
Inℓ

]. The probabilistic model of uncertainties is constructed using a non-
parametric probabilistic approach in which the matrix [A] is replaced by (1)
the random matrix [Ag] for the global contributions and (2) the matrix [Aℓ]
for the local contributions (see Appendix B for the generation of independent
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realizations of positive-definite randommatrices). The Cholesky factorisation
of these matrices yields

[Ag] = [Lg
A]

T [Lg
A], [Aℓ] = [Lℓ

A]
T [Lℓ

A] . (43)

The deterministic blocks in Eq. (41) are then replaced by the following ran-
dom blocks

[Agg] = [P g]T [Ag][P g], [Agl] = [P g]T [Lg
A]

T [Lℓ
A][P

ℓ], [Aℓℓ] = [P ℓ]T [Aℓ][P ℓ],
(44)

The randomness of the random coupling blocks [Agℓ] is then due to both the
global randomness and the local randomness. Then, the random matrix [A]
is written as

[A] =

[

Agg Agℓ

(Agℓ)T Aℓℓ

]

= [Lg
AP

g Lℓ
AP

ℓ]T [Lg
AP

g Lℓ
AP

ℓ] , (45)

which shows that random matrix [A] is positive definite almost surely. The
probabilistic model of uncertainties for random matrix [A] is controlled by
two dispersion parameters δA,g and δA,ℓ which are associated with the ran-
dom matrices [Ag] and [Aℓ] respectively. Then considering the three random
matrices [M], [D] and [K], the complete probabilistic model of uncertainties
is controlled by six dispersion parameters δM,g, δM,ℓ, δD,g, δD,ℓ, δK,g and δK,ℓ.
These six parameters allows to control the level of fluctuations of the global
displacements and the level of fluctuations of the local displacements sepa-
rately for each random operator. Concerning the values of these parameters
two situations may exist:
- If experimental data are available then the dispersion parameters can be
identified by solving an inverse stochastic problem (maximum likelihood
method for instance). Since the dispersion parameters are related to a non-
parametric model of all the sources of uncertainties, the identified values can
be used for other computational models related to structures which are simi-
lar to the structure that has been used to identify the dispersion parameters.
Indeed such an identification is very expensive and can not be performed for
each designed structure.
- If no experimental data is available then a sensitivity analysis with respect
to uncertainties can be performed by analysing the response of the stochastic
computational model for several sets of values for the dispersion parameters.
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6. Application.

In this section the methodology is validated through a numerical applica-
tion which is relatively simple but presents two structural scales which allow
the presence of both (1) global displacements and (2) non-negligible local
displacements even for low frequencies. The nominal and stochastic compu-
tational models are constructed. For this application, the stochastic model
is used to perform a sensitivity analysis with respect to the global and the
local uncertainties. For a real structure for which experimental data would
be available, the value of the dispersion parameters could be identified and
the uncertainty on the outputs could be quantified.

6.1. Nominal computational model.

The mesh of the FE model is represented on Figure 1. This structure is

Figure 1: FE mesh of the nominal computational model.

made up of and (1) Euler beams (thick black lines on Fig. 1) which constitute
the master stiff part and (2) Kirchhof plates which constitutes flexible sub-
structures. The plates are curved (but the elements are flat) and have differ-
ent deterministic prescribed values for the Young’s modulus within the range
[6.01, 6.74] × 1010 Pa . The bottom-front line and the bottom-rear line are
fixed (see Fig. 2). The frequency band of analysis is B = 2π×]0 , 200] rad/s.
The structure has m = 5, 844 DOF. In the frequency band ]0 , 247] Hz, the
nominal computational model has 250 classical elastic modes.
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Figure 2: Fixed parts (red line), excitation point (green) and observation points (bleu).

6.2. Reduced-order computational model.

The global basis and the local basis are constructed using the method-
ology introduced in Sections 3 and 4. Three types of kinematic reduction
corresponding to the three particular cases developed in Section 3.2.2 are
analysed. Each one is based on a decomposition of the domain into 30 sub-
domains (see Fig. 3). These subdomains are constructed using the Fast
Marching method (see [15, 26, 1]) which allows to propagate fronts from a
set of initial points. The Kinematic 1 corresponds to a uniform displacement
in each subdomain (first particular case in Section 3.2.2), the Kinematic 2
corresponds to a rigid body displacement in each subdomain (second par-
ticular case in Section 3.2.2) and the Kinematic 3 corresponds to a linear
displacement in each subdomain (third particular case in Section 3.2.2). For
Kinematic 1, the structure exhibits 30 global eigenvectors and 235 local eigen-
vectors in the frequency band ]0 , 247] Hz. For Kinematic 2, the structure
exhibits 46 global eigenvectors and 223 local eigenvectors in the frequency
band ]0 , 247] Hz. For Kinematic 3, the structure exhibits 59 global eigenvec-
tors and 214 local eigenvectors in the frequency band ]0 , 247] Hz. Since global
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Figure 3: Decomposition of the domain into 30 subdomains. Each color represents a
subdomain.

eigenvectors and local global eigenvectors are not classical elastic modes, the
total number of global eigenvectors and local eigenvectors in ]0 , 247] Hz is not
equal to number of classical elastic modes in ]0 , 247] Hz. For Kinematic 2,
the histogram of the global eigenfrequencies and the histogram of the local
eigenfrequencies are plotted on Fig. 4. It can be seen that in the frequency
band ]0 , 247] Hz the global eigenvectors and local eigenvectors overlap com-
pletely. For Kinematic 2, global eigenvector φg

1 and φ
g
16 are plotted on Fig. 5

(these two eigenvectors are flexural modes of structure around y-direction
and z-direction respectively) and local eigenvector φl

1 and φl
64 are plotted

on Fig 6 (these two local eigenvectors are localized on the front plate and
on the roof respectively). A force equal to 1 N is applied at an excitation
point Pexc (see Fig. 2) along y-direction. A Rayleigh damping model with
damping rate 0.04 at frequencies 30 Hz and 200 Hz is used to construct the
damping matrix. The frequency response is calculated along y-direction at
two observation points: (1) Pobs1 located on the stiff master part of the
structure and (2) Pobs2 located on a flexible panel (see Fig. 2). For Kine-
matic 1, Kinematic 2 and Kinematic 3, the frequency response is calculated
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Figure 4: Modal density for the global eigenfrequencies (grey) and the local eigenfrequen-
cies (black).

Figure 5: Global eigenvectors φg
1
and φ

g
16
.

Figure 6: Local eigenvectors φl
1 and φl

64.
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using different projection bases: Global eigenvectors only (ng = 30 for Kine-
matic 1, ng = 46 for Kinematic 2, ng = 59 for Kinematic 3 and nℓ = 0),
local eigenvectors only (ng = 0, nℓ = 235 for Kinematic 1, nℓ = 223 for Kine-
matic 2 and nℓ = 214 for Kinematic 3) and both global and local eigenvectors
(ng = 30 for Kinematic 1, ng = 46 for Kinematic 2, ng = 59 for Kinematic 3,
nℓ = 235 for Kinematic 1, nℓ = 223 for Kinematic 2 and nℓ = 214 for Kine-
matic 3). The responses for Kinematic 1 are plotted on Fig. 7, the responses
for Kinematic 2 are plotted on Fig. 9 and the responses for Kinematic 3 are
plotted on Fig. 10. For point Pobs1, the three first resonances correspond
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Figure 7: Kinematic 1: Frequency response at points Pobs1 (left figure) and Pobs2 (right
figure). Exact response (thick solid line), response with global eigenvector (dashed line),
response with local eigenvectors (mixed line) and response with both global and local
eigenvectors (thin solid line, superimposed with exact response almost everywhere).

to global elastic modes. It can be seen on figures 7 and 9 that:
- For point Pobs1 located in the master stiff part of the structure, the con-
tributions of the local displacements are small while for point Pobs2 located
in the flexible part, the contributions of the local displacements are larger.
- The union of the global eigenvectors and the local eigenvectors allows to
compute responses which are very closed to the exact responses. The small
differences are due to truncation effects of the global basis and the local basis.
- The Kinematic 2 which corresponds to a finer kinematic reduction for the
kinetic energy than Kinematic 1 allows a better global/local separation to
be performed. Indeed, it can be seen that for the Kinematic 1, in the low
frequency range, the local eigenvectors tend to synthesise resonances corre-
sponding to global displacements. That is not the case for Kinematic 2. The
Kinematic 3 which corresponds to a finer kinematic reduction than Kine-
matic 2 allows to improve a little more the global/local separation.
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Figure 8: Kinematic 2: Frequency response at points Pobs1 (left figure) and Pobs2 (right
figure). Exact response (thick solid line), response with global eigenvector (dashed line),
response with local eigenvectors (mixed line) and response with both global and local
eigenvectors (thin solid line, superimposed with exact response almost everywhere).
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Figure 9: Kinematic 3: Frequency response at points Pobs1 (left figure) and Pobs2 (right
figure). Exact response (thick solid line), response with global eigenvector (dashed line),
response with local eigenvectors (mixed line) and response with both global and local
eigenvectors (thin solid line, superimposed with exact response almost everywhere).

6.3. Stochastic reduced-order computational model.

The Stochastic reduced-order computational model is constructed for
Kinematic 2 only. The random response is analysed using the Monte Carlo
simulation method with ns = 1000 realizations, for three cases: (1) For the
first one, only the global blocks are random with δM,g = δD,g = δK,g = 0.2
and δM,ℓ = δD,ℓ = δK,ℓ = 0, (2) for the second one, only the local blocks
are random with δM,g = δD,g = δK,g = 0 and δM,ℓ = δD,ℓ = δK,ℓ = 0.2
and (3) the third one, both the global and local blocks are random with
δM,g = δD,g = δK,g = 0.2 and δM,ℓ = δD,ℓ = δK,ℓ = 0.2. The random response
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for these three cases are plotted on figures 10-12. It can be seen on Fig. 10
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Figure 10: Random global blocks, deterministic local blocks: Random frequency response
at points Pobs1 (left figure) and Pobs2 (right figure). Mean response (thick solid line) and
confidence region with probability level 0.95 (thin solid lines).
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Figure 11: Deterministic global blocks, random local blocks: Random frequency response
at points Pobs1 (left figure) and Pobs2 (right figure). Mean response (thick solid line) and
confidence region with probability level 0.95 (thin solid lines).

that the randomness on the global blocks yields fluctuations of the random
response in all the frequency band B. Indeed the global eigenfrequencies are
regularly spaced in all the frequency band B. Figure 11 shows that for point
Pobs1 located on the stiff part, the randomness on the local blocks yields fluc-
tuations of the random response mainly in the frequency band ]75 , 200] Hz
where the local contributions are more important. For point Pobs2 located
on the flexible part, the randomness on the local blocks yields large fluctu-
ations in all the frequency band ]0 , 200] Hz with a smoothing of the mean

25



0 50 100 150 200

−6.5

−6

−5.5

−5

−4.5

−4

Frequency (Hz)

V
el

oc
ity

 (
m

s−
1 H

z−
1 )

0 50 100 150 200

−7

−6

−5

−4

−3

Frequency (Hz)

V
el

oc
ity

 (
m

s−
1 H

z−
1 )

Figure 12: Random global blocks, random local blocks: Random frequency response at
points Pobs1 (left figure) and Pobs2 (right figure). Mean response (thick solid line) and
confidence region with probability level 0.95 (thin solid lines).

response for large frequencies. In Fig. 12, the global randomness and the lo-
cal randomness are cumulated yielding fluctuations in all the frequency band
]0 , 200] Hz with larger fluctuations in the frequency band ]75 , 200] Hz where
the local contributions are more important.

7. Conclusions.

A new methodology for the construction of a probabilistic reduced-order
model adapted to the low- and mid-frequency structural dynamics has been
presented. The projection operators which are needed for the construction
of the global eigenvalue problem and the local eigenvalue problem are con-
structed by minimizing the kinetic energy of the error induced by the kine-
matic reduction. Several classes of kinematic reduction can be constructed.
The application shows that the rigid body kinematic reduction allows a good
global/local separation to be performed. Then a probabilistic model of uncer-
tainties can be implemented using a non-parametric approach for the global
matrix blocks and the local matrix blocks separately allowing to control the
global fluctuations and the local fluctuations separately. This possibility of
controlling these two types of fluctuation is of most importance since, in
general, the local displacements are more sensitive to uncertainties than the
global displacements.
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Appendix A. Independence of the global basis and the local basis.

It is shown here that the global basis {φg
1, . . . ,φ

g
nr
} is linearly independent

of the local basis {φℓ
1, . . . ,φ

ℓ
nc
}.

Let u = aφg
α+bφℓ

β with (a, b) ∈ R2, α ∈ {1, . . . , nr} and β ∈ {1, . . . , nc}.
We then have to show that u = 0 implies that a = 0 and b = 0. We have
u = 0 implies that a[K]φg

α + b[K]φℓ
β = 0 which implies that aλg

α[M
r]φg

α +

bλl
β[M

c]φℓ
β = 0. Then using Eqs. (33) and (34), this implies that [M](aλg

α[H
r]φg

α+

bλl
β[H

c]φℓ
β) = 0 and then since matrix [M ] is positive-definite aλg

α[H
r]φg

α +

bλl
β[H

c]φℓ
β = 0. The term aλg

α[H
r]φg

α belongs to the subspace Yr and the

term bλl
β [H

c]φℓ
β belongs to the subspace Yc. Since we have Rm = Yr ⊕ Yc,

this implies that these two terms are both zero. Finally, the global eigen-
frequencies and the local eigenfrequecies being strictly positive, it can be
concluded that a = 0 and b = 0.

Appendix B. Generator of independent realizations for normalized

symmetric positive-definite random matrices.

In this appendix, we recall the formulation [30] for the generator of in-
dependent realizations of symmetric positive-definite random matrices. Let
[A] be [Ag] or [Aℓ] introduced in Section 5 and for which the mean value is
denoted [A]. For more convenience, the random matrix [A] is normalized as
follow. Matrix [A] being positive definite, its Cholesky decomposition yields

[A] = [LA]
T [LA] , (B.1)

in which [LA] is an upper triangular matrix in the set Mnt
(R) of all the

(nt × nt) real matrices. Then, the random matrix [A] can be rewritten as

[A] = [LA]
T [G] [LA] , (B.2)

The random matrix [G] is written as [G] = [L]T [L], in which [L] is an upper
triangular random matrix with values in Mnt

(R) such that:
(1) random variables {[L]jj′, j ≤ j′} are independent;
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(2) for j ≤ j′, real-valued random variables [L]jj′ can be written as [L]jj′ =
σnt

Ujj′ in which σnt
= δA(nt+1)−1/2 and where Ujj′ is a real-valued Gaussian

random variable with zero mean and variance equal to 1;
(3) for j = j′, positive-valued random variables [L]jj can be written as
[L]jj = σnt

√

2Vj in which σnt
= δA(nt + 1)−1/2 and where Vj is a positive-

valued gamma random variable whose probabilty density function pVj
(v) with

respect to dv is written as

pVj
(v) = 1R+(v)

1

Γ(nt+1
2δ2

F

+ 1−j
2
)
v

nt+1

2δ2
A

−
1+j
2 e−v , (B.3)

in which δA is the dispersion parameter defined by

δA =
{ 1

nt
E{‖[G]− [Int

]‖}2F

}1/2

, (B.4)

and which has to be chosen such that

0 < δA <
√

(nt + 1)(nt + 5)−1 . (B.5)
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