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A bounded automorphism of a field or of a group with trivial almost-centre is definable. In an expansion of a field by a Pfaffian family F of additive endomorphisms such that the algebraic closure of any F-substructure in the expansion coincides with relative field-theoretic algebraic closure, a bounded ring endomorphism, possibly composed with a power of the Frobenius, is a composition of ring endomorphisms canonically associated to F.

Introduction

In [START_REF] Lascar | Les automorphismes d'un ensemble fortement minimal[END_REF] Lascar calls an automorphism σ of a structure M bounded if there is a small set A of parameters such that for all m ∈ M we have σ(m) ∈ acl(A, m). He shows that for a strongly minimal set M the subgroup aut f (M) of strong automorphisms (which fix acl eq (∅)) is simple modulo the normal subgroup of bounded automorphisms. This result was generalized in [START_REF] Evans | Simplicity of the automorphism groups of some Hrushovski constructions[END_REF] to structures with an integer dimension compatible with a notion of stationary independence.

More generally, given an invariant family Σ of partial types, an automorphism σ of a field K with simple theory is called Σ-bounded if there is a small set A of parameters such that for all m ∈ M we have σ(m) ∈ Σcl(A, m), where the Σ-closure Σcl(B) of B is the set of all elements b such that tp(b/B) is Σ-analysable. If Σ is the class of the algebraic types, then the Σ-closure is the algebraic closure, and Σ-bounded coincides with bounded. In [START_REF] Blossier | Sur les automorphismes bornés de corps munis d'opérateurs[END_REF] Blossier, Hardouin and Martín Pizarro show that for a field with of operators, any Σ-bounded automorphism is definable and obtained by composition of a power of the Frobenius with automorphisms among the operators or their inverses, where Σ is taken as the family of all partial types co-foreign to the generic types of the field. In particular, this yields a uniform proof of results of Lascar [START_REF] Lascar | Les automorphismes d'un ensemble fortement minimal[END_REF], Ziegler and Konnerth [START_REF] Konnerth | Automorphism groups of differentially closed fields[END_REF].

Of course, the definition of a bounded automorphism is meaningful for any permutation σ of a set X; it need not be induced by an automorphism of the ambient structure, nor preserve all the induced structure on X. Similarly, the definition of Σ-bounded is valid for any hyperdefinable set X in a simple theory; moreover we can freely choose Σ, but we should take Σ small with respect to X: for instance, any permutation of X is X-bounded. As a priori a Σ-bounded automorphism of a hyperdefinable set X M in a structure M need not extend to a Σ-bounded automorphism of X N in an elementary extension N (and even less so with the same small set A of parameters), one should suppose that M is at least |T (A)| + -saturated, in order not to have to change the model one is working in.

In this paper we shall generalize the main theorem of [START_REF] Blossier | Sur les automorphismes bornés de corps munis d'opérateurs[END_REF] in two directions. On the one hand, we consider group-theoretic Σ-bounded automorphisms of a hyperdefinable group G in a simple theory, where Σ is still the class of partial types (with parameters) co-foreign to the generic types of G. We show that if any non-trivial element has a centralizer of unbounded index (that is, if the almost centre Z(G) of G is trivial), then any Σ-bounded automorphism is definable.

On the other hand, we will look at bounded endomorphisms in an expansion of a field by a family F = {f i : i < α} of additive endomorphisms, such that (1) The family F is Pfaffian, that is f i (xy) is a linear combination of products f j (x)f k (y) with j, k < i, for all i < α.

(2) The algebraic closure of an F-substructure A in the sense of the expansion is equal to the relative field-theoretic algebraic closure of A. These conditions are satisfied in particular by

• differentially closed fields in characteristic zero with several commuting derivations [START_REF] Mcgrail | The model theory of differential fields with finitely many commuting derivations[END_REF]; • generic difference fields in any characteristic [START_REF] Chatzidakis | Model Theory of difference fields[END_REF];

• separably closed fields of finite imperfection degree with a p-base named [START_REF] Delon | Idéaux et types sur les corps séparablement clos[END_REF][START_REF] Wood | Notes on the stability of separably closed fields[END_REF]; • differential generic difference fields in characteristic zero, where the automorphism commutes with the derivation [START_REF] Bustamante Medina | Differentially closed fields of characteristic zero with a generic automorphism[END_REF][START_REF] Bustamante Medina | Rank and dimension in difference-differential fields[END_REF]; • fields with free operators in characteristic zero [START_REF] Moosa | Model theory of fields with free operators in characteristic zero[END_REF]. (For the Pfaffian condition, use [START_REF] Blossier | Sur les automorphismes bornés de corps munis d'opérateurs[END_REF]Proposition 1.4].) We shall show that any bounded endomorphism of K is the composition of endomorphisms canonically associated with functions in F, which moreover are linear combinations, followed by a power of the inverse of Frobenius. In the cases mentioned above, the endomorphisms (except for the Frobenius for the separably closed fields) will be surjective, and the associated automorphisms will be the automorphisms among the functions in F, and possibly the Frobenius.

Preliminaries

In this section we will recall some less known concepts and results for simple groups and theories. For more details, we refer to [START_REF] Wagner | Simple Theories[END_REF]. As usual, we will work in a monster model of a simple theory, and we fix an ∅-invariant family Σ of partial types with parameters.

Definition 1.1. The Σ-closure Σcl(A) of A is the collection of all hyperimaginaries a such that tp(a/A) is Σ-analysable.

We always have bdd(A) ⊆ Σcl(A), with equality if and only if Σ only contains algebraic types. In general one will choose a set Σ of partial types that are small with respect to X (in particular X ⊂ Σcl(∅)). Fact 1.2. [14, Lemma 3.5.3] The following are equivalent:

(1) tp(a/A) is foreign to Σ.

(

) a | ⌣A Σcl(A). (3) a | ⌣A dcl(aA) ∩ Σcl(A). (4) dcl(aA) ∩ Σcl(A) ⊆ bdd(A). 2 
Except in case of equality with the bounded closure, the Σ-closure has the size of the monster model. The equivalence (2) ⇔ (3) allows us to use only a small part. More properties of the Σ-closure can be found in [START_REF] Wagner | Some remarks on one-basedness[END_REF][START_REF] Palacín | Ample thoughts[END_REF], as well as a refinement into different levels. Now let G be a group hyperdefinable over ∅, and recall that the ambient theory is simple. Definition 1.4.

( We also recall the notion of the almost centre.

Definition 1.6. The almost centre of a hyperdefinable group G, denoted Z(G), is the characteristic subgroup of elements whose centralizer is of finite index in G.

In a simple theory, the approximate centre of G is hyperdefinable over the same parameters as G itself [START_REF] Wagner | Simple Theories[END_REF]Proposition 4.4.10].

Finally, we need Ziegler's lemma ([17, Theorem 1] for the stable abelian case, and [2, Lemma 1.2 and Remark 1.3] for the general case).

Fact 1.7. Let g and g ′ in G be such that g, g ′ and gg ′ are pairwise independent. Then the left stabilizers of g and gg ′ are equal, and commensurable with gStab(g ′ )g -1 , and all three are ∅-connected. Moreover, g is generic in the right coset Stab(g)g, which is bdd(∅)-hyperdefinable, and similarly for g ′ and gg ′ .

Σ-bounded group automorphisms

In this section G will still be a group hyperdefinable over ∅ in a simple theory; we shall asusme that it is sufficiently saturated. We let Σ be the class of all partial types co-foreign to generic types of G. (Since generic types have non-forking extensions that are translates of one another, co-foreign to one is equivalent to co-foreign to all.) In particular, if G has a regular generic type, Σ contains of all non-generic partial types.

Theorem 2.1. If Z(G) is trivial, then any Σ-bounded automorphism σ of G is hyperdefinable.
Proof. Let A be a set such that σ(g) ∈ Σcl(A, g) for all g in G, and recall that we shall need the ambient model to be |T (A)| + -saturated. Consider first g ∈ G generic over A, and g ′ ∈ G generic over A, g, σ -1 (g). Put A ′ = Σcl(A) ∩ bdd(A, g ′ , σ(g ′ )). According to Fact 1.3 we have g ′ , σ(g ′ ) |

⌣A ′ σ -1 (g), g. Since generics of G are foreign to Σ, the elements g and g ′ remain generic over A ′ . So g 0 = g ′ σ -1 (g) and σ(g 0 ) = σ(g ′ )g are both generic over A ′ , whence over A. Now choose g 2 generic in G over A, g 0 , and put g 1 = g -1 0 g 2 . Then g 0 , g 1 and g 2 = g 0 g 1 are pairwise independent over A. By Fact 1.3 their Σ-closures Σcl(A, g 0 ), Σcl(A, g 1 ) and Σcl(A, g 2 ) are pairwise independent over Σcl(A). In particular, (g 0 , σ(g 0 )), (g 1 , σ(g 1 )) and (g 2 , σ(g 2 )) are pairwise independent over Σcl(A), whence by Fact 1.3 also over

B = bdd(B) = Σcl(A) ∩ bdd(A, g 0 , σ(g 0 ), g 1 , σ(g 1 ), g 2 , σ(g 2 )).
Moreover, since the generic types of G are foreign to Σ, the elements g 0 , σ(g 0 ), g 1 and g 2 each remain generic over B.

For i ≤ 2 let S i = Stab(g i , σ(g i )/B) be the (left) stabilizer in G × G. So S i is connected over B by Fact 1.7, the right coset S • (g i , σ(g i )) is hyperdefinable over B, and the pair (g i , σ(g i )) is generic in that coset. Furthermore, S 0 = S 2 ; let S = S loc 0 be its locally connected component.

Since

g i , σ(g i ) | ⌣ bdd(A,gi,σ(gi))∩Σcl(A) B, S i is commensurable with Stab(g i , σ(g i )/bdd(A, g i , σ(g i )) ∩ Σcl(A)) for i = 0, 2,
whose locally connected component is also S. It follows that S and the coset S • (g i , σ(g i )) are hyperdefinable over bdd(A, g i , σ(g i )) ∩ Σcl(A) for i = 0, 2. Now g 2 was any generic over A, g 0 . So S is hyperdefinable over Σcl(A) ∩ bdd(A, a, σ(a)) for any generic a, and hence over Ā = Σcl(A) ∩ a generic bdd(A, a, σ(a)).

Note that since g 0 and σ(g 0 ) are generic over B, the projections of S 0 , and therefore S, to the first and to the second coordinate are generic in G, and thus subgroups of bounded index. Since σ(g 0 ) ∈ Σcl(A, g 0 ) and all generic types of S are translates of tp(g 0 , σ(g 0 )/B) over independent parameters, we have g ′ ∈ Σcl(B, g) for any generic (g,

g ′ ) of S over B. If h ∈ coker(S) = {g ∈ G : (1, g) ∈ S},
and (g, g ′ ) ∈ S is generic over B, h, then (g, g ′ h) is still generic over B, h, and h ∈ Σcl(B, g). Since h | ⌣B g we have h ∈ Σcl(B) = Σcl(A), and coker(S) ⊆ Σcl(A). Now let g ′′ ∈ G be arbitrary, and g ∈ G generic over Ā, g ′′ , σ(g ′′ ). We put g ′ = g -g ′′ and B ′ = Σcl(A) ∩ bdd(A, g, g ′ , σ(g), σ(g ′ )). So g and g ′ are generic over B ′ , and

(g, σ(g)) ∈ (S • (g ′ , σ(g ′ )) (g ′′ ,σ(g ′′ )) ∩ (S • (g, σ(g)).
As the two cosets S • (g, σ(g)) and S • (g ′ , σ(g ′ )) are hyperdefinable over B ′ ,

g, σ(g) | ⌣ B ′ g ′′ , σ(g ′′ )
by Fact 1.3, and (g, σ(g)) is generic in S • (g, σ(g)) over B ′ , the two groups S and S (λ,σ(λ)) are commensurable, and therefore equal by local connectivity. It follows that S is normalized by the subgroup {g, σ(g) : g ∈ G} ≤ G × G. In particular, if h ∈ coker(S), then h σ(G) ∈ coker(S) ⊂ Σcl(A). Now σ is an automorphism, therefore surjective, and h G ⊆ Σcl(A). So for g ∈ G generic over A, h we have g | ⌣A,h h g , since tp(g/A, h) is foreign to Σ. So C G (h) has bounded index in G, and h ∈ Z(G) = {1}. Thus coker(S) is trivial.

By Fact 1.5 the normalizer N G (S) is hyperdefinable. Since (g, σ(g)) normalizes S for all g ∈ G, the projection to the first coordinate of N G (S) is the whole of G. But for (h, h ′ ) ∈ N (S) and (g, g ′ ) ∈ S with g ′ ∈ G generic over h, σ(h), h ′ we have (g h , g ′h ′ ) ∈ S and (g h , g ′σ(h) ) ∈ S (h,σ(h)) = S.

Since coker(S) is trivial, we get g ′h ′ = g ′σ(h) and σ(h

)h ′-1 ∈ C G (g ′ ). Thus g ′ ∈ C G (σ(h)h ′-1 ). But g ′ is generic over σ(h), h ′ , so σ(h)h ′-1 ∈ Z(G) = {1} and h ′ = σ(h). Thus N G (S) hyperdefines σ.
Corollary 2.2. Let σ be a Σ-bounded automorphism of a field K hyperdefinable in a simple theory, where Σ is the class of partial types co-foreign to the generic types of K. Then σ is hyperdefinable.

Proof. Let G = K + ⋊ K × . So G is hyperdefinable, and Σ is also the set of partial types co-foreign to generics of G (which are pairs of two independent generics of K). Furthermore, Z(G) = {1}, and σ induces an automorphism τ : (a, b) → (σ(a), σ(b)) of G. According to the previous theorem τ is hyperdefinable, and so is σ.

Bounded endomorphisms of a field with operators

In this section we shall consider a hyperdefinable field K in a simple theory, together with a well-ordered family F = {f i : i < α} of additive endomorphisms. We assume that (1) The family F is K-free: if i λ i f i = 0 for λ i ∈ K, then λ i = 0 for all i < α.

(2) The family is K-Pfaffian, i.e. for all i < α there are a i j,k ∈ K with j, k ≤ i, almost all 0, such that

f i (xy) = j,k≤i a i j,k f j (x)f k (y).
Remark 3.1. If we start with a K-Pfaffian family that is not K-free, we can extract a K-free and K-Pfaffian subfamily. In particular, in positive characteristic we can assume that the Frobenius is part of F.

Lemma 3.2. If ῑ a ῑf i0 (x 0 ) • • • f in (x n ) = ῑ b ῑf i0 (x 0 ) • • • f in (x n ) for a ῑ, b ῑ ∈ K, then a ῑ = b ῑ for all ῑ = (i 0 , . . . , i n ).
Proof. By induction on n. If n =0, this is just K-freeness of F. We therefore assume the assertion true for n -1, and

ῑ a ῑf i0 (x 0 ) • • • f in (x n ) = ῑ b ῑf i0 (x 0 ) • • • f in (x n ). So 0 = in i0,...,in-1 (a ῑ -b ῑ)f i0 (x 0 ) • • • f in-1 (x n-1 ) f in (x n ).
If there is some k with ak = bk, then by induction hypothesis

g in (x 0 , . . . , x n-1 ) = i0,...,in-1 (a ῑ -b ῑ)f i0 (x 0 ) • • • f in-1 (x n-1 )
is not identically 0 for i n = k n , and there is ᾱ ∈ K n with g kn (ᾱ) = 0. But then in g in (ᾱ)f in (x n ) = 0, which again contradicts K-freeness of F. Corollary 3.3. The coefficients a i j,k are uniquely determined. Proof. Immediate. Remark 3.4. a i j,k = a i k,j for all j, k ≤ i, and j≤i a i j,k f j (1) = δ ki . Proof. The first equation follows from f i (xy) = f i (yx), and the second from f i (1y) = f i (y).

Corollary 3.5. For all i < α the function

σ i (x) = j≤i a i j,i f j (x)
is a ring endomorphism of K. Moreover, we can assume σ i ∈ F.

Proof. We have

f i (xy) = j,k≤i a i j,k f j (x)f k (y) = j≤i a i j,i f j (x)f i (y) + j≤i, k<i a i j,k f j (x)f k (y) = σ i (x)f i (y) + R(x, y), where R(x, y) = j≤i, k<i a i j,k f j (x)f k (y). Thus f i (xx ′ y) = σ i (xx ′ )f i (y) + R(xx ′ , y) = σ i (xx ′ )f i (y) + j≤i, k<i a i j,k ℓ,m≤j a j ℓ,m f ℓ (x)f m (x ′ ) f k (y) = σ i (xx ′ )f i (y) + j≤i, k<i ℓ,m≤j a i j,k a j ℓ,m f ℓ (x)f m (x ′ )f k (y) and f i (xx ′ y) = σ i (x)f i (x ′ y) + R(x, x ′ y) = σ i (x)σ i (x ′ )f i (y) + σ i (x)R(x ′ , y) + R(x, x ′ y) = σ i (x)σ i (x ′ )f i (y) + j≤i a i j,i f j (x) ℓ≤i, m<i a i ℓ,m f ℓ (x ′ )f m (y) + j≤i, k<i a i j,k f j (x) ℓ,m≤k a k ℓ,m f ℓ (x ′ )f m (y) = σ i (x)σ i (x ′ )f i (y) + j≤i ℓ≤i, m<i a i j,i a i ℓ,m f j (x)f ℓ (x ′ )f m (y) + j≤i, k<i ℓ,m≤k a i j,k a k ℓ,m f j (x)f ℓ (x ′ )f m (y).
Comparing the coefficient of f i (y), Lemma 3.2 yields

σ i (xx ′ ) = σ i (x)σ i (x ′ )
and σ i is a ring endomorphism of K. Note that σ i (1) = 1, so σ i is non-zero. The K-linear combinations of functions in F form a K-vector space with basis F. Since every family of (non-zero) ring endomorphisms of K is linearly independent, we can start another basis with (σ i : i < α) (eliminating any repetitions which might occur), followed by the functions of F, eliminating those which are already in the span of the previous ones together with (σ i : i < α). It is clear that this family is still Pfaffian, and K-free. Definition 3.6. We call σ i (x) = j≤i a i j,i f j (x) the endomorphism associated to f i . Note that the endomorphism associated with a ring endomorphism σ is σ itself, and the endomorphism associated with a derivation is the identity. Remark 3.7. [1, Corollary 1.5] If we well-order compositions of additive endomorphisms in F first by the length of the composition and then by lexicographic order of the indices of the functions of F used, the endomorphism associated to such a composition will be the composition of the associated endomorphisms of the functions in F.

The following lemma will not be used for the proof of the main theorem of this section.

Lemma 3.8. Any finite subfamily {f i : i ∈ I 0 } of F is contained in a finite Pfaffian subfamily {f i : i ∈ I}, with max I = max I 0 .

Proof. We put I -1 = ∅, and for n > 0 we build inductively a string of finite families

I 0 ⊆ I 1 ⊆ I 2 ⊆ • • • by posing I n+1 = I n ∪ {j < α : ∃ i ∈ I n ∃k a i j,k = 0}. Since the sequence max(I n \ I n-1
) is strictly decreasing, the sequence of the I n becomes stationary, and I = n<ω I n gives a Pfaffian family {f i : i ∈ I}. Theorem 3.9. Let K be a field, and F a Pfaffian family of additive endomorphisms of K. For A ⊆ K let A be the closure of A under all functions f ∈ F. We assume that acl(A) = A alg ∩ K, where acl is the algebraic closure in the sense of the structure (K, +, •, f : f ∈ F), and A alg is the field-theoretic algebraic closure. Then any bounded endomorphism σ of the field K satisfies an identity of the form

Frob j • σ = σ i ,
where σ i is a composition of associated endomorphisms of F, and the Frobenius.

Proof. We can assume that F is K-free, and that in positive characteristic the Frobenius is in F. Let B = acl(B) be parameters over which σ is bounded.

For all a ∈ K the image σ(a) is in

acl(Ba) = Ba alg ∩ K = (B ∪ a ) alg ∩ K.
By compactness, there is a finite number of polynomials (P i (x i , y) : i < ℓ) over B, and for all i < ℓ a sequence (f θi,j : j < |x i |) of compositions of functions in F such that for all a ∈ K there is i < ℓ with P i ( fθi,j (a), y) non-trivial in y, and satisfied by σ(a). Let K = K alg be the algebraic closure of K, and (f θi : i < n) the sequence of functions f θi,j , with f 0 = id. We consider the following additive subgroup of Kn+1 :

G = {((f θi (a) : i < n), σ(a)) : a ∈ K}.
Let Γ be its Zariski closure, and Γ 0 the connected component of Γ. Then Γ 0 is the Zariski closure of G 0 = Γ 0 ∩ G, and the latter is of finite index in G.

Since every element (x, y) of G satisfies an equation P i (x, y) = 0 (with a suitable enumeration of x), non-trivial in y, for some i < ℓ, the disjunction of these equations is generically satisfied in Γ 0 and non-trivial in y by [START_REF] Wagner | Subgroups of stable groups[END_REF]Remark 27].

However, the only proper additive algebraic subgroups of Kn+1 are given by additive polynomials. So there is a polynomial P ∈ K[X 0 , . . . , X n ] of the form P (x, x n ) = i≤n, j<ω λ i,j x p j i such that P x, x n ) = 0 is satisfied on Γ 0 , and such that P ( 0, x n ) is non-trivial.

Since G and G 0 are Gal(K)-invariant, so are Γ and Γ 0 , and we can assume that P has coefficients in the purely inseparable closure of K. By composing with a power of Frobenius, we can even suppose that P ∈ K[X 0 , . . . , X n ].

The function x → P ((f θi (x)) i<n , σ(x)) is an additive endomorphism of K whose image F is a finite additive subgroup. In characteristic zero F is trivial; in positive characteristic there is an additive nontrivial polynomial Q ∈ K[X] which vanishes on F . So Q(P ((f θi (x)) i<n , σ(x)) = 0 for all x ∈ K. Since F contains Frobenius in positive characteristic, we obtain a non-trivial equation of the form

i<n λ i f θi (x) = j<ω µ j σ(x) p j
satisfied on K (possibly with n and θ i different). We choose such an equation with

θ m = max{θ i : λ i = 0}
minimal. Moreover, we can assume that there is only one non-zero µ, since for j 0 maximal with µ j0 = 0 and a ∈ K transcendental, This proof is inspired by that of Blossier, Hardouin and Martin Pizarro [1, Théorème 3.1], but it uses the generic properties of the definable envelope (which here is equal to the Zariski closure) of [START_REF] Wagner | Subgroups of stable groups[END_REF] instead of the stabilizer. We need for our Theorem 3.9 only part of hypothesis 4 of [START_REF] Blossier | Sur les automorphismes bornés de corps munis d'opérateurs[END_REF] (the characterization of the algebraic closure) and we make no assumptions about the simplicity of the expansion; on the other hand, we assume from the beginning the Pfaffian property ([1, Proposition 1.4], which follows from their hypothesis 1). Note that we are not considering the inverses of automorphisms in F: we can always add them to F and preserve the Pfaffian property; and in the applications this will be necessary to obtain the characterization of the algebraic closure.

In order to obtain [1, Théorème 3.1] (note that bounded there means Σ-bounded in our sense), it suffices to see that any Σ-bounded automorphism of a simple field must be definable by Corollary 2.2, whence bounded, and then to apply Theorem 3.9.

Fact 1 . 3 .

 13 [START_REF] Wagner | Simple Theories[END_REF] Lemma 3.5.5] If A | ⌣B C then Σcl(A) | ⌣Σcl(B) Σcl(C). More precisely, for all A 0 ⊂ Σcl(A) we have A 0 | ⌣B 0 Σcl(C), where B 0 = dcl(A 0 B)∩Σcl(B).

i<n λ i f

  θi (ax)σ(a) p j 0 i<n λ i f θi (x) = j<j0 µ j [σ(a) p jσ(a) p j 0 ] σ(x) p j allows us to reduce the number of non-trivial µ j while preserving θ m by Corollary 3.7. Then we can take µ = 1, and i<n λ i f θi (x) = σ(x) p j for all x ∈ K.For all a ∈ K we have from Remark 3.7 thati<n λ i f θi (ax) = λ m σ θm (a)f θm (x) + θ<θm α θ f θ (x) = σ(ax) p j = σ(a) p j σ(x) p j for some coefficients α θ ∈ K that depend on a. If σ θm (a) = σ(a) p j , then [σ(a) p jσ θm (a)] σ(x) p j = λ m σ θm (a)f θm (x) + θ<θm α θ f θ (x)σ θm (a) i<n λ i f θi (x) = θ<θm α θ f θ (x) -i<n, i =m σ θm (a)λ i f θi (x)gives a equation with a smaller maximal θ, a contradiction. The theorem follows.

  1) Two hyperdefinable subgroups H and K are commensurable if their intersection is of bounded index in either one. (2) A hyperdefinable subgroup H is locally connected if it is equal to any commensurable group-theoretical or automorphic conjugate. Fact 1.5. [14, Corollary 4.5.16, Lemmas 4.5.18 and 4.5.19]

(1) A locally connected hyperdefinable subgroup of G has a canonical parameter. (2) The normalizer of a locally connected hyperdefinable group is again hyperdefinabe. (3) Any hyperdefinable subgroup H of G has a locally connected component H loc , which is the smallest hyperdefinable locally connected subgoup commensurable with H. Its canonical parameter is definable over the parameters used to hyperdefine H.
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