N
N

N

HAL

open science

Algebraic graph transformations for formalizing

ontology changes and evolving ontologies

Mariem Mahfoudh, Germain Forestier, Laurent Thiry, Michel Hassenforder

» To cite this version:

Mariem Mahfoudh, Germain Forestier, Laurent Thiry, Michel Hassenforder. Algebraic graph transfor-
mations for formalizing ontology changes and evolving ontologies. Knowledge-Based Systems, 2015,

73, pp.212-226. 10.1016/j.knosys.2014.10.007 . hal-01162612v2

HAL Id: hal-01162612
https://hal.science/hal-01162612v2
Submitted on 20 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01162612v2
https://hal.archives-ouvertes.fr

This is the author’s version of an article published in Knowledge-Based Systems. The final authenticated version is available
online at: http://dx.doi.org/10.1016/j.knosys.2014.10.007.

Algebraic graph transformations for formalizing
ontology changes and evolving ontologies

Mariem Mahfoudh, Germain Forestier, Laurent Thiry, Michel Hassenforder

MIPS EA 2332, Université de Haute Alsace
12 rue des Fréres Lumiére 68093 Mulhouse (France)

Abstract

An ontology represents a consensus on the representation of the concepts and axioms of a given domain. This consensus
is often reached through an iterative process, each iteration consisting in modifying the current version of the consensus.
Furthermore, frequent and continuous changes are also occurring when the represented domain evolves or when new
requirements have to be considered. Consequently, ontologies have to be adaptable to handle evolution, revision and
refinement. However, this process is highly challenging as it is often difficult to understand all affected ontology parts
when changes are performed. Thus, inconsistencies can occur in the ontology as the changes can introduce contradictory
axioms. To address this issue, this paper presents a formal approach for evolving ontologies using Typed Graph Gram-
mars. This method relies on the algebraic approach Simple PushOut (SPO) of graph transformations. It formalizes
the ontology changes and proposes an a priori approach of inconsistencies resolution. The modified ontology does not
need an explicit checking as an incorrect ontology version cannot actually be generated. To validate our proposal, an
implementation is presented using the Attributed Graph Grammar (AGG) toolbox.

Keywords:
Ontology Evolution, Typed Graph Grammars, Algebraic Graph Transformations, Consistency, AGG.

created and the number of versions of existing ontologies
is constantly increasing.

Generate a new ontology version is however not a triv-
ial task. It presents several challenges and requires a com-
prehensive study of the ontology model in order to man-
age its evolution. Ontologies Evolution is defined by Sto-
janovic et al. as the timely adaptation of an ontology to
the arisen changes and the consistent propagation of these
changes to dependent artefacts [8]. This process consists
in the modification of one or many ontology components
(class, property, axiom, individual, etc.) and it may be
at instances level (Ontology Population) and/or structural
level (Ontology Enrichment) [9]. Moreover, to preserve
ontology consistency, the application of ontology changes
must preserve all the ontology model constraints [8]. How-
ever, ontologies are often developed in a collaborative man-
ner and are usually large and expressive. This makes dif-
ficult for a user and/or ontologist to understand all their
affected parts (i.e. dependent entities) when changes are
made. Therefore, to keep ontology consistency, it is impor-
tant to have a mechanism that controls how the ontology

1. Introduction

Formalizing knowledge has always presented an exis-
tential obsession and an important challenge for humans.
The proposed solutions in the literature are mainly or-
ganized around databases, data warehouses and more re-
cently ontologies. Ontologies are often defined as an ex-
plicit specification of a conceptualization of a domain [1].
They make possible for a community to reach a consen-
sus and to bridge the gap of the vocabulary heterogeneity
and semantic ambiguities. Thanks to their advantages,
ontologies are used in a large range of fields such as: se-
mantic web [2], business decision support [3], image inter-
pretation [4], peer-to-peer networks [5], etc. A counterpart
of this popularity, is the constant augmentation of avail-
able ontologies. For example, the number of ontologies
on the BioPortal increased of 67% in 2013'. Furthermore,
as building an ontology is an iterative process [6, 7], the
creation of a new ontology actually creates a set of sev-

eral ontologies versions which is also consistently growing.
For example, 51 versions of the Gene Ontology (one of the
most successfully ontologies) are monthly released since
January 20102, Thus, more and more new ontologies are

1bioportal .bioontology.org/ontologies
2geneontology .org/ontology-archive

changes are made and avoids the possible inconsistencies
generated due to these changes.

The ontology languages such as Ontology Web Lan-
guage (OWL?) are prevalent in knowledge representation,

3u3.org/TR/owl-ref

http://dx.doi.org/10.1016/j.knosys.2014.10.007
bioportal.bioontology.org/ontologies
geneontology.org/ontology-arc​hive
w3.org/TR/owl-ref

although, they are not sufficient for formalizing changes.
They are indeed effective to capture static semantics but
not changes that require a consistency checking of the in-
teraction between ontologies entities. That is why, the
proposed approaches in the literature do not addressed
the inconsistencies issue [10] or used an a posteriori pro-
cess to identify inconsistencies [11, 12, 13], etc. Thus, un-
like previous approaches, this paper focuses on the critical
issue of presenting a formal approach for consistent on-
tologies evolution by using Typed Graph Grammars and
Algebraic Graph Transformations. Typed Graph Gram-
mars (T'GG) are a mathematical formalism that permits
to represent and manage graphs. They are used in sev-
eral fields of computer science such as software systems
modelling, pattern recognition and formal language the-
ory [14]. Recently, they started to be used in the ontology
field, in particular for the modular ontologies formaliza-
tion [15], Resource Description Framework graphs repre-
sentation [16], collaborative ontologies evolution [17] and
consistent ontologies evolution [18].

In our previous work [18], we have introduced the for-
malization of the ontology changes with Typed Graph
Grammars and have focused on the atomic changes. A
deeper study is presented in this paper which presents
an exhaustive list of the atomic ontology changes and de-
scribes how consistently formalize the composite and com-
plex changes. A comparison between the ontology changes
representation in the OWL and our TGG formalism is pre-
sented to highlight the advantages of the use of graph
grammars in the ontologies evolution process. Indeed,
TGG and algebraic graph transformations provide a new
way to formalize ontology changes and offer mechanisms
to control graph transformations while avoiding the incon-
sistencies. Furthermore, they can reduce the number of
elementary changes required to apply the composite and
complex changes. The proposed approach has been im-
plemented using a graph transformation tool Attributed
Graph Grammar (AGG). In addition, we also present a
mechanism to log the ontologies versions and ontology
changes with a formal representation. An application is
presented with the EventCCAlps ontology developed in
the frame of the CCAlps European project?.

The rest of the paper is organized as follow: Section 2
presents related work and introduces Typed Graph Gram-
mars and algebraic graph transformations. Section 3 pro-
poses a graph transformation model for evolving ontologies
and describes the formalization of ontology changes with
Typed Graph Grammars. Section 4 presents an applica-
tion using the EventCCAlps ontology. Section 5 evaluates
and discusses the proposed approach. Finally, a conclu-
sion summarizes the presented work and gives some per-
spectives.

4ccalps.eu, project reference number: 15-3-1-IT

2. Background and review

2.1. Related work

Managing ontologies evolution has been an important
and active field of research in the recent years [9]. The
approach of Stojanovic et al. [19] is considered as one of
the first works that have addressed this issue. It presents
a methodology in six phases: change capturing, change
representation, semantics of change, change implemen-
tation, change propagation and change validation. The
approach focuses on the KAON ontologies and identifies
three types of ontology changes: 1) atomic change is an
ontology change that affects a single ontology entity; 2)
composite change is an ontology change that modifies the
neighbourhood of an ontology entity; 3) complex change
is an ontology change that can be decomposed into ele-
mentary and composite ontology changes. Later, Klein et
al. [11] have proposed another classification. They distin-
guish two types of ontology changes: elementary (atomic)
and composite (complex). These changes can be spec-
ified via logging of incremental changes or by ontology
versions comparison. The authors have also studied the
problem of inconsistencies ontologies and proposed strate-
gies resolution for each ontology changes. However, it is
important to note that, the work is focused on the ”on-
tology enrichment” and do not specify specific operations
for the instances. Then, Luong et al. [20] have addressed
both the ”ontology enrichment” and the ”ontology pop-
ulation”. They have studied the evolution management
for a corporate semantic web while addressing the RDF®
(Resource Description Framework) ontologies. This choice
restricts the expressivity of the methodology as the others
ontology languages (such as OWL) require further types
of changes (cardinality changes, restrictions on the classes,
etc.). Thus, Djedidi et al. [12] have proposed an approach
of OWL ontologies evolution based on pattern conception.
They have studied both the atomic and composite changes
and have used the Pellet reasoner [21] to detect the in-
consistencies. A deeper study of the composite changes
is introduced by Javed et al. [22]. It has presented res-
olution strategies for several composite changes and has
described a layered change log for the explicit operational
representation of ontology changes. The change log is for-
malized using a graph-based approach and implemented by
OWLAPIC. To identify ontologies inconsistencies, Gueffaz
et al. [23] have proposed CLOCk (Change Log Ontology
Checker) approach which use model checking. A trans-
formation of the OWL ontologies into a specific language
NuSMV7 is needed. However, no strategies are proposed
to solve the inconsistencies. Recently, some researches are
interested to look for new formalisms to represent ontolo-
gies and find others alternatives to the standard ontology
languages. Then, Liu et al. [24] have introduced SetPi

5w3.org/RDF
Sowlapi.sourceforge.net
"nusmv.fbk.eu

calculus [25] to model ontologies evolution process. They
have represented ontologies by using SetPi entities and
have defined a new formalism for describing the ontology
changes. The work presents many ontology changes (basic
and composite). However, it does not study the inconsis-
tencies problem and do not proposes any implementation.
As a summary, various approaches have been proposed
to define and implement ontology evolution process. The
Table 1 presents a comparison of some approaches accord-
ing to the languages used, the implementation, the in-
consistency management and the specificities. Thus, we
can see that different ontology languages have been stud-
ied: KAON [8], RDF[20], OWL [11, 12, 22], etc. Based
on these languages, several ontology changes were defined
and different classification of theses changes were proposed
[8, 11]. Despite its importance, the problem of inconsis-
tencies resolution is not sufficiently studied. Indeed, some
works do not address this issue [10, 24]. Others approaches
are only focused on the inconsistencies identification [23].
Some researches are interested, in addition, to resolve the
inconsistencies [12, 20, 22]. However, they use a posteriori
process of inconsistencies resolution which require the im-
plementation of changes and then, use external resources
to check if the ontology consistency is affected or not. In
our work, we propose an a priori approach to avoid incon-
sistencies by using Typed Graph Grammars formalism.

2.2. Typed Graph Grammars

This section reviews the fundamental notions involved
in typed graph grammars and algebraic graph transforma-
tions.

Definition 1 (Graph). A graph G(V, E) is a structure
composed by a set of vertices V, a set of edges E and an
application s : B — V x V that attaches a source/target
vertex to each edge.

An attributed graph is a graph extended by a set of
attributes name att, a set of possible values val and a
mapping valuation v : att — val.

Definition 2 (Graph Morphism). A graph morphism
m(f,g) is an application from a graph G(V, E) to a graph
G(V',E’) that is defined by two applications f: V — V'
and g : £ — E’. A morphism must preserve the structure
what means that if e = (s,t) and g(e) = €/ = (s',t’) then
s = f(s) and ¢’ = f(¢).

Definition 3 (Typing). A typing is a morphism from
a graph G(V, E) to a type graph TG(Vr, Er) where Vp
corresponds to the types of the vertices and Er to the
types of edges.

The Figure 1 gives an example of a graph (lower part)
and a morphism/typing to a type graph (upper part).
Definition 4 (Typed Graph Grammars). A typed graph
grammar is a formalism defined by TGG = (G,TG, P)
where:

e (G is a start graph also called host graph.

friendOf
5 Person worksFor Company
' name: String A name: String
TG | 4 A » L A
o N T]
! g) ' \ ' ' : f
vy °f 81 g '
[' \ HEE T
G) ' *\ ' : |
v Person ', worksfor | Company
v | name: John B ' name: Ensisa
S _f[ign_di)'f/(\‘ M(sfor
Person "Person
name: Mac name: Cathy

Figure 1: Example of typing graph.

e TG is a type graph and represents the elements type
of the graph G.

e Pisaset of production rules also called graph rewrit-
ing rules (or graph transformations) which are de-
fined by a pair of graphs patterns (LHS, RHS)
where:

— LHS (Left Hand Side) represents the precon-
ditions of the rewriting rule and describes the
structure that has to be found in G.

— RHS (Right Hand Side) represents the post-
conditions of the rule and must replaces LHS
in G.

A rewriting rule can be extended with a set of negative
application conditions (NACs). A NAC is another graph
pattern such as: ”if there exist a morphism from NAC to
the host graph G, then, the rule cannot be applied”. In this
way, a graph transformation defines how a graph G can be
transformed to a new graph G’. More precisely, there must
exist a morphism that replaces LHS by RH S to obtain G'.
To apply this replacement, different graph transformations
approaches are proposed [26]. In this work, we use the
algebraic approach [27] based on the pushout concept [28].

Definition 5 (Pushout). The pushout is an operator
from the Category Theory [28]. Given three objects (in
our case graphs) Gy, G2 and G3 and two morphisms f :
G1 — Gs and g : G1 — G3, the pushout of Gy and G3
consists of: 1) an object G4 and two morphisms [’ : Go —
G4 and ¢' : G3 — G4 where f' o f = ¢’ o g; 2) for any
morphisms f” : Go — X and ¢" : G3 — X such that
fof” =gog”, there is a unique morphism k : G4 — X
such that fok = f" and ¢’ o k = ¢".

Algebraic approaches are divided into two categories:
the Single PushOut, SPO [29] and the Double PushOut,
DPO [30]. The DPO approach consists of two pushouts
and requires an additional condition called the ”dangling

Approach Ontology Implemen- Inconsistency Man- Specificities
Language tation agement

Stojanovic KAON Lan- KAON - Identification of some | - Global evolution process for KAON ontologies.

et al., 2004 | guage framework inconsistencies. - Saving the evolved version and traceability of

18] - Strategies proposed to the evolution process.

the ontologist to resolve - The set of consistency constraints heavily de-
inconsistencies. pend on the KAON language.

Klein, 2004 OWL OntoView, - Identification and re- - Change management approach for distributed

[11] PROMPTd- | solve of the inconsisten- | ontologies.

iff cies. - Identification of the difference between ontology
versions.
- Saving the traceability of the ontology changes.

Luong et RDF(S) CoSWEM - Strategies to detect - Evolution management for a corporate semantic

al., 2007 (Corporate and resolve the inconsis- | web.

[20] Seman- tency of the semantic an- | - Logging management.

tic ‘Web notations.

Evolution - Strategies to resolve
Manage- the ontology changes in-
ment) consistencies.

Djedidi et OWL DL Onto- - Identification inconsis- - Approach based on the pattern conception.

al., 2010 EVOAL tencies using Pellet rea- - Evaluation of the evolved ontology quality and

[12] prototype soner. guiding change resolution.

- Approach required heavy activities.

Gueffaz et OWL DL Prototype - Identification incon- | - Approach for evolving ontologies based on

al., 2012 sistency using NuSMV model checking.

[23] checker.

Hartung et OBO (Open | Conto-diff - Identification of the difference between ontology

al., 2013 Biomedical tool, versions.

[10] Ontologies) OnEX web- - Approach based on the result of a semi-

and RDF application automatic match operation computed by COG
(change operation generating) rules.

Khattak et RDFS and Protégé - Management incon- | - Approach of change history management for

al., 2013 OWL plug-in sistencies using KAON | evolving ontologies.

[13] APIL. - Proposition of a Rollback and Rollforward algo-
rithms to revert ontology to the previous or next
state respectively based on the logged ontology
changes.

Javed et al., OWL OnE (On- | - Strategies to detect | - A deeper study of the complex ontology changes.
2013 [22] tology and resolve the incon- - Formalization of the change log using a graph-
Editing) sistency of ontology based approach.

tool changes.
Liu et al., OWL — - Proposition of a new formalism to model ontol-
2014 [24] ogy evolution, the SetPi Calculus.

Table 1: Summary of ontology evolution approaches.

condition”. This condition states that the transformation
is applicable only if it does not lead to ”dangling edges”,
i.e. an edge without a source or a target node. Indeed,
in the SPO approach, one pushout is required and the
dangling edges are removed which permits to write a wide
variety of transformations not allowed by the DPO ap-
proach. Thus, in this work, we only consider the SPO
approach. Applying a rewriting rule to an initial graph
(G) with the SPO method consists in:

1. Finding a matching of LHS in G, i.e. find a mor-
phism m : LHS — G.

2. Deleting the sub-graph m(LHS) —m(LHS N RHS)
from G.

3. Adding the sub-graph m(RHS) — m(LHS N RHS)
to G to get the final result G’.

An example of rewriting rule is presented in Figure
2: all the persons working in the company ”Ensisa” are

friends.

3. A graph transformation model for evolving on-
tologies

In the following, we present our approach for evolving
ontologies. We describe the ontology model and the change
operations (basic, composite and complex) that may be
applied during ontology evolution.

8.1. Ontologies as Typed Attributed Graphs

Due to their mathematical foundation and their appli-
cation conditions, Typed Graph Grammars are suitable to
represent changes and control their effects.

Proposition 1: Ontology representation languages
are mainly based on the RDF (Resource Description
Framework) model which is based on graphs. Hence, rep-
resenting ontologies as attributed graphs is quite coherent

Rewriting Rule

NAC LHS

RHS

IMM’. 3:Comapny

5| worksfor 3:Comapny

friendOf

name: Ensisa

1:Person name: Ensisa

‘worksfor

friendOf worksfor

AN

\ "

Person Comapny
worksfor, s
name: John name: Ensisa
/:riendOf /vorksfor
Person Person
name: Mac name: Cathy
G

Pushout

Person worksfor Comapn)f

name: John name: Ensisa
riendOf
friendOf ‘worksfor
Person Person

name: Mac name: Cathy

G

Figure 2: An example of rewriting rule with SPO approach.

and appropriate. In this work we focus on the evolution
of OWL ontologies and follow the ontology model axioms,
heavily influenced by Description Logics [31]. The OWL
was chosen because it is the standard proposed by the
W3C and the language usually adopted to represent on-
tologies. Thus, with the typed graph grammar formalism,
an ontology is then, a graph G with a typing relation to
type graph (T'G) where T'G represents the OWL ontology
meta-model (Figure 3). Therefore, the considered types of
vertices are:

Vr = {Class(C), Property(P), Object Property(OP),-
DataProperty(DP), Individual(I), DataType(D)}.

The edge types correspond to properties used to relate
different entities:

Er = {subClassOf, equivalentT o, range, domain, ...}

For example, subClassO f is a type of edge that is used
to link nodes of the type Class. Note that, the restrictions
(R) are a special case represented by both nodes (Some-
ValuesFrom, RestrictionCardinality, etc.) and edges
(hasRestriction, onClass, etc.).

Both the nodes and the edges can contain attributes.
For example, among the attributes of the nodes of types
C, I and P, we find the attribute name which specifies
their locals names and the ¢r: which identifies them. In
the figures of this article, the iri has not represented for
readability reasons.

Proposition 2: With proposition 1, ontology changes can
be formalized by an indexed family of rewriting rules:

r; = (NAO,,LHSZ,RHS“DOHI) where 7 €

{AddClass, RemoveDataProperty, RenamelIndividual, ..}.

In this extended definition, DC H represents the set of De-
rived CHanges to be applied to correct the inconsistencies

may be generated due to the application of the ontology
changes. For example, the deletion of a class can provoke
the modification of its individuals types (i.e. linking these
individuals to other classes such as the superClass or the
equivalentClasses) or the deletion of its individuals as
well.

8.2. Formalization of ontology changes

The application of ontology changes can affect ontol-
ogy consistency. This section describes thus, our proposi-
tion for consistent ontologies evolution using the algebraic
graph transformations.

Proposition 3: To preserve consistency, each trans-
formation is refined by a set of negative application condi-
tions (NAC) and derived changes (DCH). Theses condi-
tions and additional changes ensure an a priori approach of
inconsistencies resolution, i.e. the obtained ontology does
not need an explicit checking as an incorrect ontology ver-
sion cannot actually be generated.

Inspired by the works of literature [32, 33, 34], incon-
sistencies addressed in this work are:

e Data redundancy that can be generated following an
add or rename operation. This type of inconsistency
is corrected by the N AC's.

e Isolated nodes, a node (vertex) V,, called isolated if
vV, € V, AE; € E|E; = (V,,V;). This incoher-
ence requires to link the isolated node to the rest of
the graph. Depending of the type of node, derived
changes are proposed.

e Orphaned individual is an inconsistency which is
generated as a result of removal of classes containing
individuals.

ohjectProperyAssertion
String irOhjProp

equivalepiTo
disjnintWith

" [
ind

widual |

dataProperyAssertion

widual *

Sttt

memhberof

Clsting i kG
String name

inverseTo
ubPrape

subClassof

wHEntTo
ntWith

-

OhjectProperty
domailt|hoolean inverseFunctional

- =
UnionClass

3
IntersectionClass

hasValue

=
HasValue

boolean transitive
boolean symmatric

ety
aguivaleniTd
disja|ntwit]

+

CardinalityRestriction ™

string type
int value

Property
boolean functional

hasYalue

Figure 3: Type Graph used for the rewriting rules formalization.

e Axioms contradiction, the addition of a new axiom
should not be accept if it contradicts an axiom al-
ready defined in the ontology. Many cases are con-
sidered: 1) two classes cannot be disjoint and equiv-
alent at the same time, 2) two classes that share a
subsumption relation cannot be disjoints, etc.

3.2.1. Atomic changes

The atomic changes include the rename changes, the
addition and deletion of some changes. They only affect a
single ontology entity although they depend on other on-
tologies elements. Thus, the Table 2 presents the atomic
changes addressed in this work and the ontology concepts
which are related. Actually, it is important to note that
the NAC's of ontology changes are deduced from these
interdependencies. For example, from this table we can
see that the AddDataPropertyAssertion(I, DP,value)
change, which adds a DataPropertyAssertion between
an individual I and a dataProperty DP, depends on the
Individual, DataProperty and Functional Property en-
tities. Indeed, before applying this change, it is nec-
essary to check if the dataProperty DP is a functional
property. In this case, if the individual I has already
an AssertionDataProperty with the dataProperty DP,
then, the change is not allowed because it will affect the
ontology consistency.

In the following, one example for each type of change
(rename, addition and deletion) is presented. Others
changes are described in the Appendix A. Thus, we define
for each change, its NAC's, LHS (pre-condition) and its
RHS (post-condition). Of course, this type of change does
not have DC'H as they affect only a single ontology entity.

Note that some changes do not require any NAC such
as RemoveDisjointClasses, RemoveEquivalentObject-
Properties, etc.

Thus, the Renamelndividual(I;, Ineyw) is an ontology
change that renames a node of type Individual. The
rewriting rule corresponding to this change is defined as
follow (Figure 4a):

e NAC = {Inew}. To avoid redundancy, the NAC of
this rule should be the graph composed by a node of
type Individual with the attribute name is equal to
INew. This means that such sub-graph should not
exist in the ontology graph to apply the change.

e LHS = {I;}. The LHS represents the pre-condition
of a rewriting rule. Thus, in this case, it should be
the graph composed by a node of type Individual
with the attribute name is equal to I;. This is neces-
sary to specify that the individual to rename should
exist in the ontology.

e RHS = {Inecw}. The RHS specifies the new graph
that will replace the LHS graph and will be added
to the ontology.

The AddSubClass (Cy, C3) rewriting rule adds a
subClassOf axiom between two classes (Figure 4c¢) and
it is defined by:

e NACSs :

1. Cy C (s, condition to avoid redundancy;

2. Cy C (1, the subsumption relation cannot be
symmetric;

ObjectProperty
DataProperty

Individual

DataType

EquivalentClass
DisjointClass

SubClass
EquivalentProperty
DisjointProperty
SubProperty
FunctionalProperty
CardinalityRestriction
AllValuesFromRestriction
SomeValuesFromRestriction|
HasValueRestriction

< Class

RenameClass

<

Renamelndividual

RenameObjectProperty v

N

RenameDataProperty

AddIndividual

<\

AddDataProperty

AddObjectProperty

AddEquivalentClasses

NN

AddDisjointClasses

SRR

AddSubClass

AddObjectProperty Assertion

RRRE

AddDataPropertyAssertion

AddSubObjectProperty

AddSubDataProperty

NN
NN

AddCardinalityRestriction

AddAllValuesFromRestriction

AddSomeValuesFromRestric-
tion

NIENANENERENININ

AddHasValueRestriction

Removelndividual

RemoveDisjointClasses

RemoveEquivalentClasses

SRR

RemoveSubClass

RemoveEquivalentObjectPro- v
perties

RemoveDisjointObjectProper-
ties

RemoveSubObjectProperty

v

Table 2: Matrix dependency between basic ontology changes and ontology entities.

3. C1 € =(Cy, classes which share a subsumption
relation cannot be disjoint;

4. 3C; € C(0)-(C1 T C;)A(C; T Cy), if thereis a
class C; which is the subClassO f the class Cs
and the superClass of C1, then, C; is already
a subClass of Cy;

5. H(Cl,CJ) S C(O)(Cl C Cl)/\<Cj C CQ)/\Ci C
-}, classes which share a subsumption rela-
tion cannot have subClasses that are disjoint;

e LHS = {Cy,C5}, the classes should exist in the on-
tology.

e RHS = {C; C Cy}, the axiom will be added to the
ontology.

The RemoveEquivalentObject Properties(OP;, OPy)
rewriting rule removes the equivalentTo axiom between
two objectProperties (Figure 4b) and it is defined by:

e NAC =1

e LHS = {OP, = OP,}, the objectProperties and
their equivalent relations should exist in the ontol-

ogy.

e RHS = {OP;,0P,}, the axiom will be removed
from the ontology.

3.2.2. Composite changes

The composite changes affect an ontology entity and
its neighbourhood and require then, additional changes
(DCHs) to preserve the ontology consistency. Thus,
the Table 3 shows the interdependencies between theses
changes organized as a matrix dependencies. The value
of a matrix element (i, j) indicates that the application of
a change related to row ¢ involved the application of the
changes in column j. In the following, some composite
changes are presented.

The RemoveCardinalityRestriction(C, OP) rewriting
rule removes a CardinalityRestriction defined on a class
C and an objectProperty OP. It is composed of two rules.
The first one presents the derived change RemoveAs-
sertionObject Property that deletes all the assertions
which are defined on OP. The second rule defines the
principal rewriting rule that allows the deletion of the re-
striction.

The RemoveObjectProperty(OP) rewriting rule
removes an Object Property(OP) and all its dependencies
from the ontology. The Figure 5 presents the six rules

Renamelndividual(l;, Iyew)

RemoveEquivalentObjectProperty(OP,, OP,)

LHS

RHS

1:0bjectProperty

1:0bjectProperty

name = "OP,"

name = "OP,"

NAC LHS RHS
1:Individual 1:Individual 1:Individual
name = "lyg," name = "|;" name = "lyg,"

(a) Rewriting rule for
the Renamelndividual change.

equivalentTo

2:0ObjectProperty
name = "OP,"

2:0ObjectProperty

name = "OP,"

(b) Rewriting rule for the
RemoveEquivalentObject Property change.
AddSubClass(C,, C,)
NAC1 NAC2 NAC3 NAC4 NAC5 LHS RHS
2:Class 2:Class 2:Class 2:Class 2:Class 1:Class 2:Class
name="C," (||| name="C," (| name="c," [||_"ame="C name="C," name="C," liclass name="C,"
T subClassOf name="C,"
subClassof || |subClassOf || |disjointwith SubClassOf subClassOf subClassOf
TsubCIassOf 2:Cl
- - - :Class
1:Class 1:Class 1:Class 1-Class | Class _|>{ Class | p—— 1:Class
name="C," ||| name="C," |[|| name="C," name="C," disjointWith — 2 name="C,"

(c) Rewriting rule for the AddSubClass change.

Figure 4: Rewriting rules of some atomic ontology changes.

which define the change. Then, the first five rules
describe the derived changes (DCH) must be applied
to preserve the consistency of the ontology and the
last one presents the principal rewriting rule. Thus,
the restrictions defined on the property OP should be
all deleted. This is achieved by the application of the
following rules: RemoveAllV aluesRestriction(OP),
RemoveSomeV aluesRestriction(OP),

RemoveH asV alueRestriction(OP) and
RemoveCardinality Restriction(OP). Then, it is
necessary to delete all the ObjectPropertyAssertion
which reference the objectProperty OP. For the other
relations, such as domain, range, etc., they are directly
deleted without needing to add specific controls. The
deletion is achieved during the application of the trans-
formation as the SPO approach removes all the dangling
edges.

3.2.8. Complex changes

The complex ontology changes are sophisticated oper-
ations. They are identified by grouping basic and com-
posite changes and affect several ontology entities which
are not necessarily adjacent. They are mostly used to ag-
gregate many and different changes into one in order to
perform generic tasks. They help the user to adapt his on-
tology without being lost in the details of each elementary
changes. Table 4 presents the set of complex changes ad-
dressed in this work and the changes they are compound
of.

The PullUpClass(C, C,) change moves a class C up in
its class hierarchy and attaches it to the parents of its pre-

vious parent class Cp,. Consequently, the class C'is not any
more a subClass of Cp, and thus, does not infer its proper-
ties. The figure 6 presents the rewriting rules that defined
the change. Thus, the RemoveObject PropertyAssertion
derived change check if the class C has individuals
which share an object PropertyAssertion on the class C,
properties. In this case, all these assertions must be
deleted. The RemoveDataPropertyAssertion remove all
the dataPropertyAssertion defined on the class C indi-
viduals and the class C, dataProperties.

The MergeClasses(Cy,Ca, Cnew) change merges two
exiting classes C; and Cy into a new class (Cnew)-
It requires the application of the AddClass(Cnew),
RemoveClass(Cy) and RemoveClass(Cs) rewriting rules.
However, to preserve the consistency ontology, before
deleting C'; and Cb, all their properties and axioms should
be attached to Cney. Formally: 1) VC; € C(O) - C; C
Cy do the rewriting rule AddSubClass(C;,Cnew) and
VCj € C(O) -Ch C Cj do AddSubClass(CNew,Cj), 2)
repeat the process with Cy, 3) VC; € C(O) - C; = C4 do
AddEquivalentClasses(C;,Cnew), 4) repeat the process
with Cs, etc.

The SplitClass(C,Cnewl, CNew2) change splits
an exiting class (C) into two new created classes
Cnew1l and Cpews. Then, it requires the applica-
tion of AddClass(Cnew1), AddClass(Cnew2) and
RemoveClass(C) rewriting rules. As the MergeClasses
change, the SplitClass rewriting rule requires, before
deleting C', the attachment of all its properties and axioms
to the Cnew1 and Cyewo.

=
o 2
2 S |z
= B =
& 18 |2 |3 o
) ey e} Q
= © 0 ~ S
A~ a Q £ 2
—_ 3 + ot 2
0 < g 3 g 2 =
] =] = = 3 I 17
" @ — o Q2 et @ Q
g3 |= g |1E |9 2 | = g |
g = o] i = = %))
] O =1 T o 5] = g = =1
S1E 2 |2 |5 |€ |5 |2 |= |2
2 12 |12 |2 |8 (2|8 (% |5 |% |=
22 |Els B |2 |82 |5 |2 |§ |3
2 |5 |T S|z |2 3 & < |0 |< 0 st
3 9] Q 7% =] 5] o} [o 14} 5]) 5]
= S E A o > > > > S > > >
AR R R RN
el =] =]
° 9] o < | T 5] ° 5] o} o} 5 o} 3
< ~ < < | < |& < ~ ~ s et ~ ~
AddClass v v v v v
RemoveClass v v v v v v v v v
RemoveObjectProperty v v v v
RemoveDataProperty v v v v
RemoveCardinalityRestriction v v
RemoveSomeValuesFromRestriction v v
RemoveAllValuesFromRestriction v v

Table 3: Matrix dependency between composite ontology changes.

RemoveObjectProperty(OP)

DCH1_RemoveAllValuesFromRestriction

DCH2_RemoveSomeValuesFrom

DCH3_RemoveHasValueRestriction

AllValuesFrom SomeValuesFrom

Restriction
LHS RHS LHS RHS LHS RHS
1:0bjectProperty |||| 1:ObjectProperty 1:ObjectProperty |||| 1:ObjectProperty 1:ObjectProperty | ||| 1:0bjectProperty
name = "OP" name = "OP" name = "OP" name = "OP" name = "OP" name = "OP"
onProperty onProperty onProperty

HasValue

DCH4_RemoveCardinalityRestriction

DCH5_RemoveAssertionObjectProperty

CH_RemoveObjectProperty

I

LHS RHS LHS RHS LHS RHS
1:ObjectProperty 1:0bjectProperty |_ 1:Individual 1:Individual
name = "OP" name = "OP" ObjectProperty
SbjectPropertyAssertion name = "OP"
onProperty iriObjProp="0Piri"
EardinalityRestriction 2:Individual

Figure 5: Rewriting rule for the RemoveObject Property change.

4. Implementation

4.1. EventCCAlps ontology

In this section, we present the EventCCAlps OWL on-
tology used as a use-case study to describe and validate
our research work. The ontology is developed in the frame
of the European project CCAlps which aims at helping
the collaboration between Creative Companies in Alpine
space. It links companies and partners for the organiza-
tion of events. The Figure 7 presents an extract from the
EventCCAlps ontology represented with typed graph at-
tributed formalism. Note that the ontology was converted
into AGG graphs using our software OWLToGGX?8. The

8http://mariem-mahfoudh.info/ksem2013/

Figure shows then, some entities which describe the orga-
nized events. An event can be a ”Conference”, a ”Meet-
ing” or a ”"BestComp”. It starts at one day/time and fin-
ishes at another day/time, may be described by ” Tag” and
can receive ”Particular” and ” Company” participants.

In the EventCCAlps ontology, the changes are frequent
both at the instances level (e.g. add events and partners)
and schema structure (e.g. create new entities joining the
project, delete entities leaving the project).

4.2. Application

Several tools have been proposed to support graph
rewriting: AGG [35], Fujaba [36] or Viatra [37]. To imple-
ment our approach, we chose the AGG (Attributed Graph
Grammar) tool that is considered as one of the most im-
portant tools. It supports the algebraic approaches (SPO

http://mariem-mahfoudh.info/ksem2013/

[=]
S| =
s .8
@ | =
218 "
n [}
" plE|< E | q
] = = > = (5}
0 @ = | & | & | %= <3 =
8 | 3 T lo |9 |& o |3
215 S I >4 | &
s |2 = N -V O < P S
= < | = 1) e} e} ot = 2
w | o | O 5|l | & 3] o | A& @ = |y
2 |2 | B = S| A 2 2 8 &g =
SlElE | Bl |2 |2 |5 |2 |%¢ |2
210|103 |2z |28 |o|o|la|a |z |3
< o |2 w = = = [} 15}) Q =] w
= |z | 2| = T | > > > =} Tz
O |9 |m | A =2 |= |0 9 Q9 =} n &3] [a)
Tl E|lT T |® B | g g g lT |T |
el o | el el el el Q Q Q el el el
< < < < < < o < < <
PullUpClass % v
MergeClasses v v v v v v
SplitClass v v v v v v
SplitObjectProperty v v v v v
MergeObjectProperties v v v v v
Table 4: Matrix dependency of complex ontology changes.
PullUpClass(C, Cp)
CH_PullUpClass DCH_RemoveDataPropertyAssertion
LHS RHS LHS RHS
-3:CIass memberOf[. memberOf| 2:C|
1:Individual 2:Class 1:Individual l— ass
subClassOf 3:Class — name = "C" name ="C"
1:Class subcl ésub ssOf dataPropertyAssertion
name = "Cp"
subClassOf . . —ldinain 4:Cl i .
T 1:Class 2:Class 3:DataProperty C a"ss |[3:DataProperty domain| 4:Class
2:Class name = "C" [[name = "Cp" name = "Cp name = "Cp"
name = "C"

DCH_RemoveObjectPropertyAssertion

LHS
1:Individual memberOf
objectPropertyAssertion 3:Class
iriObjProp="0OPiri" name = "C"

2:Individual memberOf
4:Class
5:0bjectProperty

name = "Cp"
onProperty

6:Restriction

hasRestrictio

RHS
memberOf
3:Class
name ="C"
memberOf

4:Class
name = "Cp"

5:0bjectProperty

hasRestrictio onProperty

6:Restriction

Figure 6: Rewriting rule for the PullUpClass change.

and DPO) and provides graphical editors for graphs and
rewriting rules. The Figure 8 shows the AGG graphical
user interface and presents how to implement ontology
changes®. Different editors are shown: A) an editor for
node and edge types that allows user to specify the ele-
ments of the type graph; B) a graphical editor for graphs
that creates and shows the host graph and type graph;
C) a graphical editor for rewriting rules that permits to
define the NAC's, LHS and RHS of each rule. An ex-

9All the materials used in this section (ontology in graph
(AGG format) along with the code of the presented ontol-
ogy changes) are available for download here: http://mariem-
mahfoudh.info/kbs2014/

ample of grammar graph is also presented. It is namely
GraphTransformationSystem and it is consisting of: 1)
the type graph that presents the ontology meta-model; 2)
the host graph that contains the ontology to be evolved;
3) two rewriting rules (AddDataPropertyAssertion and
AddDisjointClasses).

Note that the rewriting rules corresponding to the com-
posite and complex changes are classified by layers to de-
fine the sequence of their application.

Now, we present real cases study with the CCAlps
project. Thus, as mentioned above, the EventCCAlps
ontology defines events whose the participants may be
”Particular” or ”Company”. However, due to the part-

10

subClassof hasRestriction
Class ol Class) SomeValuesFrom
name="Particular “|name="Participant’ description="subClassOf'
domain
subClassOf

subClassOf

Class
name="Person"

Class
name="Company"

name="parficipateTo"

EubProperty

A
subClassOf ObjeciProperty
name="attendTo"

subClassOf

ObjectProperty
name="worksFor"
Class
name="Pariner"

Class
name="Employee"

Class
name="Emplacement"
Y

remberof

Individual
name="Lombardy"

ohjectProperyAsserion
Fop="httpsJiwww.cca

rarjge

ObjectProperty |
name="hasPlace"

Individual
name="s_start'

memberof

subClgesOf subClagsof

Class

‘ |C\ass ‘ Class ‘

[name="BestComp"| |name="Conference" |

name="Wesling" |

ObjectPropery
name="compoundBy"

Figure 7: An extract from EventCCAlps ontology represented with the typed attributed graph formalism.

Ye AGG 203 (C\Mariem

— =Ie—x

File Edit Mode Iransform Parser

T [r]

Analyzer Preferences Help

%% Py [a lac] c| s3] o [1[5 B L Al

& el (w2 e & [ENNA[H]=] K= sy e

L)

GraGras
* GraphTransformationsvstem
3° Emmitypecraon (@)
HostGrapn @)
¢ L=R
HEX: CheckFunctionalProperty
9 AddDisjointClasses
NotExist
HEE Notequivalent
HEE HotSubClassOf

§ || CheckFunctionalProperty

1.DataProperty

dataPropertyAssertion

2ndividual
name=""

AddDataPropertyAssertion of GraphTransformation System

4| Node Types
[AllValuesFrom
::| O cardinalityRestriction
[Class
Oc a
| O complexCiass
[DataProperty
::| O pataType
L] Entity
[J EnumerateClass L
| O HasValue I
[Individual

Iv]

1 DataPropery
name="DP"

@Y HotSupClassOf

HEE NotCommonindividuals TypeGraph of GraphTransformationSystem

.| O mtersectionciass
| O objectProperty
[Property

equivaleptTo
infith

| O Restriction
[RestrictionValue:

dataProperty. | || * | [] SomeValuesFrom

memberaf

complemgfitor

ComplexClass ©

subClassof

Z EI UnionClass

b Fdge Types
— complementOf []
— dataPropertyAssertion

& | — disiointwit
— domain

gvat

Sting name
57 L%

i | — eaunalentto
— hasRestriction
— hasValue =

i | — intersectionor
— inverseTo

.| — memberof

* | — objectPropertyAssert...
— onClass

ii | — onProperty
— oneOf

Restriction
String_description

Figure 8: AGG graphical user interface.

ners requirements, it was necessary to distinguish be-
tween the companies types and thus replace the ”Com-
pany” entity by the ”CCI” and "NotCCI” concepts where
CCI (Creative and Cultural Industries) are the com-
panies whose the activities take origin from individual
creativity such as performing arts, graphic design, etc.
Thus, the rewriting rules corresponding to this change
is SplitClass(Company, CCI, NotCCI). The Figure 9
presents the different rules required to apply the change
as described in the Section 3.2.3 and shows the ontology
result. Therefore, the class ” Company” are deleted and all
its properties and axioms are attached to the ”CCI” and
"NotCCI” classes. These new classes have now, a sub-
class ”Partner”, a super-class ” Participant” and they are
connected by the ”worksFor” property.

The Figure 10 presents the
AddDisjointClasses(Meeting, Event) change that
adds a disjunction axiom between the two classes ” Meet-

11

ing” and ”Event”. The rewriting rule is composed by five
NACs: 1) NAC 1 avoids redundancy; 2) NAC 2 forbids
the application of the rule if the classes ”Meeting” and
"Event” are equivalent, because classes cannot be disjoint
and equivalent at the same time; 3) NAC 3 prohibits the
transformation if the class "Event” is a subclass of the
class "Meeting”. Classes that share subsumption relation
cannot be disjoint; 4) NAC 4 forbids the transformation
if the class "Meeting” is a subclass of the class ”Event”;
5) NAC 5 forbids the application of the rule if the classes
have common individuals.

As the classes "Meeting” and "Event” share a sub-
sumption relation (a ”Meeting” is a subClassOf ”Event”)
then, the rewriting rule cannot be applied (violation of the
NAC 4) and an alert box appears to inform user that the
transformation cannot be achieved.

GraGras 4] 4[cHDAdasubClass of spiitClass

? @ SplitClass

T’ [Emm]Metamodel
T’ Ontology

o [M1AddClasses
[2ICHDAdd SubClass
[3]CHDAdd SupClass
[41AddIndividuals
[5]AddDataProperty
[6]AddObjectPropertyDomain

3Class
name="CCI"

4:Class 1.Class
name="NotGCI"| name="Company"

2:Class
h

suhbClassOf

[71AddObjectPropertyRang

[81AddEquivalentClasses Ontology of SplitClass

[9]AddDisjointClasses

|| subCrassor
[10]RemoveClasses -:

ol Class
>

hasRestriction

» SomeValuesFrom

subClasg0

name="CCI"

Fange

name="Participant"

name="NotCCl"

Class

description="sub Classor’
name="Tag"

domain
range

OhjectProperty
name="hasTag"

ObjectPropery
name="paricipateTo"

domjain

ubClassOf

r

Class

|OhjEE1PIDpEIT\l’

name="Event’

L domain |OhjE[21PIEIpE\Ty’ |

|name="worksFaor"|

[name="Partner' |~ |name="attendTo" |

Figure 9: SplitClass(Company, CCI, NotCC1I) rewriting rule.

5. Results and discussion

5.1. Formalisms comparison

The two main advantages of our method are: (1) to
provide a new way to formalize ontology changes while
controlling the graph transformations and avoiding the in-
consistencies with an a priori manner; (2) to facilitate the
description of composite and complex changes while re-
ducing the number of the rewriting rules required to apply
them. In order to highlight these two main features, we
present in this section a comparison between the ontology
changes representation in the TGG formalism proposed in
this paper and the closest related approach: Djedidi et al.
[12] (see Section 2.1).

The Table 5 presents two examples of ontology changes:
AddObjectProperty and PullDownClass. In [12], the
changes are considered as composite/complex. The first
one is composed of three basic changes and the second
one of two basic changes. The execution of the ontology
changes requires the use of Pellet reasoner which is used
as an external resource to identify the inconsistencies that
can appear. Therefore, the inconsistencies resolution is
achieved by an a posteriori manner. If the ontology con-
sistency is affected, the changes must be canceled to go
back to the previous ontology version. In our work, these
changes are considered as elementary changes as they are
composed by only one rewriting rule. Moreover, to pre-
serve the ontology consistency, the checking of the incon-
sistencies is achieved by the negative application condi-
tions (N AC) which ensure an a priori approach of incon-
sistencies resolution. Thus, there is no need of an external
resource to check the consistency of the ontology as the
entire the evolution process is supported by the TGG for-
malism.

5.2. Complezxity

The most expensive step in time and resource of the
proposed approach is the recognition of the LH S from the
host graph G. This search is an NP-complete problem.
More precisely, a search of a sub-graph composed of k ele-
ments in a graph compound of n elements has a complexity
of O(n*). However, the cost of calculation remains quite
acceptable if the size of the LHS graph is limited [38].
This condition is generally satisfied in ontology changes
application. The number of nodes of the LH.S graph can
be used as a measure of the complexity of the ontology
change. As presented in Table 6, the LHS size is quite
limited for simple change (0 to 3 nodes). For more com-
plex changes, the DHC size has also to be considered.

The execution time is also dependent of the size of the
LHS and the ontology’s change type (simple or complex).
In the example presented in this paper (see section 4.1),
the ontology’s graph is composed of 21 nodes. The execu-
tion of the AddDisjointClasses(FEvent, Meeting) change
took 10 milliseconds (with a LHS composed of 2 nodes).
The execution of the complex ontology change Split-
Classes(Company, CCI, NotCCI) took only 700 millisec-
onds (with a LHS composed of 37 nodes). These execution
times are quite acceptable as they offer a real-time feed-
back when executing changes on small-sized ontologies.

5.8. Discussion

Ontology Changes Classification. In our previous work
[18], we distinguished the ontology changes considering
the classification proposed by Klein et al. [11]. In-
deed, this classification of basic/elementary and compos-
ite/complex changes is based on the user’s vision and does
not take into consideration the system’s vision. That is
why some changes, such as RemoveClass, are considered

12

[raGras - || NotSupClassOf

CHAddDisjointClasses of EOCCAlps

¢ @ EOCCAlps :
% [Emm]Metamodel - 1:Class
‘:.) cunen e
[CHAddDisjointClasses A name="Event' b

l@: NotExist subClassof i disjointwith
l@: NotEquivalent
l@: NotSubClassOf ML 2:.Class
&Y [liotSupClassOt name="Mssting’ name="Heeling’
]@: MotComm i

Ontology of EOCCAlps

Class

Cannot transform

Clag
E ! E="Tag"

name="Emplacement’
h

® Cannot transform.
Attributes don't match.

rangs

rarjge

=5

roperty
="hasTag"

ObjectProperty
name="hasFlace"

ain

ObjectProperty
name="paricipateTo"

ubProperty

Y
. range
ObjeciProperty _ ® JJcmss | [ciass |
name="attendTo [name="BesiComp"| [name="Conference" |
A

[
memberQf |l

subClagsOf subClagsof

Figure 10: AddDisjointClasses(Meeting, Event) rewriting rule.

as basic changes (user’s vision) although at the system
level they are rather composite since they call for correc-
tive operations. For example, the RemoveClass change
involved others basic changes as RemoveRestriction,
Removelndividual, etc. Therefore, in this work we have
reclassified the ontology changes and make the distinction
between basic, composite and complex changes by consid-
ering the system’s vision.

Logging. Saving and storing the changes for later use is
an important task in ontology evolution as this type of
information may be useful in the management of the dis-
tributed and dependent ontologies. Indeed, by using the
AGG tool, we can preserve after each application of on-
tology change, a log file that stores the type graph, the
host graph (i.e. the ontology) and the rewriting rules in
a formal and semantic representation (Figure 11). Cur-
rently, in our work, all the applied changes as well as the
different ontology versions can be recovered. The Figure
12 shows how storing the versions of the same ontology
with AGG tool. Thus, at ¢y, we have the first ontology
version (Oyg). Then, when the ontology changes are re-
quested, another file is generated to store both the on-
tology and the rewriting rules (Ovyo + Ryorovi). After
applying ontology changes, a new ontology version will be
generated including the rewriting rules (Ov1 + Ry orovi)-
This makes possible the identification of the difference be-
tween two ontologies versions, providing that the changes
are defined by our methodology. However, a further study
should be carried out to optimize the storing of the vari-
ous versions and to answer to the following questions: us
should we save all the ontology versions? How to identify

13

and choose the most relevant versions?

6. Conclusion

In this paper, we have proposed Typed Graph Gram-
mar and Algebraic Graph Transformations to formal-
ize and manage ontologies evolution. Several ontology
changes (basic, composite and complex) were presented
and an a priori approach of inconsistencies resolution was
introduced. Thanks to the negative application conditions
(NAC) and derived changes (DCH), our method avoids
the inconsistencies and preserve the evolved ontology qual-
ity. The use of algebraic graph transformations offers sev-
eral advantages. In particular, it allows to simply and for-
mally define the rewriting rules corresponding to the ontol-
ogy changes. Moreover, it reduces the number of elemen-
tary changes required to apply the composite and complex
changes providing thus, a gain in time and resources. The
execution time of most of the ontology changes are quite
limited (< 1 second). To further evaluate the performance
of our approach, we are currently working on evaluating
the influence of the size of LHS on larger ontologies.

In the near future, we are planning to develop a plug-
in for the Protege'? editor which will present the different
ontology changes. Indeed, the internal graph transforma-
tion engine of the AGG tool can be used by a Java API
and thus, be integrated into other custom applications.
Then, we intend to benefit from the formal operations of
graph theory and category theory to study, without using

0protege.stanford.edu

Ontology Djedidi et al. [12] Proposed formalism

Changes
AddObjectPro- The change is composed | - The change is formalized by one rewriting rule.
perty(OP,C1,C2) | of three basic changes: - The rule forbids the data redundancy.
1. AddObjectProperty-
(OoP), NAC LHS RHS
2. AddDomain(OP,C1) 2:Cl
3. AddRange(OP,Cs). 1:ObjectProperty | <:Class
name = "OP" name = "C,
1:0bjectProperty T domain
name = "OP" 2:Class 1:0bjectProperty
name ="C," name = "OP"
T range
3:Class 2:Class
name = "C," name = "C,"
PullDownClass- The change is composed - The change is formalized by one rewriting rule.
(C1,C2): move | of two basic changes: - The rule forbids the application of the change

down a class (Cy) 1. AddSubClass(Cy,C2) if the classes C; and C3 are disjoint as classes
in its class hier- 2 RemoveSubClass- | that share a subsumption relation cannot be disjoint.

archy and attach | (Cp,Cp) where Cp is the
it as a child to its parent class of C; and Cs.
previous sibling
class (C2).

NAC LHS RHS
—we o 3:Class
name = "C, subclassOf
disjointWith subClassOf subclassOf 1:Class
2:Class 1:Class 2:Class name = "C,
name ="C," name = "C,"|[name ="C," FubClassOf
2:Class
name ="C,"

Table 5: Ontology changes formalization according to Djedidi et al. [12] and the proposed approach.

Ontology changes Size of LHS
AddClass, AddIndividual 0 nodes
RenameClass, Renamelndividual, 1 nodes
RenameDataProperty

AddEquivalentClasses, 2 nodes
AddDisjointClasses, AddSubClasses

AddObjectProperty, AddDataProperty 3 nodes

PullUpClass

At least 3 nodes for the principal
change.

At least 4 nodes for the first DCH.
At least 6 nodes for the second DCH.

Table 6: The LHS’s size of some ontology changes.

the logging file, the difference between ontology versions
and the automatic detection of the ontology changes. This
study may be inspired by both the existent works in the
meta-modelling [39] and ontologies [10].

Acknowledgment

The authors would like to thank the European project
CCAlps which funded this work (project number is 15-3-
1-IT).

14

Appendix A. Ontology changes formalized by

TGG

References

(1]
(2]

(3]

T. R. Gruber, A translation approach to portable ontology spec-
ifications, Knowledge acquisition 5 (2) (1993) 199-220.

C. Zhang, C. Cao, Y. Sui, X. Wu, A chinese time ontology for
the semantic web, Knowledge-Based Systems 24 (7) (2011) 1057
- 1074.

Y. Zhao, Z. Li, X. Wang, W. A. Halang, Decision support in
e-business based on assessing similarities between ontologies,
Knowledge-Based Systems 32 (0) (2012) 47 — 55.

Ontology Change NACs LHS RHS DCHs
AddDisjointCla- {C:1,C2} {C1 C -C2} —
sses(Cq,C3)

1. C; C =Cq;

2. Cy = Cq;

3. C1 C Oy

4. C2 C Cy;

5. 3I; € I(O) - I; €

Cy ANI; € Cs.

RemoveDisjoint- — {C; C -Cs} {C1,C2} —
Classes(Cq, Ca)
AddEuivalentC- {C1,C2} {C1 =Cs2} —
lasses(C1,Ca)

1. C1 E =Cy;

2. Cy=Cq
RemoveEquiva- — {C1 = C2} {C1,C2} —
lentClasses(Cq,C2)
AddDomainData- — {DP;,C;} {DP; C C;} —
Property(DP; C;)
RemoveDomainDa- {DP; C C;} {DP;,C;}
taProperty(DP;, C;)
AddRangeDataTy- — {DP;,D;} {T CVDP;.D;} —

peClass(DP;, D;)

RemoveRangeData-
Type(DP;, D;)

{TCVDP, . D:}

{DP;,D;}

AddObject Proper-
tyAssertion(Iy, Is,
OP;)

1. (I1,12) € OP;;

2. 3I; € I(0O) - (I;
12) AN ((Il,li)
OPF;)
10P;);

#
€
A(T C

3. 3K nOP;-(3I; €
1(0)) A
{(I1,I;) € OP;} =
n.

{I,I2,0P;}

{(I1,I2) € OF;)}

RemoveObject Pr- — {(I1,I2) € OP;)}| {I1,12,0P;} -
opertyAssertion(-
I, I, OF;)
AddIndividual- Unew? {Ci} {INew € Ci}
(UnNew, Ci)
Removelndivid- — {L:} -
wal(l;)
AddDataProper- {DPnNew} {C:,D;} {DPnew E C; —
ty(DPyew, Cs, Di) o =
VDP;.D;}
RemoveDataPro- — {DP;} 7
perty(DP;)
AddClass(Crnew) {Cnew) {Cnew}
1. AddSubClass
2. AddDisjointC-
lasses
3. AddEquivalent-
Classes
4. AddDomain
5. AddRange
RemoveClass(C;) {Ci}

1. SetTypelndi-
vidual

2. Removelndivi-
dual

3. RemoveRestri-
ctions

Table A.7: Formalization of ontology changes with TGG.

15

<Document version="10">

—<GraphTransformationSystem ID="11" directed="true" name="OntologyChanges" parallel="true">

—<Types>
—<NodeType ID="12" name="Entity%:[NODE].">
<AttrType ID="I4" attrname="ir1" typename="String":
<AftrType ID="I5" attrname="name" typename="5tring"/>
</NodeType>
—<NodeType ID="16" name="Class%[NODE]:">
<Parent pID="12"/>
</NodeType>

<EdgeType ID="14%" name="subClassOf%[EDGE]."/>
<EdgeType ID="150" name="disjointWith%[EDGE]:"/>

—<Graph ID="169" kind="TG" name="OntologyMetamodel">
<Node ID="172" type="16"/>
<Node ID="174" type="12"/>

<Edge ID="T106" source="[45" target="16" type="16"/>

</Graph>
</Types>
—<Graph ID="1137" kind="HOST" name="Ontology">
—<Node ID="I138" type="16">
— <Atiribute constant="true" fype="14">

—<Rule ID="1138" formula="true" name="CHRenameClass">

—<Graph ID="1140" kind="LHS" name="LeftOf CHRenameClass">
—<Node ID="T141" type="16">
—<Attribute constant="true" type="14">
— <Value>

<string>Ciri</string>
</Value>

</Attribute>
—<Attribute constant="true" type="15">
—<Value=

<string>C</string>
</Value>

</Attribute=
</Node>
</Graph>
<Graph ID="1145" kind="RHS" name="RightOf CHRenameClass">
... </Graph>
—<Morphism comment="Formula: true” name="CHRenameClass">
<Mapping image="1146" orig="1141"/>
</Morphism>
—<ApplCondition>
—<NAC>
—<Graph ID="1150" kind="NAC" name="NotExist">

—<Value> B —<Node ID="I151" type="I6">
<string>Ciri</string> — <Attribute constant="true" type="I4">
</Value> —<Value>
</Attribute> <string>CinNew</string>
—<Atiribute constant="true" type="15"> </Value>
—<Value> </Attribute>
<string>C</string>
</Value= </Node>
</Attribute> </Graph=>
</Node> <Morphism name="NotExist"/>
</NAC>
</Graph> </ApplCondition=
<TaggedValue Tag="layer" TagValue="0"/>
<TaggedValue Tag="prionty" TagValue="0"/>
</Rule>
<Rule ID="1155" formula="truc" name="AddIndividual"> . <'Rule>
Figure 11: An extract from the log file of ontology changes.
t
| Add Ryg o v1 | Apply Rygtov1 | Add Ry1 vz | Apply Ry tov2 | o
|] | | |
Oyo Ovo+ Rvotovt Ovi +Ryptovt Ovi+ Ryitovz Oy, +Ryiovz Time

Figure 12: Storage ontology versions with AGG tool.

[4] G. Forestier, C. Wemmert, A. Puissant, Coastal image interpre-
tation using background knowledge and semantics, Computers
& Geosciences 54 (2013) 88-96.

J. J. Jung, Reusing ontology mappings for query routing in se-
mantic peer-to-peer environment, Information Sciences 180 (17)
(2010) 3248 — 3257.

N. F. Noy, D. L. McGuinness, et al., Ontology development 101:
A guide to creating your first ontology (2001).

R. Thomopoulos, S. Destercke, B. Charnomordic, I. Johnson,
J. Abécassis, An iterative approach to build relevant ontology-
aware data-driven models, Information Sciences 221 (2013) 452—
472.

L. Stojanovic, Methods and tools for ontology evolution, Ph.D.
thesis, University of Karlsruhe, Germany (2004).

A. M. Khattak, R. Batool, Z. Pervez, A. M. Khan, S. Lee, On-
tology evolution and challenges, Journal of Information Science
and Engineering 29 (2013) 851-871.

M. Hartung, A. Gro8}, E. Rahm, Conto—diff: generation of com-
plex evolution mappings for life science ontologies, Journal of
Biomedical Informatics 46 (1) (2013) 15-32.

(8]
(9]

[10]

16

M. Klein, Change management for distributed ontologies, Ph.D.
thesis, Vrije Universiteit Amsterdam, Amsterdam, The Nether-
lands (2004).

R. Djedidi, M.-A. Aufaure, ONTO-EVO% an ontology evolu-
tion approach guided by pattern modeling and quality evalua-
tion, in: Foundations of Information and Knowledge Systems,
Springer, 2010, pp. 286-305.

A. M. Khattak, K. Latif, S. Lee, Change management in evolv-
ing web ontologies, Knowledge-Based Systems 37 (0) (2013) 1—
18.

H. Ehrig, U. Montanari, G. Rozenberg, H. J. Schneider, Graph
Transformations in Computer Science, Geschéftsstelle Schloss
Dagstuhl, 1996.

M. d’Aquin, P. Doran, E. Motta, V. A. Tamma, Towards a
parametric ontology modularization framework based on graph
transformation., in: WoMO, 2007.

B. Braatz, C. Brandt, Graph transformations for the re-
source description framework, Electronic Communications of
the EASST 10.

P. De Leenheer, T. Mens, Using graph transformation to sup-

20]

21]

22]

(28]

[29]

port collaborative ontology evolution, in: Applications of Graph
Transformations with Industrial Relevance, Springer, 2008, pp.
44-58.

M. Mahfoudh, G. Forestier, L. Thiry, M. Hassenforder, Consis-
tent ontologies evolution using graph grammars, in: Knowledge
Science, Engineering and Management, Springer, 2013, pp. 64—
75.

N. Stojanovic, L. Stojanovic, S. Handschuh, Evolution in the
ontology-based knowledge management system, in: Proceed-
ings of the European Conference on Information Systems-ECIS,
2002.

P.-H. Luong, R. Dieng-Kuntz, A rule-based approach for se-
mantic annotation evolution, Computational Intelligence 23 (3)
(2007) 320-338.

E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, Y. Katz, Pellet: A
practical owl-dl reasoner, Web Semantics: science, services and
agents on the World Wide Web 5 (2) (2007) 51-53.

M. Javed, Y. M. Abgaz, C. Pahl, Ontology change management
and identification of change patterns, Journal on Data Seman-
tics 2 (2-3) (2013) 119-143.

M. Gueffaz, P. Pittet, S. Rampacek, C. Cruz, C. Nicolle, Incon-
sistency identification in dynamic ontologies based on model
checking., in: WEBIST, SciTePress, 2012, pp. 418-421.

L. Liu, P. Zhang, R. Fan, R. Zhang, H. Yang, Modeling ontology
evolution with setpi, Information Sciences 255 (2014) 155-169.
R. Milner, Communicating and mobile systems: the pi calculus,
Cambridge university press, 1999.

G. Rozenberg, Handbook of graph grammars and computing by
graph transformation, Vol. 1, World Scientific, 1999.

H. Ehrig, M. Pfender, H. J. Schneider, Graph-grammars: An
algebraic approach, in: Switching and Automata Theory, 1973.
SWAT’08. IEEE Conference Record of 14th Annual Symposium
on, IEEE, 1973, pp. 167-180.

M. Barr, C. Wells, Category theory for computing science,
Vol. 10, Prentice Hall New York, 1990.

M. Lowe, Algebraic approach to single-pushout graph transfor-

17

[30]

31]

[33]

[34]

[35]

[39]

mation, Theoretical Computer Science 109 (1) (1993) 181-224.
H. Ehrig, Introduction to the algebraic theory of graph gram-
mars (a survey), in: Graph-Grammars and Their Application
to Computer Science and Biology, Springer, 1979, pp. 1-69.

I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for very
expressive description logics, Logic Journal of IGPL 8 (3) (2000)
239-263.

N. F. Noy, M. Klein, Ontology evolution: Not the same as
schema evolution, Knowledge and information systems 6 (4)
(2004) 428-440.

P. Haase, L. Stojanovic, Consistent evolution of owl ontologies,
in: The Semantic Web: Research and Applications, Springer,
2005, pp. 182-197.

L. Qin, V. Atluri, Evaluating the validity of data instances
against ontology evolution over the semantic web, Information
and Software Technology 51 (1) (2009) 83-97.

C. Ermel., M. Rudolf., G. Taentzer, The agg approach: Lan-
guage and environment, in: Handbook of graph grammars and
computing by graph transformation, World Scientific Publish-
ing Co., Inc., 1999, pp. 551-603.

U. Nickel, J. Niere, A. Ziindorf, The fujaba environment, in:
Proceedings of the 22nd international conference on Software
engineering, ACM, 2000, pp. 742-745.

D. Varré, A. Pataricza, Generic and meta-transformations for
model transformation engineering, 2004-The Unified Modeling
Language. Modelling Languages and Applications (2004) 290—
304.

G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, On the use of graph
transformations in the formal specification of computer-based
systems, in: Proceedings of IEEE TC-ECBS and IFIP10. 1
Joint Workshop on Formal Specifications of Computer-Based
Systems, 2003, pp. 19-27.

F. Fondement, P.-A. Muller, L. Thiry, B. Wittmann,
G. Forestier, Big metamodels are evil, in: Model-Driven En-
gineering Languages and Systems, Springer, 2013, pp. 138-153.

	Introduction
	Background and review
	Related work
	Typed Graph Grammars

	A graph transformation model for evolving ontologies
	Ontologies as Typed Attributed Graphs
	Formalization of ontology changes
	Atomic changes
	Composite changes
	Complex changes

	Implementation
	EventCCAlps ontology
	Application

	Results and discussion
	corrFormalisms comparison
	corrComplexity
	Discussion

	corrConclusion
	Ontology changes formalized by TGG

