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Abstract

An ontology represents a consensus on the representation of the concepts
and axioms of a given domain. This consensus is often reached through an
iterative process, each iteration consisting in modifying the current version
of the consensus. Furthermore, frequent and continuous changes are also
occurring when the represented domain evolves or when new requirements
have to be considered. Consequently, ontologies have to be adaptable to
handle evolution, revision and refinement. However, this process is highly
challenging as it is often difficult to understand all affected ontology parts
when changes are performed. Thus, inconsistencies can occur in the ontology
as the changes can introduce contradictory axioms. To address this issue, this
paper presents a formal approach for evolving ontologies using Typed Graph
Grammars. This method relies on the algebraic approach Simple PushOut
(SPO) of graph transformations. It formalizes the ontology changes and
proposes an a priori approach of inconsistencies resolution. The modified
ontology does not need an explicit checking as an incorrect ontology version
cannot actually be generated. To validate our proposal, an implementation
is presented using the Attributed Graph Grammar (AGG) toolbox.
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1. Introduction

Formalizing knowledge has always presented an existential obsession and
an important challenge for humans. The proposed solutions in the literature
are mainly organized around databases, data warehouses and more recently
ontologies. Ontologies are often defined as an explicit specification of a con-
ceptualization of a domain [1]. They make possible for a community to reach
a consensus and to bridge the gap of the vocabulary heterogeneity and se-
mantic ambiguities. Thanks to their advantages, ontologies are used in a
large range of fields such as: semantic web [2], business decision support [3],
image interpretation [4], peer-to-peer networks [5], etc. A counterpart of this
popularity, is the constant augmentation of available ontologies. For exam-
ple, the number of ontologies on the BioPortal increased of 67% in 20132
Furthermore, as building an ontology is an iterative process [6, 7|, the cre-
ation of a new ontology actually creates a set of several ontologies versions
which is also consistently growing. For example, 51 versions of the Gene On-
tology (one of the most successfully ontologies) are monthly released since
January 2010%. Thus, more and more new ontologies are created and the
number of versions of existing ontologies is constantly increasing.

Generate a new ontology version is however not a trivial task. It presents
several challenges and requires a comprehensive study of the ontology model
in order to manage its evolution. Ontologies Fvolution is defined by Sto-
janovic et al. as the timely adaptation of an ontology to the arisen changes
and the consistent propagation of these changes to dependent artefacts [8].
This process consists in the modification of one or many ontology compo-
nents (class, property, axiom, individual, etc.) and it may be at instances
level (Ontology Population) and/or structural level (Ontology Enrichment)
[9]. Moreover, to preserve ontology consistency, the application of ontology
changes must preserve all the ontology model constraints [8]. However, on-
tologies are often developed in a collaborative manner and are usually large
and expressive. This makes difficult for a user and/or ontologist to under-
stand all their affected parts (i.e. dependent entities) when changes are made.
Therefore, to keep ontology consistency, it is important to have a mechanism
that controls how the ontology changes are made and avoids the possible
inconsistencies generated due to these changes.

Zbioportal.bioontology.org/ontologies
3geneontology.org/ontology-archive



The ontology languages such as Ontology Web Language (OWL?) are
prevalent in knowledge representation, although, they are not sufficient for
formalizing changes. They are indeed effective to capture static semantics but
not changes that require a consistency checking of the interaction between
ontologies entities. That is why, the proposed approaches in the literature do
not addressed the inconsistencies issue [10] or used an a posteriori process to
identify inconsistencies [11, 12, 13], etc. Thus, unlike previous approaches,
this paper focuses on the critical issue of presenting a formal approach for
consistent ontologies evolution by using Typed Graph Grammars and Alge-
braic Graph Transformations. Typed Graph Grammars (T'GG) are a math-
ematical formalism that permits to represent and manage graphs. They are
used in several fields of computer science such as software systems modelling,
pattern recognition and formal language theory [14]. Recently, they started
to be used in the ontology field, in particular for the modular ontologies
formalization [15], Resource Description Framework graphs representation
[16], collaborative ontologies evolution [17] and consistent ontologies evolu-
tion [18].

In our previous work [18], we have introduced the formalization of the
ontology changes with Typed Graph Grammars and have focused on the
atomic changes. A deeper study is presented in this paper which presents
an exhaustive list of the atomic ontology changes and describes how consis-
tently formalize the composite and complex changes. A comparison between
the ontology changes representation in the OWL and our T'GG formalism is
presented to highlight the advantages of the use of graph grammars in the
ontologies evolution process. Indeed, TGG and algebraic graph transforma-
tions provide a new way to formalize ontology changes and offer mechanisms
to control graph transformations while avoiding the inconsistencies. Further-
more, they can reduce the number of elementary changes required to apply
the composite and complex changes. The proposed approach has been im-
plemented using a graph transformation tool Attributed Graph Grammar
(AGG). In addition, we also present a mechanism to log the ontologies ver-
sions and ontology changes with a formal representation. An application
is presented with the EventCCAlps ontology developed in the frame of the
CCAlps European project?.

4w3.org/TR/owl-ref
Sccalps.eu, project reference number: 15-3-1-IT



The rest of the paper is organized as follow: Section 2 presents related
work and introduces Typed Graph Grammars and algebraic graph trans-
formations. Section 3 proposes a graph transformation model for evolving
ontologies and describes the formalization of ontology changes with Typed
Graph Grammars. Section 4 presents an application using the EventCCAlps
ontology. Section 5 evaluates and discusses the proposed approach. Finally,
a conclusion summarizes the presented work and gives some perspectives.

2. Background and review

2.1. Related work

Managing ontologies evolution has been an important and active field of
research in the recent years [9]. The approach of Stojanovic et al. [19] is con-
sidered as one of the first works that have addressed this issue. It presents
a methodology in six phases: change capturing, change representation, se-
mantics of change, change implementation, change propagation and change
validation. The approach focuses on the KAON ontologies and identifies
three types of ontology changes: 1) atomic change is an ontology change that
affects a single ontology entity; 2) composite change is an ontology change
that modifies the neighbourhood of an ontology entity; 3) complex change is
an ontology change that can be decomposed into elementary and composite
ontology changes. Later, Klein et al. [11] have proposed another classifica-
tion. They distinguish two types of ontology changes: elementary (atomic)
and composite (complex). These changes can be specified via logging of
incremental changes or by ontology versions comparison. The authors have
also studied the problem of inconsistencies ontologies and proposed strategies
resolution for each ontology changes. However, it is important to note that,
the work is focused on the ”ontology enrichment” and do not specify specific
operations for the instances. Then, Luong et al. [20] have addressed both the
"ontology enrichment” and the ”ontology population”. They have studied
the evolution management for a corporate semantic web while addressing the
RDF® (Resource Description Framework) ontologies. This choice restricts the
expressivity of the methodology as the others ontology languages (such as
OWL) require further types of changes (cardinality changes, restrictions on
the classes, etc.). Thus, Djedidi et al. [12] have proposed an approach of

6w3.org/RDF



OWL ontologies evolution based on pattern conception. They have studied
both the atomic and composite changes and have used the Pellet reasoner
[21] to detect the inconsistencies. A deeper study of the composite changes is
introduced by Javed et al. [22]. It has presented resolution strategies for sev-
eral composite changes and has described a layered change log for the explicit
operational representation of ontology changes. The change log is formalized
using a graph-based approach and implemented by OWLAPI”. To identify
ontologies inconsistencies, Gueffaz et al. [23] have proposed CLOCk (Change
Log Ontology Checker) approach which use model checking. A transforma-
tion of the OWL ontologies into a specific language NuSMV® is needed. How-
ever, no strategies are proposed to solve the inconsistencies. Recently, some
researches are interested to look for new formalisms to represent ontologies
and find others alternatives to the standard ontology languages. Then, Liu
et al. [24] have introduced SetPi calculus [25] to model ontologies evolu-
tion process. They have represented ontologies by using SetPi entities and
have defined a new formalism for describing the ontology changes. The work
presents many ontology changes (basic and composite). However, it does not
study the inconsistencies problem and do not proposes any implementation.

As a summary, various approaches have been proposed to define and im-
plement ontology evolution process. The Table 1 presents a comparison of
some approaches according to the languages used, the implementation, the
inconsistency management and the specificities. Thus, we can see that dif-
ferent ontology languages have been studied: KAON [8], RDF[20], OWL
[11, 12, 22], etc. Based on these languages, several ontology changes were
defined and different classification of theses changes were proposed [8, 11].
Despite its importance, the problem of inconsistencies resolution is not suf-
ficiently studied. Indeed, some works do not address this issue [10, 24].
Others approaches are only focused on the inconsistencies identification [23].
Some researches are interested, in addition, to resolve the inconsistencies
[12, 20, 22]. However, they use a posteriori process of inconsistencies reso-
lution which require the implementation of changes and then, use external
resources to check if the ontology consistency is affected or not. In our work,
we propose an a priori approach to avoid inconsistencies by using Typed
Graph Grammars formalism.

Towlapi.sourceforge.net
8nusmv.fbk.eu



Approach | Ontology Implemen- | Inconsistency Man- | Specificities
Language tation agement

Stojanovic KAON KAON - Identification of some | - Global evolution process for

et al., 2004 | Language framework inconsistencies. KAON ontologies.

8] - Strategies proposed | - Saving the evolved version
to the ontologist to re- | and traceability of the evolu-
solve inconsistencies. tion process.

- The set of consistency con-
straints heavily depend on the
KAON language.
Klein, 2004 | OWL OntoView, - Identification and re- | - Change management ap-
[11] PROMPT- | solve of the inconsis- | proach for distributed ontolo-
diff tencies. gies.
- Identification of the difference
between ontology versions.
- Saving the traceability of the
ontology changes.

Luong et | RDF(S) CoSWEM - Strategies to detect | - Evolution management for a

al., 2007 (Corporate | and resolve the incon- | corporate semantic web.

[20] Seman- sistency of the seman- | - Logging management.

tic Web | tic annotations.
Evolution - Strategies to resolve
Manage- the ontology changes
ment) inconsistencies.

Djedidi et | OWL DL Onto- - Identification incon- | - Approach based on the pat-

al., 2010 EVO4L sistencies using Pellet | tern conception.

[12] prototype reasoner. - Evaluation of the evolved
ontology quality and guiding
change resolution.

- Approach required heavy ac-
tivities.

Gueffaz et | OWL DL Prototype - Identification incon- | - Approach for evolving ontolo-

al., 2012 sistency using NuSMV | gies based on model checking.

[23] checker.

Hartung et | OBO Conto-diff — - Identification of the difference

al., 2013 | (Open tool, between ontology versions.

[10] Biomedical | OnEX web- - Approach based on the re-
Ontologies) | application sult of a semi-automatic match
and RDF operation computed by COG

(change operation generating)
rules.

Khattak et | RDFS and | Protégé - Management incon- | - Approach of change history

al., 2013 | OWL plug-in sistencies using KAON | management for evolving on-

[13] APL tologies.

- Proposition of a Rollback
and Rollforward algorithms to
revert ontology to the previ-
ous or next state respectively
based on the logged ontology
changes.




Javed et | OWL OnE (On- | - Strategies to detect | - A deeper study of the com-

al., 2013 tology and resolve the in- | plex ontology changes.

[22] Editing) consistency of ontology | - Formalization of the change

tool changes. log using a graph-based ap-

proach.

Liu et al.,, | OWL — — - Proposition of a new formal-

2014 [24] ism to model ontology evolu-
tion, the SetPi Calculus.

Table 1: Summary of ontology evolution approaches.

2.2. Typed Graph Grammars

This section reviews the fundamental notions involved in typed graph
grammars and algebraic graph transformations.

Definition 1 (Graph). A graph G(V, E) is a structure composed by a set of
vertices V', a set of edges F and an application s : E — V x V that attaches
a source/target vertex to each edge.

An attributed graph is a graph extended by a set of attributes name att,
a set of possible values val and a mapping valuation v : att — val.

Definition 2 (Graph Morphism). A graph morphism m(f,g) is an appli-
cation from a graph G(V, E) to a graph G(V’, E’) that is defined by two
applications f : V — V' and g : E — E’. A morphism must preserve the
structure what means that if e = (s,t) and g(e) = € = (¢, ') then s’ = f(s)
and t' = f(t).
Definition 3 (Typing). A typing is a morphism from a graph G(V, F) to
a type graph T'G(Vr, Ep) where Vi corresponds to the types of the vertices
and Er to the types of edges.

The Figure 1 gives an example of a graph (lower part) and a mor-
phism/typing to a type graph (upper part).
Definition 4 (Typed Graph Grammars). A typed graph grammar is a
formalism defined by TGG = (G, TG, P) where:

e (5 is a start graph also called host graph.
e T'(G is a type graph and represents the elements type of the graph G.

e Pis aset of production rules also called graph rewriting rules (or graph
transformations) which are defined by a pair of graphs patterns (LH S,
RHS) where:
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Figure 1: Example of typing graph.

— LHS (Left Hand Side) represents the preconditions of the rewrit-
ing rule and describes the structure that has to be found in G.

— RHS (Right Hand Side) represents the postconditions of the rule
and must replaces LHS in G.

A rewriting rule can be extended with a set of negative application con-
ditions (NAC's). A NAC is another graph pattern such as: ”if there exist
a morphism from NAC' to the host graph G, then, the rule cannot be ap-
plied”. In this way, a graph transformation defines how a graph G can be
transformed to a new graph G’. More precisely, there must exist a morphism
that replaces LHS by RHS to obtain G’. To apply this replacement, dif-
ferent graph transformations approaches are proposed [26]. In this work, we
use the algebraic approach [27] based on the pushout concept [28].

Definition 5 (Pushout). The pushout is an operator from the Category
Theory [28]. Given three objects (in our case graphs) Gy, G2 and G3 and
two morphisms f : G; — G5 and g : G; — (3, the pushout of G5 and G3 con-
sists of: 1) an object G4 and two morphisms f': Go — G4 and ¢’ : G3 — G4
where f o f = ¢’ o g; 2) for any morphisms f”: Gy — X and ¢" : G3 - X
such that f o f” = go ¢”, there is a unique morphism k : G4 — X such that
f’ok;:f”andg’ok;:g”.

Algebraic approaches are divided into two categories: the Single PushOut,
SPO [29] and the Double PushOut, DPO [30]. The DPO approach consists
of two pushouts and requires an additional condition called the ”dangling

8



condition”. This condition states that the transformation is applicable only
if it does not lead to "dangling edges”, i.e. an edge without a source or a
target node. Indeed, in the SPO approach, one pushout is required and
the dangling edges are removed which permits to write a wide variety of
transformations not allowed by the DPQO approach. Thus, in this work, we
only consider the SPO approach. Applying a rewriting rule to an initial
graph (G) with the SPO method consists in:

1. Finding a matching of LHS in G, i.e. find a morphism m : LHS — G.

2. Deleting the sub-graph m(LHS) — m(LHS N RHS) from G.

3. Adding the sub-graph m(RHS)—m(LHSNRHS) to G to get the final

result G'.

An example of rewriting rule is presented in Figure 2: all the persons
working in the company ”Ensisa” are friends.

Rewriting Rule
NAC LHS RHS
1:Person |—-W°rk5f°r» 3:Comapny M Porcon |worksfor, 3:Comapny
name: Ensisa ; name: Ensisa
‘worksfor fiiendOf worksfor
AN
m
Pushout
P P
erson worksfor Comapn)./ erson worksfor Comapn)./
name: John name: Ensisa name: John name: Ensisa
riendOf
friendOf worksfor friendOf worksfor
Person Person Person Person
name: Mac name: Cathy name: Mac name: Cathy
G G'

Figure 2: An example of rewriting rule with SPO approach.

3. A graph transformation model for evolving ontologies

In the following, we present our approach for evolving ontologies. We
describe the ontology model and the change operations (basic, composite

and complex) that may be applied during ontology evolution.
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3.1. Ontologies as Typed Attributed Graphs

Due to their mathematical foundation and their application conditions,
Typed Graph Grammars are suitable to represent changes and control their
effects.

Proposition 1: Ontology representation languages are mainly based on the
RDF (Resource Description Framework) model which is based on graphs.
Hence, representing ontologies as attributed graphs is quite coherent and
appropriate. In this work we focus on the evolution of OWL ontologies and
follow the ontology model axioms, heavily influenced by Description Logics
[31]. The OWL was chosen because it is the standard proposed by the W3C
and the language usually adopted to represent ontologies. Thus, with the
typed graph grammar formalism, an ontology is then, a graph G with a
typing relation to type graph (T'G) where T'G represents the OWL ontology
meta-model (Figure 3). Therefore, the considered types of vertices are:

Vr = {Class(C), Property(P), Object Property(OP),-
DataProperty(DP), Individual(I), DataType(D)}.

The edge types correspond to properties used to relate different entities:
Er = {subClassO f, equivalentT o, range, domain, ... }.

For example, subClassO f is a type of edge that is used to link nodes of
the type Class. Note that, the restrictions (R) are a special case represented
by both nodes (SomeV aluesFrom, RestrictionCardinality, etc.) and edges
(hasRestriction, onClass, etc.).

Both the nodes and the edges can contain attributes. For example, among
the attributes of the nodes of types C, I and P, we find the attribute name
which specifies their locals names and the ¢r7 which identifies them. In the
figures of this article, the iri has not represented for readability reasons.
Proposition 2: With proposition 1, ontology changes can be formalized by
an indexed family of rewriting rules:

r; = (NACZ, LHSZ, RHS“ DCHZ) where

i € {AddClass, RemoveDataProperty, RenamelIndividual, ..}.
In this extended definition, DC H represents the set of Derived CHanges to be
applied to correct the inconsistencies may be generated due to the application
of the ontology changes. For example, the deletion of a class can provoke the
modification of its individuals types (i.e. linking these individuals to other
classes such as the superClass or the equivalentClasses) or the deletion of
its individuals as well.

10
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Figure 3: Type Graph used for the rewriting rules formalization.

3.2. Formalization of ontology changes

The application of ontology changes can affect ontology consistency. This
section describes thus, our proposition for consistent ontologies evolution
using the algebraic graph transformations.

Proposition 3: To preserve consistency, each transformation is refined by a
set of negative application conditions (NAC) and derived changes (DCH).
Theses conditions and additional changes ensure an a priori approach of
inconsistencies resolution, i.e. the obtained ontology does not need an explicit
checking as an incorrect ontology version cannot actually be generated.

Inspired by the works of literature [32, 33, 34], inconsistencies addressed
in this work are:

e Data redundancy that can be generated following an add or rename
operation. This type of inconsistency is corrected by the NAC's.

e Isolated nodes, a node (vertex) V, called isolated if VV; € V| AE; €
E|E; = (V,,V;). This incoherence requires to link the isolated node to

11



the rest of the graph. Depending of the type of node, derived changes
are proposed.

e Orphaned individual is an inconsistency which is generated as a result
of removal of classes containing individuals.

e Axioms contradiction, the addition of a new axiom should not be accept
if it contradicts an axiom already defined in the ontology. Many cases
are considered: 1) two classes cannot be disjoint and equivalent at the
same time, 2) two classes that share a subsumption relation cannot be
disjoints, etc.

3.2.1. Atomic changes

The atomic changes include the rename changes, the addition and dele-
tion of some changes. They only affect a single ontology entity although
they depend on other ontologies elements. Thus, the Table 2 presents the
atomic changes addressed in this work and the ontology concepts which are
related. Actually, it is important to note that the N AC's of ontology changes
are deduced from these interdependencies. For example, from this table we
can see that the AddDataPropertyAssertion(I, DP,value) change, which
adds a DataPropertyAssertion between an individual I and a dataProperty
DP, depends on the Individual, DataProperty and Functional Property
entities. Indeed, before applying this change, it is necessary to check if the
dataProperty DP is a functional property. In this case, if the individual I
has already an AssertionDataProperty with the dataProperty DP, then,
the change is not allowed because it will affect the ontology consistency.

[=}
= |8
S8
= |5 |E
S |28 =
> > - - 9 2
£ Ele |85 s
> % gz |5 | |8 B
& = 0 E Q o
o >y s n <] o S Q s 8
Q = &) ] A <9 > | A ~ O 1R |8
SR O e TN R <O I NN ES R A
T2 lale |8 |D =S I S R R~ R R < B I = T
=1 & ] I g3 | Q ? 3 | & o, o | = =
SlE 2| & s |EIE|S|E|2 S8 2|23
i) g = Sl |E |= <
2121815 |55 |2|0]|5|3|& (5|3 (8|2
S22 |8 |5|2|Z2|8|2|Z|S|E|&|5|5|2
OlE|olAa|lem|An|R|A|la |k |0 |<|na|=
RenameClass v
Renamelndividual v
RenameObjectProperty v
RenameDataProperty v
AddIndividual VIV
AddDataProperty v V| v
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AddObjectProperty
AddEquivalentClasses
AddDisjointClasses
AddSubClass
AddObjectProperty Assertion
AddDataPropertyAssertion
AddSubObjectProperty
AddSubDataProperty v V| v
AddCardinalityRestriction
AddAllValuesFromRestric-
tion
AddSomeValuesFromRestric-
tion

AddHasValueRestriction
Removelndividual v
RemoveDisjointClasses v
RemoveEquivalentClasses v v
RemoveSubClass v
RemoveEquivalentObjectPro- v v
perties
RemoveDisjointObjectProperq v v
ties
RemoveSubObjectProperty v v

ANENENEN

NESENENEN

<\
AN
\

s

\
SN EEENEEENEN
\

Table 2: Matrix dependency between basic ontology changes and ontology entities.

In the following, one example for each type of change (rename, addition
and deletion) is presented. Others changes are described in the Appendix
A. Thus, we define for each change, its NAC's, LHS (pre-condition) and its
RHS (post-condition). Of course, this type of change does not have DCH
as they affect only a single ontology entity. Note that some changes do not re-
quire any N AC such as RemoveDisjointClasses, Remove EquivalentObject-
Properties, etc.

Thus, the Renamelndividual(1;, Ine,) is an ontology change that re-
names a node of type Individual. The rewriting rule corresponding to this
change is defined as follow (Figure 4a):

o NAC = {Inew} To avoid redundancy, the N AC of this rule should be
the graph composed by a node of type Individual with the attribute
name is equal to Iye,. This means that such sub-graph should not
exist in the ontology graph to apply the change.

e LHS ={I;}. The LHS represents the pre-condition of a rewriting rule.
Thus, in this case, it should be the graph composed by a node of type
Individual with the attribute name is equal to I;. This is necessary to
specify that the individual to rename should exist in the ontology.

13



e RHS = {Inew}. The RHS specifies the new graph that will replace
the LHS graph and will be added to the ontology.

The AddSubClass (Cy, Cs) rewriting rule adds a subClassOf axiom
between two classes (Figure 4c) and it is defined by:

e NACSs :

1. ¢4 E (Y, condition to avoid redundancys;

2. Cy C (Y, the subsumption relation cannot be symmetric;

3. C7 C (%5, classes which share a subsumption relation cannot be
disjoint;

4. 3C; € C(O) - (C1 C Cy) A (C; E (), if there is a class C; which is

the subClassO f the class Cy and the superClass of C, then, C}
is already a subC'lass of Cb;

5. E'(Cz,C]> € C(O) . (Ol C Ol) VAN (C] C 02) ANC; E _'Cj, classes

which share a subsumption relation cannot have subClasses that
are disjoint;

o LHS = {C},Cy}, the classes should exist in the ontology.
e RHS = {C; C (3}, the axiom will be added to the ontology.

The RemoveEquivalentObject Properties(OP;, OP,) rewriting rule re-
moves the equivalentTo axiom between two objectProperties (Figure 4b)
and it is defined by:

e NAC =10

e LHS = {OP, = OPR,}, the objectProperties and their equivalent rela-
tions should exist in the ontology.

e RHS = {OP;,OP,}, the axiom will be removed from the ontology.

14



RemoveEquivalentObjectProperty(OP,, OP,)

LHS

Renamelndividual(l;, Inew)

RHS

1:0bjectProperty

1:ObjectProperty

name = "OP"

name = "OP,"

NAC LHS RHS
1:Individual 1:Individual 1:Individual
name = "ly,," name ="I;" name = "ly,"

equivalentTo

2:ObjectProperty

2:0bjectProperty

name = "OP,"

name = "OP,"

(a) Rewriting rule for

the Renamelndividual change. (b) Rewriting rule for the
RemoveEquivalentObject Property
change.
AddSubClass(C,, C,)

NAC1 NAC2 NAC3 NAC4 NAC5 LHS RHS
2:Class 2:Class 2:Class 2:Class 2:Class 1:Class 2:Class
}>name="cz" name="C," [[| name="c," || "ame="C>" name="C," name="C," 1:Clas"s ||| name="C,"

| subclassor name="C,
subClassOf || |subClassOf || [disjointwith SubClassOf subClassOf subClassOf
TsubCIassOf -
}»1:Class 1:Class 1:Class 1-Class ||[_Class__}[ Ciass | ZClass 1:Class
name="C," name="C," name="C," name="C," disjointWith name="C," name="C,"

(c) Rewriting rule for the AddSubClass change.

Figure 4: Rewriting rules of some atomic ontology changes.

3.2.2. Composite changes

The composite changes affect an ontology entity and its neighbourhood
and require then, additional changes (DCHs) to preserve the ontology con-
sistency. Thus, the Table 3 shows the interdependencies between theses
changes organized as a matrix dependencies. The value of a matrix element
(i, 7) indicates that the application of a change related to row ¢ involved the
application of the changes in column j. In the following, some composite
changes are presented.
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Table 3: Matrix dependency between composite ontology changes.

The RemoveCardinality Restriction(C, O P) rewriting rule removes a C'a-
rdinality Restriction defined on a class C' and an objectProperty OP. It is
composed of two rules. The first one presents the derived change RemoveAs-
sertionObject Property that deletes all the assertions which are defined on
OP. The second rule defines the principal rewriting rule that allows the
deletion of the restriction.

The RemoveObject Property(OP) rewriting rule removes an Object Prop-
erty(OP) and all its dependencies from the ontology. The Figure 5 presents
the six rules which define the change. Then, the first five rules describe the
derived changes (DCH) must be applied to preserve the consistency of the
ontology and the last one presents the principal rewriting rule. Thus, the re-
strictions defined on the property OP should be all deleted. This is achieved
by the application of the following rules: Remove AllV aluesRestriction(OP),
RemoveSomeV aluesRestriction(OP), RemoveH asV alueRestriction(OP) -
and RemoveCardinality Restriction(OP). Then, it is necessary to delete all
the Object PropertyAssertion which reference the objectProperty OP. For
the other relations, such as domain, range, etc., they are directly deleted
without needing to add specific controls. The deletion is achieved during
the application of the transformation as the SPO approach removes all the
dangling edges.
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RemoveObjectProperty(OP)

DCH1_RemoveAllValuesFromRestriction

DCH2_RemoveSomeValuesFrom

DCH3_RemoveHasValueRestriction

Restriction
LHS RHS LHS RHS LHS RHS
1:ObjectProperty |||| 1:ObjectProperty 1:ObjectProperty |||| 1:ObjectProperty 1:ObjectProperty ||| 1:ObjectProperty
name = "OP" name = "OP" name = "OP" name = "OP" name = "OP" name = "OP"
onProperty onProperty onProperty

HasValue

CH_RemoveObjectProperty

SomeValuesFrom

DCH5_RemoveAssertionObjectProperty

AllValuesFrom

DCH4_RemoveCardinalityRestriction

LHS RHS LHS RHS LHS RHS
1:0bjectProperty 1:0bjectProperty ,_“ndII
name = "OP" name = "OP" ObjectProperty
objectPropertyAssertion name = "OP"
onProperty iriObjProp="0Piri"
e e
ardinalityRestriction 2:Individual

————————————————————

Figure 5: Rewriting rule for the RemoveObject Property change.

3.2.3. Complex changes

The complex ontology changes are sophisticated operations. They are
identified by grouping basic and composite changes and affect several on-
tology entities which are not necessarily adjacent. They are mostly used to
aggregate many and different changes into one in order to perform generic
tasks. They help the user to adapt his ontology without being lost in the de-
tails of each elementary changes. Table 4 presents the set of complex changes
addressed in this work and the changes they are compound of.
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Table 4: Matrix dependency of complex ontology changes.

The PullUpClass(C,C,) change moves a class C' up in its class hierar-
chy and attaches it to the parents of its previous parent class C),. Conse-
quently, the class C' is not any more a subClass of C,, and thus, does not
infer its properties. The figure 6 presents the rewriting rules that defined the
change. Thus, the RemoveObject PropertyAssertion derived change check if
the class C' has individuals which share an object PropertyAssertion on the
class C, properties. In this case, all these assertions must be deleted. The
RemoveDataPropertyAssertion remove all the dataPropertyAssertion de-
fined on the class C individuals and the class C), dataProperties.

PullUpClass(C, Cp)

CH_PullUpClass DCH_RemoveDataPropertyAssertion

LHS RHS LHS RHS

-3:Class memberOf . memberOf| 2.
T:Individual |— zClass_||[4: ndividual — ass
subClassOf —_— name ="C"

’ name ="C"
1:Class .
— subcl, sofw dataPropertyAssertion
name = "Cp!
subClassOf . . eroso . |domain|  4:Cl i .
T 1:Class 2:Class 3:DataProperty a"ss ([I5:Dataproperty domain|  4:Class
2:Class name ="C" |[name = "Cp"| name = "Cp

name = "Cp"

name ="C"

DCH_RemoveObjectPropertyAssertion

LHS RHS
1:Individual memberOf 1:Individual memberOf
objectPropertyAssertion 3:Class 3:Class
iriObjProp="OPiri" name = "C" name = "C"

2:Individual memberOf 2:Individual memberOf
4:Class
5:0bjectProperty

name = "Cp"
hasRestrictio onProperty hasRestrictio onProperty

6:Restriction 6:Restriction

4:Class

5:0bjectProperty

name = "Cp"

Figure 6: Rewriting rule for the PullUpClass change.

The MergeClasses(Cy,Cy, Cneyw) change merges two exiting classes C
and Cy into a new class (Clyey ). It requires the application of the AddClass(Cyew),
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RemoveClass(Cy) and RemoveClass(Cy) rewriting rules. However, to pre-
serve the consistency ontology, before deleting C and (', all their properties
and axioms should be attached to Cye,. Formally: 1) VC; € C(O) - C; C Cy
do the rewriting rule AddSubClass(C;, Cney) and VC; € C(O) - Cy T C; do
AddSubClass(Cnew, Cj), 2) repeat the process with Cy, 3) VC; € C(0)-C; =
Cy do AddEquivalentClasses(C;, Cnew), 4) repeat the process with Cy, etce.

The SplitClass(C, Cnew1, Cnewz) change splits an exiting class (C') into
two new created classes C'new1 and Cyewo. Then, it requires the application of
AddClass(Cnewr ), AddClass(Cyewz) and RemoveClass(C') rewriting rules.
As the MergeClasses change, the SplitClass rewriting rule requires, before
deleting C', the attachment of all its properties and axioms to the Clye,1 and

ONer-

4. Implementation

4.1. EventCCAlps ontology

In this section, we present the EventCCAlps OWL ontology used as a
use-case study to describe and validate our research work. The ontology
is developed in the frame of the European project CCAlps which aims at
helping the collaboration between Creative Companies in Alpine space. It
links companies and partners for the organization of events. The Figure 7
presents an extract from the EventCCAlps ontology represented with typed
graph attributed formalism. Note that the ontology was converted into AGG
graphs using our software OWLToGGX?. The Figure shows then, some en-
tities which describe the organized events. An event can be a ”Conference”,
a "Meeting” or a "BestComp”. It starts at one day/time and finishes at
another day/time, may be described by ”Tag” and can receive ”Particular”
and ”Company” participants.

In the EventCCAlps ontology, the changes are frequent both at the in-
stances level (e.g. add events and partners) and schema structure (e.g. create
new entities joining the project, delete entities leaving the project).

4.2. Application

Several tools have been proposed to support graph rewriting: AGG [35],
Fujaba [36] or Viatra [37]. To implement our approach, we chose the AGG

9http://mariem-mahfoudh.info/ksem2013/
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Figure 7: An extract from EventCCAlps ontology represented with the typed attributed
graph formalism.

(Attributed Graph Grammar) tool that is considered as one of the most
important tools. It supports the algebraic approaches (SPO and DPO)
and provides graphical editors for graphs and rewriting rules. The Figure
8 shows the AGG graphical user interface and presents how to implement
ontology changes'®. Different editors are shown: A) an editor for node and
edge types that allows user to specify the elements of the type graph; B)
a graphical editor for graphs that creates and shows the host graph and
type graph; C) a graphical editor for rewriting rules that permits to define
the NACs, LHS and RHS of each rule. An example of grammar graph
is also presented. It is namely GraphTransformationSystem and it is con-
sisting of: 1) the type graph that presents the ontology meta-model; 2) the
host graph that contains the ontology to be evolved; 3) two rewriting rules
(AddDataPropertyAssertion and AddDisjointClasses).

Note that the rewriting rules corresponding to the composite and complex
changes are classified by layers to define the sequence of their application.

Now, we present real cases study with the CCAlps project. Thus, as
mentioned above, the EventCCAlps ontology defines events whose the par-
ticipants may be ”Particular” or ”Company”. However, due to the partners

L0 A1l the materials used in this section (ontology in graph (AGG format) along with the
code of the presented ontology changes) are available for download here: http://mariem-
mahfoudh.info/kbs2014/
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Figure 8: AGG graphical user interface.

requirements, it was necessary to distinguish between the companies types
and thus replace the ”Company” entity by the ”CCI” and "NotCCI” con-
cepts where CCI (Creative and Cultural Industries) are the companies whose
the activities take origin from individual creativity such as performing arts,
graphic design, etc. Thus, the rewriting rules corresponding to this change is
SplitClass(Company, CCI, NotCCI). The Figure 9 presents the different
rules required to apply the change as described in the Section 3.2.3 and shows
the ontology result. Therefore, the class ”Company” are deleted and all its
properties and axioms are attached to the "CCI” and "NotCCI” classes.
These new classes have now, a subclass ”Partner”, a super-class ”Partici-
pant” and they are connected by the ”worksFor” property.

The Figure 10 presents the AddDisjointClasses(Meeting, Fvent) change
that adds a disjunction axiom between the two classes ” Meeting” and " Event”.
The rewriting rule is composed by five NACs: 1) NAC 1 avoids redundancy;
2) NAC 2 forbids the application of the rule if the classes ”"Meeting” and
"Event” are equivalent, because classes cannot be disjoint and equivalent at
the same time; 3) NAC 3 prohibits the transformation if the class ”Event” is
a subclass of the class "Meeting”. Classes that share subsumption relation
cannot be disjoint; 4) NAC 4 forbids the transformation if the class " Meet-
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Figure 9: SplitClass(Company, CCI, NotCCT) rewriting rule.

ing” is a subclass of the class "Event”; 5) NAC 5 forbids the application of
the rule if the classes have common individuals.

As the classes "Meeting” and ”Event” share a subsumption relation (a
"Meeting” is a subClassOf "Event”) then, the rewriting rule cannot be ap-
plied (violation of the NAC 4) and an alert box appears to inform user that
the transformation cannot be achieved.

5. Results and discussion

5.1. Formalisms comparison

The two main advantages of our method are: (1) to provide a new way
to formalize ontology changes while controlling the graph transformations
and avoiding the inconsistencies with an a priori manner; (2) to facilitate the
description of composite and complex changes while reducing the number of
the rewriting rules required to apply them. In order to highlight these two
main features, we present in this section a comparison between the ontology
changes representation in the TGG formalism proposed in this paper and the
closest related approach: Djedidi et al. [12] (see Section 2.1).
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Figure 10: AddDisjointClasses(Meeting, Event) rewriting rule.

The Table 5 presents two examples of ontology changes: AddObject Pro-
perty and PullDownClass. In [12], the changes are considered as compos-
ite/complex. The first one is composed of three basic changes and the second
one of two basic changes. The execution of the ontology changes requires the
use of Pellet reasoner which is used as an external resource to identify the
inconsistencies that can appear. Therefore, the inconsistencies resolution is
achieved by an a posteriori manner. If the ontology consistency is affected,
the changes must be canceled to go back to the previous ontology version.
In our work, these changes are considered as elementary changes as they are
composed by only one rewriting rule. Moreover, to preserve the ontology
consistency, the checking of the inconsistencies is achieved by the negative
application conditions (N AC') which ensure an a priori approach of inconsis-
tencies resolution. Thus, there is no need of an external resource to check the
consistency of the ontology as the entire the evolution process is supported
by the TGG formalism.

23



Ontology Djedidi et al. [12] Proposed formalism
Changes
AddObject Pro- The change is composed | - The change is formalized by one rewriting rule.
perty(OP,C1,C3)| of three basic changes: - The rule forbids the data redundancy.
1. AddObject Property-
NAC LHS RHS
(opP),
2. AddDomain(OP,Ch) - 2:Class
1:ObjectPropert -
3. AddRange(OP,C3). ! perty name = "C,"
name = "OP" !
1:0bjectProperty T domain
name = "OP" 2:Class 1:0bjectProperty
name = "C," name = "OP"
T range
3:Class 2:Class
name ="C," name = "C,"
PullDownClass- | The change is composed | - The change is formalized by one rewriting rule.
(C1,C2): move | of two basic changes: - The rule forbids the application of the change if
down a class | 1. the classes C1 and Cq are disjoint as classes that
(C1) in its class | AddSubClass(C1,C2) share a subsumption relation cannot be disjoint.
hierarchy  and | 2. RemoveSubClass-
LHS RHS
attach it as | (C1,Cp) where Cp is the NAC
a child to its | parent class of C; and
. T 1:Class
previous sibling | Ca. 3:cl
= e, :Class
class (C2). name = "L, \
disjointWith subClassOf subctassOf 1:Class
2:Class 1:Class 2:Class name ="C,"
name = "C," name ="C,"|[name ="C," FubClassOf
2:Class
name = "C,"

Table 5: Ontology changes formalization according to Djedidi et al. [12] and the proposed
approach.

5.2. Complexity

The most expensive step in time and resource of the proposed approach
is the recognition of the LHS from the host graph G. This search is an
NP-complete problem. More precisely, a search of a sub-graph composed of
k elements in a graph compound of n elements has a complexity of O(n*).
However, the cost of calculation remains quite acceptable if the size of the
LHS graph is limited [38]. This condition is generally satisfied in ontology
changes application. The number of nodes of the LH .S graph can be used as
a measure of the complexity of the ontology change. As presented in Table
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6, the LHS size is quite limited for simple change (0 to 3 nodes). For more
complex changes, the DHC' size has also to be considered.

Ontology changes Size of LHS
AddClass, AddIndividual 0 nodes
RenameClass, Renamelndividual, | 1 nodes
RenameDataProperty

AddEquivalentClasses, 2 nodes

AddDisjointClasses, AddSubClasses
AddObject Property, AddDataProperty 3 nodes

PullUpClass At least 3 nodes for the principal
change.
At least 4 nodes for the first DCH.
At least 6 nodes for the second
DCH.

Table 6: The LHS’s size of some ontology changes.

The execution time is also dependent of the size of the LHS and the
ontology’s change type (simple or complex). In the example presented in
this paper (see section 4.1), the ontology’s graph is composed of 21 nodes.
The execution of the AddDisjointClasses(Event, Meeting) change took 10
milliseconds (with a LHS composed of 2 nodes). The execution of the com-
plex ontology change SplitClasses(Company, CCI, NotCC1T) took only 700
milliseconds (with a LH S composed of 37 nodes). These execution times are
quite acceptable as they offer a real-time feedback when executing changes
on small-sized ontologies.

5.8. Discussion

Ontology Changes Classification. In our previous work [18], we distinguished
the ontology changes considering the classification proposed by Klein et al.
[11]. Indeed, this classification of basic/elementary and composite/complex
changes is based on the user’s vision and does not take into consideration the
system’s vision. That is why some changes, such as RemoveClass, are con-
sidered as basic changes (user’s vision) although at the system level they are
rather composite since they call for corrective operations. For example, the
RemoveClass change involved others basic changes as RemoveRestriction,
Removelndividual, etc. Therefore, in this work we have reclassified the
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ontology changes and make the distinction between basic, composite and
complex changes by considering the system’s vision.

Logging. Saving and storing the changes for later use is an important task in
ontology evolution as this type of information may be useful in the manage-
ment of the distributed and dependent ontologies. Indeed, by using the AGG
tool, we can preserve after each application of ontology change, a log file that
stores the type graph, the host graph (i.e. the ontology) and the rewriting
rules in a formal and semantic representation (Figure 11). Currently, in our
work, all the applied changes as well as the different ontology versions can
be recovered. The Figure 12 shows how storing the versions of the same on-
tology with AGG tool. Thus, at to, we have the first ontology version (Oyy).
Then, when the ontology changes are requested, another file is generated to
store both the ontology and the rewriting rules (Oyo + Ryorov1). After ap-
plying ontology changes, a new ontology version will be generated including
the rewriting rules (Oy1+ Ry,rov1). This makes possible the identification of
the difference between two ontologies versions, providing that the changes are
defined by our methodology. However, a further study should be carried out
to optimize the storing of the various versions and to answer to the following
questions: us should we save all the ontology versions? How to identify and
choose the most relevant versions?

6. Conclusion

In this paper, we have proposed Typed Graph Grammar and Algebraic
Graph Transformations to formalize and manage ontologies evolution. Sev-
eral ontology changes (basic, composite and complex) were presented and
an a priori approach of inconsistencies resolution was introduced. Thanks to
the negative application conditions (N AC') and derived changes (DCH ), our
method avoids the inconsistencies and preserve the evolved ontology qual-
ity. The use of algebraic graph transformations offers several advantages. In
particular, it allows to simply and formally define the rewriting rules cor-
responding to the ontology changes. Moreover, it reduces the number of
elementary changes required to apply the composite and complex changes
providing thus, a gain in time and resources. The execution time of most
of the ontology changes are quite limited (< 1 second). To further evaluate
the performance of our approach, we are currently working on evaluating the
influence of the size of LHS on larger ontologies.
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<Document version="1.0">
—<GraphTransformationSystem ID="11" directed="true" name="0OntologyChanges" parallel="true">
— <Types> — <Rule ID="1138" formula="true" name="CHRenameClass">
— <NodeType ID="12" name="Entity%[NODE]:"> —<Graph ID="T140" kind="LHS" name="LeftOf CHRenameClass">
<AttrType ID="14" attrname="111" typename="String"/> - <Node ID="T141" type="16">
<AttrType ID="15" attrname="name" typename="5tring"/> — <Attribute constant="true" type="14">

</NodeType> —<Value>
— <NodeType ID="16" name="Class%[NODE]."> <string>Ciri</string>
<Parent pID="12"/> </Value>

</NodeType> </Attribute>

—<Attribute constant="true" fype="15">

<EdgeType ID="14%" name="subClassOf%[EDGE]:"/> —<Value>
<EdgeType ID="150" name="disjointWith%[EDGE]:"/> <string>C</string>
</Value=
—<Graph ID="16%" kind="TG" name="0OntologyMetamodel"> </Attribute>
<Node ID="I72" type="16"/= </Node>
<Node ID="174" type="12"/> </Graph=>
<Graph ID="1145" kind="RHS" name="RightOf CHRenameClass">
<Edge ID="1106" source="I14%" target="16" type="1§"/> _.. </Graph>
—<Morphism comment="Formula: true" name="CHRenameClass">
</Graph> <Mapping image="1146" orig="1141"/>
</Types> </Morphism>
—<Graph ID="1137" kind="HOST" name="0Ontology"> — <ApplCondition=>
— <Node ID="1138" type="156"> —<NAC>

— <Attribute constant="true" type="14"> —<Graph ID="1150" kind="NAC" name="NotExst">

—<Value> B —<=Node ID="I151" type="15">
<string=Ciri=/string=> —<Attribute constant="true" type="I14">
</Value> — <Value>
</Attribute> <string=CinnNew=/string>
—<Attribute constant="true" type="15"> </Value=

— <Value> </Attribute>
<string>C</string>
=/Value> </Node>
</Attribute> </Graph>
<Node> <Morphism name="NotExst"/>
</NAC>
</Graph> </ApplCondition>

<TaggedValue Tag="layer" TagValue="0"/>
<TaggedValue Tag="prionty" TagValue="0"/>
</Rule>

<Rule ID="1155" formula="true" name="AddIndividual"> __ </Rule>
Figure 11: An extract from the log file of ontology changes.
t
| Add Ry o v1 | Apply Rygtov1 | Add Ry ov2 | Apply Ry o vz | o
| I I I I >
Oy Ovo+ Rvotovt Ovi +Ryotowt Ovi+ Rvitovz Oy, +Ryiovz  Time

Figure 12: Storage ontology versions with AGG tool.

In the near future, we are planning to develop a plug-in for the Protege!!

Hprotege.stanford.edu

27



editor which will present the different ontology changes. Indeed, the internal
graph transformation engine of the AGG tool can be used by a Java API and
thus, be integrated into other custom applications. Then, we intend to benefit
from the formal operations of graph theory and category theory to study,
without using the logging file, the difference between ontology versions and
the automatic detection of the ontology changes. This study may be inspired
by both the existent works in the meta-modelling [39] and ontologies [10].
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Appendix A. Ontology changes formalized by TGG

Ontology NACGCs LHS RHS DCHs
Change
AddDisjointCla- {C1,C2} {C1 C =C2} —
sses(C1,Cq2) 1. C1 C —Cy;

2. Cl = CQ;

3. C1 C Cy;

4. C3 ECy;

5. 3, € I(O) - I; €

Cy N I; € Cs.

RemoveDisjoint- — {C1 C -Ca} {C1,C2} —
Classes(C1,C2)
AddEuivalentC- {C1,C2} {C1 = Ca} —
lasses(C1, C2)

1. C1 E Cy;

2. Cl = 02.
RemoveEquiva- — {C1 = Ca} {C1,C2} —
lentClasses(C1,Ca)
AddDomainData- — {DP;,C;} {DP;, C C;} —
Property(DP; C;)
RemoveDomainDa- — {DP; C C;} {DP;,C;} —
taProperty(DP;, C;)
AddRangeDataTy- — {DP;,D;} {T CVDP;,.D;} —
peClass(DP;, D;)
RemoveRangeData- — {T CVDP,.D;} | {DP;,D;} —

Type(DP;, D;)
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AddObject Proper- {6,I>,0P;} {(I1,I2) € OF;) —
tyAssertion(I1,
I, OF;) 1. (I1,1I2) € OF;
2. 3I; €
I0) - (i #
12) AN ((Ilvli) €
OF;) A (T C
10FR);
3. 3 < nOPi .
3 € I(0)) A
{(I1,I;) € OR;} 5
n.
RemoveObject Pr- — {(I1,I2) € OP)}| {I1,I2,0P;} —
opertyAssertion(-
I, I3, 0P;)
AddIndividual- {INew} {C;} {INew € Ci} —
(ING’UJ7 Cl)
Removelndivid- — {L;} —
ual(1;)
AddDataProper- {DPnew} {C;,D;} {DPpNew C C; —
ty(DPNew7Ci7Di) AT E
VDP;.D;}
RemoveDataPro- — {DP;} —
perty(DF;)
AddClass(Cnew) {CNew} {CNew}
. AddSubClass
. AddDisjointC-
lasses
. AddEquivalent-
Classes
. AddDomain
. AddRange
RemoveClass(C;) {C;}
. SetTypelndi-
vidual
. Removelndivi-
dual
. RemoveRestri-
ctions

Table A.7: Formalization of ontology changes with TGG.
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