Addendum.

1. The mechanism's links to the Standard Model.
1.1. The first item to be considered in this context is neutral current, which is mediated by $\mathrm{Z}-$ boson ($\gamma-$ photon behavior is analog to it).
Column vector for neutral currents is denoted as follows:
$\left[\begin{array}{l}\mathrm{Z} \\ \gamma\end{array}\right]$

The second item to be considered is charged current, which is mediated by W^{+}, W^{-}bosons. Column vector for charged currents is denoted as follows:
$\left[\begin{array}{l}W^{+} \\ W^{-}\end{array}\right]$

Neutral to charged column vectors can be mapped as follows:
$\left[\begin{array}{l}\mathrm{Z} \\ \gamma\end{array}\right] \mapsto\left[\begin{array}{l}W^{+} \\ W^{-}\end{array}\right] \Rightarrow\left[\begin{array}{l}\mathrm{Z} \\ \gamma\end{array}\right]=W^{0}\left[\begin{array}{l}e^{i \varphi^{+}} \\ e^{i \varphi^{-}}\end{array}\right]$
where
W^{0} (complex) charged field multiplier.

The eq. (C 12.1) under the condition: $\varphi^{-}=\pi / 2+\varphi^{+}$(: W^{-}antiparticle), will lead to the following:

$$
\left[\begin{array}{l}
\mathrm{Z} \tag{C12.2}\\
\gamma
\end{array}\right]=\left[\begin{array}{l}
W^{0} \cos \varphi^{+}+i W^{0} \sin \varphi^{+} \\
-W^{0} \sin \varphi^{+}+i W^{0} \cos \varphi^{+}
\end{array}\right]=\left[\begin{array}{l}
\cos \varphi^{+} \sin \varphi^{+} \\
-\sin \varphi^{+} \cos \varphi^{+}
\end{array}\right]\left[\begin{array}{l}
W^{0} \\
i W^{0}
\end{array}\right]
$$

Eq. (C 12.2) represents the connection between neutral and charged currents.
Since \mathbb{C} is a 2-dimensional vector space of $\mathbb{R} \Rightarrow\left[\begin{array}{l}1 \\ i\end{array}\right]$ becomes a basis for \mathbb{C} over \mathbb{R} representing charged vector bosons.

