6. The new bosonic mechanism's approach to hierarchy problem.

a) Mass scale is moving due to Dark energy $(\Xi - \text{ field})$

1. direct path:

Mass scale dynamic Δ^{pure} is defined by De Donder–Weyl eqs. with Lagrangian in form $L_{FP_{pure}}$ (C 4.1):

$$\frac{\partial p_a^i}{\partial x^i} = \frac{-\partial p_a^i \partial_i y^a - L_{FP_{pure}}}{\partial y^a}$$
(C 6.1)
$$\frac{\partial y^a}{\partial x^i} = \frac{\partial p_a^i \partial_i y^a - L_{FP_{pure}}}{\partial y^a}$$

where

$$p_a^i = \frac{\partial L_{FP_{pure}}}{\partial \left(\partial_i y^a\right)}$$

Oscillation Δ_D is due to forced NLSE with the dark energy as the driving force (ref. note 2: Appendix A 5, paragraph 4, item 2 b)) with SM limit boundary.

2. restoring path:

Mass scale dynamic Δ^{mixed} is defined by De Donder–Weyl eqs. with Lagrangian in form $L_{FP_{mixed}}$ (C 4.2):

$$\frac{\partial p_a^i}{\partial x^i} = \frac{-\partial p_a^i \partial_i y^a - L_{FP_{mixed}}}{\partial y^a}$$
(C 6.2)
$$\frac{\partial y^a}{\partial x^i} = \frac{\partial p_a^i \partial_i y^a - L_{FP_{mixed}}}{\partial y^a}$$

where

$$p_a^i = \frac{\partial L_{FP_{mixed}}}{\partial \left(\partial_i y^a\right)}$$

Oscillation Δ_R is due to \exists of Plank scale.

$$\forall \text{Eqs.} (C \ 6.1) - (C \ 6.2) :$$

 $i \in [1,4] \subset \mathbb{Z}, \ a \in [1,3] \subset \mathbb{Z}; (y^1, y^2, y^3) = (A_{ik}, C, f_i).$

b) Δ : Dark matter constituent

Fig. 17 a) Δ - Mass gap between SM mass limit and Plank mass is determined by Dark energy (Ξ - field);
b) Δ- Dark matter location.

1. Dark matter constituent is located within the boundary of Δ ;

2. Δ is defined according to the mass scale dynamic and is mathematically represented in item 6 a), ref. above.

a) Lorentz gauge and De Donder gauge conditions

Fig. 17 c) Identification of gauge conditions for eqs. (C 6.1) - (C 6.2).

Oscillation Δ - eq. (C 1.1) correspondence:

1. $\geq \Delta_R < 'unbroken'$ state;

2.]*Moving mass scale*, Δ_R [< '*vacuum*' state; De Donder gauge is applied $\Rightarrow \partial_k \left(g^{ik} \sqrt{-g} \right) = 0$;

 $\exists \partial_i f(x) \land \neg \exists A_i(x) \text{ ref. eq. (0.0.1);}$

3.] Δ_D , Moving mass scale [< 'mixed' state;

Lorentz gauge is applied $\Rightarrow \partial_i A^i(x) = 0$

 $\exists A_i(x)$ ref. eq. (0.0.1);

f the condition (ref. note 2: Appendix A 5, paragraph 4, item 2 b)) with SM limit boundary is satisfied for entropic electromagnetic field f_i .

4. $\leq \Delta_D < 'pure'$ state.