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ABSTRACT  
 
The main purpose of this paper is to introduce the new bosonic mechanism and new 
treatment of dark energy (<hal-01162606v2> (https: //hal.archives-ouvertes.fr/hal-
01162606v2/document). 2015.). 
The bosonic mechanism focuses on obtaining masses by gauge bosons without assuming the 
existence of Higgs boson.     
The hypothesis on dark energy as the energy of a postulated dark field was made and a 
combined gravitational-dark field was introduced.  
This field is the key to a specified approach and allows addressing the fundamental 
starting points of the mechanism. 
 
   i. Complex scalar field is introduced in the description of the mechanism and is divided 
   into two components: Goldstone-dark field and tensor-gravitational field; 
   tensor-gravitational component outlines the physics of obtaining masses by gauge  
   bosons and causes the existence of Goldstone-dark component, which defines physics 
   behind the Goldstone theorem. 
 

ii. The meaning of spontaneous symmetry breaking is understood in the context of 
changing between ‘mixed’ and ‘pure’ states of gauge field which appears in the framework 
of the outlined mechanism and can apply to global and local symmetry without violating 
the constraint denoted by Elitzur theorem (Phys. Rev. D 12,  3978-3982, 1975); thus the 
process of symmetry breaking is understood differently from the standard formulation  
(Mandl and Shaw, 2010) used in Higgs mechanism and assumes the existence of two paths 
(direct and restoring).   The entanglement of these two paths is quantified by entropy as a 
parameter, based on which paths are chosen.  
    
General theory Langrangian (for interaction) in case of ‘pure’ state of gauge field is due to 
the existence of one dimensional cosmic string (‘Mexican hat’ potential);  
General theory Lagrangian (for non-interaction) in case of ‘mixed’ state of gauge field is 
due to dark energy as the restoring force to restore state of symmetry from local to global 
and thus flattening potential from ‘Mexican hat’-type to Goldstone-type.  This means that 
physics of Lagrangian appearance in the proposed mechanism very different from Higgs 
approach. 
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    iii. Noted mechanism incorporates Fierz-Pauli approach (Proc. Roy. Soc. London. A 173, 
    211-232, 1939) for particles of arbitrary spin and is further developed based on the 
    outlined hypothesis, thus distinguishing between presented theory and other theories (i.e.,   
    Massive gravity) from the perspective of relevancy to the Fiertz and Pauli thesis. 
    It is shown that diffeomorphism invariance is preserved in the noted mechanism and 
    interaction with matter is allowed.  Higgs scalar is obtained within the scope of the     
    presented approach and is included as a part of the mathematical expression, which  
    describes obtaining mass by vector gauge boson.  The noted scalar has properties  
    consistent with the properties of Higgs scalar observed in the Standard Model.  
 
    iv.A possibility of formulating a consistent nonlinear interacting theory, which does not 
    contradict de Wit (Phys. Rev. D 21, 358-367, 1980) and Deser's arguments  
    (General Relativity and Gravitation 1, 9-18, 1970) was presented. 
    
    v. The cancellation mechanism leading to the absence of the observable Cherenkov 
    radiation is also addressed in this article.  
 
    vi. AdS/CFT correspondence is incorporated into the framework of the outlined  
    mechanism. 
 
 
Keyword(s):            Unified field theories and models; Quantum mechanics 
PACS number(s):   12.10.-g; 03.65.-w 
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CHAPTER I: INTRODUCTION 
 
Presented here is the developing theory on the subject of obtaining masses by bosons  
(in particular gauge vector bosons). 
The scope of the suggested consideration is introducing a mechanism, which is an alternative 
to the Higgs mechanism; in addition, the proposed new mechanism incorporates dark energy. 
It was considered that work by (V. Fierz and W. Pauli, 1939) should foster another model for 
obtaining nonzero masses by fundamental particles. 
While negative conclusions regarding construction of consistent interacting theories of higher 
spin in a form of the gauge theory of several coupled or self-coupled fields were outlined  
(B. de Wit and D. Freedman, 1980), it is noted that spontaneous breakdown of the 
unacceptable symmetries is a possibility in order to evade these difficulties ( ref. note below). 
 

pThe emphasized original hypothesis behind suggested alternative approach mainly constitutes: 
 
a) Dark field. 
P1. Postulate: Dark energy determines the existence of a dark field. 
 
b) Curvature of spacetime (the pseudo-Riemannian metric). 
P2. Postulate:  Gravitational and dark fields compose a single gravitational – dark field. 
 
f The essence of the mechanism is: 
 
i. massless gravitational-dark field acquires mass due to the spontaneous symmetry 
breaking note  and the contribution of matter; 
 
ii. massless vector bosons acquire mass due to the interaction with a massive gravitational-
dark field. 
 
f Following are the differences of the underlying mechanism as compared to the Higgs 
mechanism: 
 
i.   there is not a scalar field associated with the Higgs boson, the existence of Higgs 
boson is not assumed;  
 
ii. gravitational massless component of a gravitational –dark field acquires mass as a  
result of local symmetry breaking ( ref. note, item 2); coupling to matter;  
 
iii. dark massless component acquires mass as a result of global symmetry breaking; 
gravitational field determines the dark field appearance, as the source of the dark field  
is the stress-energy tensor; coupling to matter;  
 
iv. gauge bosons acquire mass not as a result of symmetry breaking but due to the 
interaction with a gravitational-dark field;  
 
v.  there is no specific assumption, which is limited to the consideration  by gauge vector 
bosons only.  
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:note       
The meaning of the spontaneous symmetry breaking and its relevance to Elitzur theorem  
(S. Elitzur, 1975) is emphasized. 
 
1. As specified by the proposed approach there are two paths for spontaneous symmetry 
breaking, namely, direct and restoring. 
 
p  a) In direct path: 
 

            symmetry breaking mechanism (G-type, described below) is analogous to the standard 
approach (F. Mandl and G. Shaw, 2010; R. Durka, 2008; Ivo van Vulpen, 2014) 
 with Elitzur constraint, i.e., spontaneously breaking global symmetry a explicitly breaking 
of local symmetry by a gauge fixing term, ref. eqs. (0.1.1) and (0.1.2). Thus, equations of the 
proposed theory formally coincide with standard theory equations although the physics are 
very different. 
 
As outlined in the essence of the mechanism (Chapter 1), the first stage of this process leads 
to mass appearance in dark sector and the second stage leads to mass appearance in 
gravitational (metric) sector.  This process corresponds to moving gauge field from ‘mixed’ 
state at the first stage (coupled with G-D scalar mode) to ‘pure’ state at the second stage 
(decoupled from G-D tensor mode). This results in obtaining gauge bosons mass by means of 
application of a two-stage schema. 
 
 
p  b) In restoring path: 
 
There is a restoring force (due to dark sector in reference to dark energy), which restores the 
symmetry from local to global. In this context restoring means cancellation of gauge field in 
eq. (0.1.2), so there is no gauge fixing anymore, thus no spontaneous breaking of local 
symmetry can occur.  State of symmetry is therefore restored to global, ref. eq. (0.1.1). 
This process corresponds to moving gauge field from ‘pure’ (-split) state (decoupled from  
G-D tensor mode) back to ‘mixed’ state (coupled with G-D scalar mode).  This results in 
loosing mass by gauge bosons and returning into massless form.  
 
a, bf  The process of coupling and decoupling of gauge field, i.e., moving between ‘mixed’ 
and ‘pure’ states is spontaneous and as such is used in this context throughout the paper. This 
spontaneous process is entropy directed and driven and plays a crucial role in obtaining 
masses in gravitational (metric) sector (G-type).  Thus, entropy plays a role of a parameter to 
determine preference of a) –path over b) –path. 
 
2. In the context of local symmetry, the spontaneous symmetry breaking means that the state 
of gauge field spontaneously changes from ‘mixed’ to ‘pure’, thus explicitly breaking local 
symmetry by gauge fixing term on a) –path; the state of gauge field can also spontaneously 
change from ‘pure’ to ‘mixed’, thus restoring the state of global symmetry by restoring force 
on b) –path ). 
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<Flowchart to the mechanism> 
  I. Model of gravitational-dark field masses: 

•   introduced types of interactions and their interpretations; 
•   presented a symmetry breaking mechanism with corresponding Lagrangians. 

    
    Cases: 
   - before symmetry breaking  

      •  presented the split in a gravitational-dark field as a result of an interaction with a 
       vacuum state (see note); 
      •  FP Lagrangian for massless fields; 

          •  FP eq. to describe the behavior of massless spin 0 field and spin 2 field;           
          •  acquire masses by  Goldstone- dark field; 

 
 Sub-cases: 

   - no matter   
           •  FP eq. to describe the behavior of massless spin 0 and spin 2 fields;         
   - after symmetry breaking 
           •  FP Lagrangian for massive fields; 
           •  FP eq. to describe the behavior of massless spin 2 field interaction with an 
            electro- magnetic field; 

 •  massless spin 0 field does not interact with an electromagnetic field; 
 •  acquiring masses by a gravitational field; 
       
 Sub-cases:      

            - force-free eq. 
           •  FP eq. to describe the behavior of massive spin 2 field, which determines the 
            appearance of a massive dark field, as the source of a dark field is the stress- 
            energy tensor (see note); 
           •  eq. to describe massive spin 0 field (note coupling to gravity as it depends on 
            the spin 2 field); 

   - matter 
           •  system Lagrangian; 
           •  gravitational massless component acquires mass due to coupling to matter; 
           dark massless component acquires mass due to coupling to matter. 
 
 II. Model of boson masses, as a result of the application of a specified mechanism: 
 
    - with h B−  , Bζ −  interaction 

       •  FP Lagrangian in the form of ikh ,ζ   accounts for the interaction with a spin 1 
        field to address for masses obtained by gauge vector bosons; 

           •  FP eq. for massive spin 2 and spin 0 fields interaction with massless spin 1 field. 
 
III. Quantization: 

- real and complex scalar fields; 
- gravitational field. 

   
IV. Logically connected and interlinked topics. 
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CHAPTER II: FRAMEWORK 
 

The main purpose of the paper is the comparison between the noted (new bosonic) 
mechanism and Higgs mechanism. 
Following is the analysis of these mechanisms: 
 
1. Higgs mechanism. 
 
Higgs approach demonstrates physical and mathematical discrepancies. 
a) physical discrepancy consists in formulated instability of vacuum. The subject of the 
vacuum instability is outlined in presentations by Joseph Lykken at AAAS and Steven 
Hawking in “Starmus”; as well as in Frank Wilczek’s article in Nature (M.S. Turner and F. 
Wilczek, 1982). 
(In the framework presented in the paper this discrepancy can be explained by referencing the 
second law of thermodynamics which states that entropy must increase so as to reach the 
state with maximum symmetry, ref. ‘the special symmetry evolution principle’, (J. Rosen, 
2005)). 
Higgs’ approach assumes that gauge bosons acquire mass as a result of symmetry 
breaking and, in this model, there is no driving force to restore the state of maximum 
symmetry, i.e., there is no mechanism of increasing entropy in this theory. 
This leads to the instability of Higgs’ solution (ref. instability of vacuum, (M.S. Turner and F. 
Wilczek, 1982)). 

            b) mathematical discrepancy follows from the analysis outlined in Higgs model presentation 
in (F. Mandl and G. Shaw, 2010; R. Durka, 2008; Ivo van Vulpen, 2014) where the main 
focus of the analysis is on the usage of unitary gauge, which assumes the elimination of 
‘ghost field’; however, proving renormalizibility of this model is provided in ‘tHooft gauge 
requiring reintroduction of the ‘ghost field’. 
Presence of virtual particles (quantum fluctuations) associated with the ‘ghost field’ leads to 
instability of vacuum solution in Higgs model. 
This two contradictory mathematical procedures which are required to prove Higgs model 
demonstrate build-in mathematical discrepancy and their existence points to the necessity of 
introducing the driving force to restore the state of maximum symmetry. 
     
2. The new bosonic mechanism. 
 
The new bosonic approach demonstrates physical consistency and, as result, does not include 
mathematical discrepancy. 
The mechanism described in this paper represents a stable solution whereas Higgs 
mechanism represents an unstable solution.  The scalar term obtained within the scope of the 
presented approach is consistent in action of assigning mass to vector gauge boson with the 
corresponding result obtained by means of Higgs scalar (ref. Chapter IV, item v. a). 
Physical consistency is determined by the following: the mechanism presented in this paper 
(ref. Conclusion) incorporates the driving force which restores the state of maximum 
symmetry from the state of symmetry breaking.  
The dark energy, which is the driving force, increases the volume, which leads to the 
state with more entropy, i.e. symmetry. This driving force is determined by the 
requirement to cancel local vacuum fluctuations (i.e. maintain the thermodynamic 
equilibrium between baryonic sector and the thermal bath). 
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The thermal bath – micro black hole (b.h.) system increases entropy due to accretion of 
matter and uses Hawking’s radiation to make this entropy equal to the baryonic sector 
entropy in order to reach thermodynamic equilibrium and obtain stable solution.   
 
Viz. Ansatz: the Higgs mechanism (F. Mandl and G. Shaw, 2010; R. Durka, 2008; Ivo van 
Vulpen, 2014), Lagrangian under small perturbations incorporates:   
 
p  
1. the appearance of mass term for photon, which is associated with gauge field of the theory 
in ‘mixed’ state (case before symmetry breaking); 
 
2. the additional term ( )i

ie Aν η− ∂ , which is associated with the coupling limit of the 
presented theory, thus having specific meaning. 
 
f  
1, 2. Unitary gauge is defined as follows: 
 

                               ( ) ( ) ( ) ( ) ( )' ,i i i

e x
A x A x f x f x

η
ν

= + ∂ = −                                         (0.0.1) 

 
where, 

( )xη  ref.  eq. (1.1), (1.1 b); 
 
the presented mechanism describes Goldstone-dark scalar, ref. eq. (1.3 a) beyond the 
decoupling limit. 
 
p p  Proving renormalizibility of the presented theory. 
 
f f ‘tHooft gauge is defined as follows: 
 
                               ( ) ( ) 0i

i hA x k h x∂ − =                                                                           (0.0.2) 
where, 

( )h x  ref. eq. (1.1 a); 
 
the presented mechanism describes gravitational scalar, ref. eq. (1.5) in decoupling limit. 
 
This eqs. are relevant to the presented new mechanism and they mathematically formulate the 
process of spontaneous symmetry breaking on direct path (i.e. transition from the ‘mixed’ 
state to ‘pure’ state of the gauge field).  While the former corresponds to tensor-
gravitational::dark field coupling limit, ref. eq. (0.1.1); the later corresponds to tensor-
gravitational::dark field decoupling limit, ref. eq. (0.1.2). 
 
Since the dark mode can initiate vacuum instability in the theory (direct path), this process 
have to be augmented by the implementation of the mechanism of restoring symmetry 
(restoring path).  
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3. The description of new bosonic mechanism structure. 
 
This paper introduces the mechanism based on two postulates: P1, P2 and 
outlines its structure in <Flowchart to the mechanism>.  Next in the paper is the presentation 
of the detailed description of the mechanism which is formulated 
as a consistent schema build upon different logically connected and interlinked topics. 
The methodology presented in the paper addresses the problem of obtaining masses by gauge 
vector bosons and the solutions to the interconnected problems within the outlined 
framework. 
Further consideration is presented in the steps below and is focused on the role which the 
electromagnetic field plays in the schema. 
I. 
Step 1 (ref. Flowchart, paragraph I – Model of gravitational-dark field masses). 
 
As Weyl’s conjecture associates gauge with a local symmetry and the change of phase with 

(1)U gauge symmetry, the electromagnetic field appears as a result of quantum mechanical 
consideration of the wave function of a charged particle. 
The electromagnetic field, which appears as a result of the above-mentioned process, is 
presented in ‘mixed’ and ‘pure’ states, which accordingly correspond to the cases Before 
symmetry breaking (ref. ‘Lagrangian for non-interaction’) and After symmetry breaking (ref. 
‘Lagrangian for interaction’) note . 
 
Step 2 (ref. Flowchart, paragraph I – Case: before symmetry breaking). 
 
The paper presented in this case the description of obtaining mass by dark (Goldstone-dark) 
field. 
 
The consideration starts from the assumption that Goldstone and gravitational-dark fields 
interact. The composite system of electromagnetic field in ‘mixed’ state and a scalar 
gravitational-dark field interact with a vacuum state. 
As result of this interaction the following is obtained: 
 
a) in the domain of electromagnetic field - vacuum state, vacuum state coincides with the 
Goldstone field. 
Expectation value of this field spontaneously breaks underlying global symmetry which 
leads to the appearance of massless Goldstone bosons.  
 
b) in the domain of gravitational-dark - vacuum state, there appears a split of massless 
gravitational and dark components of a massless gravitational-dark field. 
 
Mass term for the dark field appears from substitution Φ -field (ref. below) in ‘Lagrangian 
for non-interaction’. 

:note  
a ‘pure’ state assumes interaction between electromagnetic field  and system; 
a ‘mixed’ state is represented as the superposition state of composite system including 
electromagnetic field.  
(Ref. below) for ‘Lagrangian for non-interaction’ and ‘Lagrangian for interaction’, i.e. 
eq. (0.1.1) and eq. (0.1.2) correspondently. 
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(ref. Flowchart, paragraph I – Sub-case: no matter): 
 
a) it is demonstrated by the results described above that matter directly contributes only to the 
mass of gravitational field; 
 
- for massless spin - 0 (Goldstone) field FP eq. refers to Goldstone mechanism and is inline 
with vacuum Einstein eq.; 
- for massless gravitational field FP eq. is reduced to 0; 
- dark field is massive due to the first channel - Step 2. 
 
 
Step 3 (ref. Flowchart, paragraph I – Case: after symmetry breaking). 
 
The consideration includes different topics logically connected and combined under a 
specified title. 
 
(ref. Sub-cases) 
 
1. The paper presents in this chapter the description of obtaining mass by massless 
gravitational field and the appearance of Nambu-Goldstone boson. 
 
It addresses the spontaneous breaking of a local symmetry which leads to obtaining mass by 
gravitational and Goldstone (appearance of Nambu-Goldstone bosons) components of 
gravitational-dark field. 
 
As a result of substituting Φ -field in ‘Lagrangian for interaction’ presented: 
 
a) mass term for the Goldstone-dark field, i.e. Nambu-Goldstone boson ( Goldstone boson 
remain massless in Step 2) provided that there is non - interaction between dark field and 
electromagnetic field; 
 
b) massive gravitational field; 
 
(ref. Flowchart, paragraph I – Sub-case: force free eq.): 
 
The appearance of the massive gravitational field determines the second channel (in addition 
to the first channel - Step 2) of the source of mass for dark field, namely 
the coupling between massive dark field and vacuum metric tensor is described by Klein-
Gordon eq. for gravitational interaction action; 
this coupling exists because the source of dark field is stress-energy tensor for scalar field.   
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2. This chapter continues the analysis taking into account the contribution of matter 
(baryonic). 
 
(ref. Flowchart, paragraph I – Sub-case: matter): 
 
b) this sub-case determines the second channel (in addition to the first channel - Step 3) of 
the source of mass for gravitational field, namely the appearance of mass for the gravitational 
– dark field is due to “stress – energy tensor factor” channel. 
According to this mechanism, mass for the gravitational field appears directly as a result of ∃  
stress – energy tensor, while mass term for dark field appears as a result for the account of the 
second channel of source of mass for dark field. 
 
In this case, DVZ discontinuity disappears in covariant limit thus reflecting the fact that 
massive gravitational-dark field in covariant form couples to matter. 
 
II. (ref. Flowchart, paragraph II – Model of boson masses). 
 
This chapter of the paper outlines mechanism of assigning mass to the vector gauge bosons 
due to the interaction with a massive gravitational - dark field. 
 
Resulted Lagrangian includes terms proportional to square of vector boson field (i.e., mass 
terms for vector bosons) as well as terms proportional to square of gravitational field and 
dark field parts of gravitational-dark field (i.e., mass terms corresponding to these parts). 
 
III. (ref. Flowchart, paragraph III – Quantization). 
 
The approach in this chapter is focused on reducing the problem of quantization of 
gravitational field to the standard methodology of quantization scalar field. 
To address this issue, the gravitational field is defined through Weyl complex scalar, thus 
reducing mathematical formulation of quantization to the quantization of scalar field. 
 
Two modes are specifically addressed: 
 
- quantization of tensor-gravitational field (gravitational field in scalar mode) is represented 
as standard expression for quantized scalar field; 
- quantization of gravitational field (tensor mode) is represented by the expression for the 
quantized form of spin ( 2)n =  field. 
The validity of this form is due to the fact that the propagator for spin ( 2)n =  field is 
expressed through the propagator of scalar field, so that the tensor mode appears from a 
scalar mode and not from tensor rank - 2 mode. 
 

            The outline above means that quantization of tensor mode is provided by means of the 
extension result obtained for quantized scalar mode transferring to the case of spin ( 2)n =  
field (on the basis of corresponding propagator identity) and not by direct quantization of 
tensor rank - 2 mode (M. Kachelrieß, 2010; J. Thaler, 2003). 
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IV. (ref. Flowchart, paragraph IV – Logically connected and interlinked topics). 
 
This chapter of the paper addresses different topics including, but not limited to, the 
following: 
 
1. the definition of gauge theory (as the theory which is mathematically related to fiber 
bundle) application is introduced via ‘inference topology’ defined in the paper and addressing 
related aspects. 
 
The subject of inference topology is directly related to the types of curvatures which exist in 
the reference to the space-like hypersurface.  These types depend on the value of 
electromagnetic field and are represented by hypersphere or hypersadle. 
The geometry of topological structure constitutes compound of dark (tunnel) 
and gravitational (mass) parts. 
Geometry is characterized as 3AdS for the dark part and Lorentzian CFT for the gravitational 
part, which defines the arrow of time. 
In the context of gauge theory, the gravitational part is characterized by mass;  
 
while the dark part is represented by connected helicoids with two ends in separate points in 
spacetime.  This corresponds to the Piccei-Quinn symmetry. 
 
Breaking this symmetry results in ∃  of axion.  
‘Inference topology’ radiation dynamics corresponds to the solution of the Navier-Stokes 
eq. in blow-up regime. 
 
 
2. Appendixes of this paper present further itemization of the different topics relevant to the 
outlined mechanism. 
 
- Appendix A1 presents the mathematical definition to prove different eqs. referred to in 
Flowchart. 
 
-Appendix A2 presents considerations which make possible to formulate and prove consistent 
Lagrangian of the theory. 
 
-Appendix A3 formulates additional terms which account for non-minimal coupling 
in ‘Lagrangian for interaction’. 
 
-Appendix A4 addresses the formulation of underlying statistical field theory which is used to 
explain the quantum effects considered in this appendix, namely 
 
a) presented mathematical formulation of compact - 3 manifold to compact - 2 manifold 
correspondence. This framework points out ∃  of singularity. 
 
b) presented entropic approach to the analysis of microstates characterizing singularity * . 
Noted that the microstates of the system (black body + singularity) are described by quantum 
mechanics of non-observables developed in Appendix B - Extensions Chapter. 
The paper also presents the formulation of wavefunction as probability to obtain specific 
shape at particular point and related to entropy at this point. 
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c) The following consideration addresses the structure of gravitational field and the context of 
the forming singularity. 
This chapter of the paper presents the formula for vacuum metric which include mathematical 
reference to ∃  of connected helicoids outlined in physical description of dark part of 
‘inference topology’ geometry. This is followed by the analysis of the expression for the 
vacuum metric which is defined by means of ‘power low’ function, thus addressing the 
presence of renormalization group; and the β -function behavior, which is determined by dint 
of the mechanism generation of entropy (ref. * , in consideration of microstates characterizing 
singularity). 
In the reference to phase transition, order phase and the behavior of a chaotic attractor of the 
system (‘inference topology’) relative to a system parameter are evaluated. 
The appendix points to ∃  of vortex solution in order phase.  The paper also addresses the 
investigated regimes related to the different behavior of a chaotic attractor.  It is also noted in 
the paper that the wormhole structure can form in tunnel area of system in ‘intermitted 
switching’ regime. 
 
- Appendix A5 presents the diagram which depicts the connections between different topics 
within a single framework of the theory. 
Each part of the diagram is marked and contains the description of the context of the mark. 
The text of the appendix following the diagram provides corresponding definitions of the 
following items in the diagram: 
 
a) instability point; 
b) instanton solution; 
c) soliton solution; 
d) exciton model for the BE condensate (this includes the solution of the Navier-Stokes 
existence and smoothness problem); 
e) role of quantum fluctuations in reference to the presented mechanism. 
 
3. Relevant issues of Lorentz violation and the corresponding constraints are discussed. 
The spin-statistics theorem is considered mathematically in the framework of the outlined 
approach. 
 
The presented approach denotes that AdS/CFT correspondence can be incorporated  
into the framework of the outlined mechanism under the consideration of the theory of    
superconductivity. 
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CHAPTER III: THE MECHANISM 
                                  
Model of gravitational-dark field masses.  
 
Following approach specifies tensor-gravitational::dark field ( )xη as a single field and dark 
energy as energy of a dark field and can formulate a mechanism for obtaining masses in 
bosonic systems.  
 
 
1. Abelian symmetry breaking. 
 

            According to the standard approach to spontaneous symmetry breaking (F. Mandl and  
            G. Shaw, 2010; R. Durka, 2008; Ivo van Vulpen, 2014), the transition from a global 

symmetry of the system to a local symmetry is provided by introducing an interaction gauge 
field, i.e. electromagnetic field iφ . 
 
Interaction: 
 i. Before symmetry breaking, vacuum state::tensor-gravitational::dark field ( )xΦ  is not 

coupled
1note  to an electromagnetic (gauge) field; 

 
ii. When symmetry is broken, the field ( )xΦ is coupled ( note  ref. on symmetry breaking  
mechanism) to a gauge electromagnetic field. 
 

:note  
1  for a phase of the vacuum to define a gauge, a scalar field Φ must have a phase  
(i.e., be complex), then have a nonzero vacuum expectation value ν . 
The vacuum state represents redundant degrees of freedom, i.e., it is manifestly associated 
with ‘mixed’ state of electromagnetic field (gauge field) and Goldstone boson (axion). 
Thus, ν  is the expected value of the vacuum state and appears as a result of gauge symmetry 
breaking, which, in this framework, means the following: 
 
a) gauge symmetry is the gauge structure represented by a set of three labels-components 
mentioned above (separated by ::) which denote ( )xΦ ;  
b) gauge symmetry breaking is the change of gauge structure (i.e., Landau phase transition 
with order  parameter ν [ ]1,1 ), which results in change of  the labeling schema from ‘mixed’ 
(ref. Mark 2, Fig. 6 below) to ‘pure’ (-split, ref. Mark 4, Fig. 6 below).  
 
This corresponds to Interaction  ii (Chapter III, paragraph 1) and is not affected by Elitzur’s 
theorem (as Mark 2, Fig. 6 below indicates global symmetry, while Mark 4, Fig. 6 below 
indicates local symmetry).  As depicted by Mark 4, Fig. 6 below, spontaneous [ ]1,2  breaking of 
local symmetry occurs due to the presence of gauge fixing term.  The state, which represents 
local symmetry is a ‘pure’ state of gauge field decoupled (- split) from the G-D tensor mode 
(ref. eq. 0.1.2).  The cancellation of gauge fixing term reduces symmetry to global (ref. eq. 
0.1.1), thus implying the mechanism of restoring symmetry with dark energy as the driving 
force. 
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1,1  this parameter is not a result of calculation of the expectation value of gauge -covariant 
quantity (ref. note 0.1., Interaction  ii).  Since the gauge redundant term (i.e., fluctuation of 
order parameter around its expectation value outside of the ordered phase) equates to zero 
and the order parameter is non-zero at the ordered phase then there exist Goldstone modes   
in the direction where the symmetry is not broken (assuming there is no Higgs mechanism) 
and is described by σ − models (ref. Fig. 3, case c) below).   
 
 
1,2  the term ‘spontaneous’ means spontaneous changing of states from ‘mixed’ to 
‘pure’(-split), which denotes the following: 
  
a) explicit breaking of local symmetry (in this case); 
b) spontaneous breaking of global symmetry (ref. gauge symmetry breaking above). 
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pwithout interacting with  an electromagnetic field, i.e. before symmetry breaking 
 (Mexican hat potential has a flat direction, corresponds to a U(1) model –Goldstone) 
 

                2 2 2 2( ) | | (| | )L λ ν∂Φ − Φ −=Φ       (0.1.1) 
 
so ( )xΦ  corresponds to 1 i); 

f this model is an origin of appearance ν  at the vacuum state, i.e. gives mass to the 
       Goldstone-dark field (gapless excitation). 
            
p interacting with an electromagnetic field, i.e. after symmetry breaking (transforms 
from Lagrangian invariant with respect to global symmetry from a U(1) group – 
Abelian to one invariant with respect to local symmetry or gauge-invariant) 
 

             2 2 2 21
4

( , ) (| | )ik
ikL F F Dφ λ ν= − + Φ −Φ −Φ      (0.1.2) 

 
where, 

ik i k k iF φ φ= ∂ − ∂ ; 

iφ  is a covariant four-potential of the electromagnetic field;  
the interaction with photons via minimal substitution (ref. 4.8 Problems; (M. Kachelrieß, 
2010) 
 

i i iD ieφΦ = ∂ Φ + Φ ; 
 
so ( )xΦ  corresponds to 1 ii); 

f this model is an origin of appearance of only a massive gravitational field and a 
 Goldstone-dark field (due to the massive Goldstone field). 

 

, ,
2 2 2

λ ν
λ ν

 ∂
∂ → → →  

 
  substitutions eliminate the constant term  

from the eq. ( 0.1.1) - ( 0.1.2).  
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1.1. Before symmetry breaking. 
 
The theory, as presented here, will assume that the Goldstone field

1note  and a gravitational-
dark field interact.  

            In this case, a scalar field is complex, applying scheme (F. Mandl and G. Shaw, 2010;  
            R. Durka, 2008; Ivo van Vulpen, 2014): 

 
    ( ) ( ) ( )x x i xν ξ ηΦ = + +                                                                         (1.1) 

 
where, 

( )xξ  -vacuum state (coincides with Goldstone field); 

( )xη  - gravitational –dark field is complex due to the interaction with a Goldstone field
2note  

 
    ( ) ( ) ( )x h x i xη = − Ξ                                                                                  (1.1 a) 

 
It is normally assumed that: 

( )h x - gravitational field part, i.e. massless tensor of second rank spin 2 field;  

( )xΞ - dark field part, i.e. massless scalar spin 0 field (dark boson)
3note . 

 
When substituting ( 1.1 a) in ( 1.1), the following is obtained: 
 

    ( ) ( ) ( ) ( )x x x ih xν ξΦ = + + Ξ +                                                                (1.1 b) 
 
Viz. tensor-gravitational field ( ){ },   is the vacuum value ik

ikh g h≡  defines scalar, 

where ikg  is conditioned by the existence of jlk i
jlkCε  vector field iϑ  (Weyl curvature tensor 

i
jlkC , jlkε  Levi-Civita symbol) when 0iφ =  in a ‘pure’ state, i.e. in accordance with the 

theorem on constructing spacetime from a compact manifold, namely (ref. spacetime): 
 
f A compact manifold can be turned into a spacetime only if its Euler characteristic 
is 0 (the existence of a Lorentzian metric is shown to be equivalent to the existence 
of a nonvanishing vector field);  
 

as a metric tensor is attributed to Riemannian manifold (Riemann curvature tensor expresses 
the curvature of Riemannian manifold) and Ricci tensor is defined as a trace of the Riemann 
curvature tensor, and is related to the matter by means of the Einstein field equation, 
therefore, h defines the physics of the curvature of spacetime. 
Ansatz: in case of tensor-gravitational field, eq. ( 1.1 a) defines ( )xη  and Goldstone-dark  

field ( )xζ  is defined by ( 1.3 b);  
thus eq. ( 1.1 b) represents a ‘mixed’ state for a system of gravitational-dark and Goldstone-
dark fields. 
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note : 
 

            composite system of an electromagnetic iφ  field and a scalar η  gravitational-dark field that 
attribute to the geometry of the space-time, described as a superposition (A.S. Davidov,1976) 
state, interacts with a vacuum state: 
 
1  as a result of ξ  - φ   interaction, vacuum state ξ  coincides with the Goldstone field, i.e. ξ  
is the scalar field of continuous symmetry, which is spontaneously broken to the 
Goldstone field.                                                          
                            
ξ  field assumes a certain value ν  , i.e. a value of the ξ  field viz., the potential energy is zero 
but the value of the ξ  field is nonzero; 
ν - shift note  in field ( )xΦ  corresponds to the vacuum state ξ  which contains no particles:  
 
 
vacuum state (a vacuum expectation value of a scalar field) a  
 
ν  expectation value which breaks the internal symmetry of a vacuum, i.e. spontaneous 
symmetry breaking occurs a    
 
spontaneous symmetry breaking of the underlying global symmetry leads to the conversion 
of components of this ξ  field to Goldstone bosons; 
 
 
2  as a result of ξ  - η  interaction, a split of η  into gravitational (spin 2) and dark   
(spin 0) components of single η  field appears; 
 
3  note the negative sign before the second term, which points out that dark energy is 
negative. 
 
 
 
 
 
 
 

:note  
have to differentiate the postulated Higgs field from a vacuum state, so ν  is due to a vacuum 
state and not the Higgs field.  
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FP. Lagrangian in a form is
1note ( for notation (ref. (A 2.1)): 

 
 

    ( )
2 2

22 2 23 32
4 8

ik rk sk rk
FP ik

l r s l r k

A A A AC CL k A k C
x x x x x x

   ∂ ∂ ∂ ∂∂ ∂
= + − − − +   ∂ ∂ ∂ ∂ ∂ ∂   

           (1.2.1 a) 

 
 
for massless ( )0, 0hk kζ= =  gravitational and dark fields: 
 
 

2 2
32
8

ik rk sk rk
FP

l r s l r k

A A A AC CL
x x x x x x

   ∂ ∂ ∂ ∂∂ ∂
= − − +   ∂ ∂ ∂ ∂ ∂ ∂   

                                               (1.2.1 b) 

 
 
Fierz-Pauli eq. for massless gravitational and dark fields without interaction is

2note   
 
 

        
2 2 2 21 12 2 0

2 4
sk si rs

ik ik ik
s i s k r s i k

A A A CA C
x x x x x x x x

δ δ
 ∂ ∂ ∂ ∂

− + + − − + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
W W  

                                                                                                                                        (1.2.2 a)  

                      
23 0

4
rk

r k

AC
x x

∂
− =

∂ ∂
     

 
 
where, ( )xΞ  is an auxiliary scalar field in Fierz-Pauli theory, i.e. corresponds to ( )xζ  
in a specified approach. 
 
 
note : 
1  without interaction with the electromagnetic field iφ   
(here and further under interaction with iφ  assume a ‘pure’ state) ; 
 

            2 according to the superposition principle (A.S. Davidov,1976), if an auxiliary scalar field 
can exist  in states described by ξ  and  Ξ , then it can exist in a state described by the 
Goldstone-dark field 
                        
 ( ) ( ) ( )x x xς ξ= + Ξ     
 
Viz., further refers to a dark field, however, where it is appropriate to assume it rather refers 
to the Goldstone-dark field. 
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Referring to ( 0.1.1) and ( 1.1 b) leads to (using h ς−  notation to be intact with (A 2.2.1) ) 
 
 

    ( ) ( ) ( ) ( )22 2 2 2 2 2 2 21 1 1 1 1
2 2 2 2 8i iL h h hς λν ζ λνζ ζ λ ζ= ∂ + ∂ − − + − +         (1.3 a) 

 
where, 
 
 a shifted Goldstone-dark field is defined as 
 
               

        ( ) ( ) ( )x x xς ν ξ= + + Ξ                                                                            (1.3 b) 
 
 

2
hkζν

λ
−−

= ±   

 
λ - self - interaction coupling constant; 
 

hkζ −  - mass for ( )xΦ  ( )2 0hkζ − < ; 
 
In case of 0ν < , it corresponds to dark energy

1note ; if 0ν > , it corresponds to gravitational 
energy

2note ; 
 
massless ( )hk for h  and mass  ( )kζ ≡ λν  for ς . 
 
it is presented that the Goldstone field and the dark field

3note  in fact are two real Klein-
Gordon fields. 
 
 
 
note : 
1,2  addressing gravitational (gauge) and dark (non-gauge) fields reflects the fact that bosonic 
mechanism does not follow from a gauge principle;  
 
3  kΞ appears as a result of obtaining mass by a dark field, i.e. kΞ = kζ ; ansatz Goldstone boson 
does not disappear. 
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i.  No matter. 
 
1.1.0.   Massless gravitational and dark fields (before symmetry breaking). 
 
Viz., (A1.1)-(A1.2),  i.e. FP eq. for Re ( )xΦ  and  Im ( )xΦ  parts in ( 1.1 b);  
rest-mass 0kζ = , 0kΞ =  
 
massless spin 0 scalar field, i.e. Re ( )xΦ  part represented for ( )xΞ

1note  
 
 

      
2 2 21 1 1 0

4 4 4ik lk li
i k l i l k

CC C C
x x x x x x

δ δ δ
∂ ∂ ∂     − − + + =     ∂ ∂ ∂ ∂ ∂ ∂     

W                    (1.3.0 a) 

         
 
 
i.e. inline with the Einstein eq. without matter, ref.  Appendix A1, paragraph 2. 
  
Im ( )xΦ  part represented by the Fierz-Pauli eq. for massless spin 2 field  
 

     
2 2

0lk li

l i l k

A A
x x x x

∂ ∂
+ =

∂ ∂ ∂ ∂
                                                                                    (1.3.0 b) 

 
 
if applied (A1.3.2)     , reduced to zero

2note . 
 
 
 
 
 
 
note  
(ref. ikA  defined by (A 2.1),  case 0iφ = ): 
 
1  no coupling between ikg  and dark boson;  
 
2  corresponds to absence of ikh  in ikA . 
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1.2. After symmetry breaking. 
 
Following is a presentation of obtaining masses by gravitational and dark components of a 
combined gravitational-dark field as a result of spontaneous breaking of local symmetry  
and application of Fierz-Pauli approach (V. Fierz and W. Pauli, 1939) in sub-cases:  
 
i. Force-free. 
 
 
1.2.0. Obtaining masses for gravitational and dark fields. 
 
It corresponds to the interaction of the gravitational field and the Goldstone field with the 
electromagnetic field iφ . 
Ansatz FP eq. for interaction of massless spin 2 and massless spin 0 Goldstone field with iφ ;   
then continue to the mechanism of obtaining masses for spin 2 and spin 0 fields, as a result of 
symmetry breaking. 
 
 
 
p  (dark field does not interact, i.e. ζ ξa ) 
 

     k k
k

i ie
x

φ
∂

Π = −
∂

 

                                                                                                                        (1.4.0) 

       k i
ik i k k i

i k

f i
x x
φ φ ∂ ∂

= Π Π − Π Π = − ∂ ∂ 
 

 
 
FP. Lagrangian in a form is

1note : 
 
 

                                                                                                                        (1.4.1 a) 
 

{ }2 * * * * * * * * * *

2 * * *

12
2

3 3
4 8

FP ik ik l ik l ik r rk s sk ir rk ik r rk k r rk k

l l

L k A A A A A A f A A A C A C

k C C C C

= + Π Π − Π Π + + Π Π + Π Π −

− Π Π
 

 
 
note : 
1  with interaction with electromagnetic field iφ . 
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for massless spin 2 field interaction with an electromagnetic field 
 
 
( )0, 0hk kξ= =  
 
 

                                                                                                                         (1.4.1 b) 
 
 

{ }* * * * * * * * * * *1 32
2 8FP l ik l ik r rk s sk ir rk ik r rk k r rk k l lL A A A A f A A A C A C C C= Π Π − Π Π + + Π Π + Π Π − Π Π  

 
 
then for h , ξ  fields the following is obtained: 
 
 

                                                                                                                         (1.4.1 c) 
 
 

* * *
2 2 * 2 * 2 *

* *
2 * 2 2 *

*
* *

1 12 2
2 2

1 1 3 3
2 2 8 8

2 2

ik ik rk sk rk
FP l ik ik r s rk sk r k rk

l l r s r k

rk
r k rk l

r k l l

ik ik rk
l ik l ik s sk

l l r

A A A A A CL e A A e A A e A C
x x x x x x

A C C Ce A C e CC
x x x x

A A Ae A e A e A e
x x x

i

φ φ φ φ φ

φ φ φ

φ φ φ φ

∂ ∂ ∂ ∂ ∂ ∂
= + − − + + +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ − − +

∂ ∂ ∂ ∂

∂ ∂ ∂
− − +

∂ ∂ ∂

*
* * *

** *
* *

1
2

1 1 1 3 3
2 2 2 8 8

sk i rkr
r rk rk ik rk ik k

s i r r

rk
r rk k r rk l l

k r k l l

A AA A A A A e C
x x x x

AC C C Ce A e C e A e C e C
x x x x x

φφ
φ

φ φ φ φ φ

 ∂ ∂ ∂∂
+ − + − ∂ ∂ ∂ ∂ 

 
∂∂ ∂ ∂ ∂ − + − + ∂ ∂ ∂ ∂ ∂ 
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Fierz-Pauli eq. for massless spin 2 field interaction with an electromagnetic field (minimal 
coupling) in a form 
 
 
 

                                                                                                                         (1.4.2 a )     
   
     

{ }2 21 1 12 2 0
2 2 4ik i s sk k s si ik r s rs ir rk kr ri i k k i ikA A A A f A f A C Cδ δ Π − Π Π + Π Π − Π Π + + + Π Π + Π Π − Π = 

 
                           

                            23 0
4 r s rsC A− Π + Π Π =  

 
 
 
then for h , ξ  fields the following is obtained: 
 
 

                                                                                                                         (1.4.2 b ) 
 
 

2
2 2 2 2 2

2
2 2 2 2

2 2 2 2 2 2

1 1 1 1 1 1
2 2 2 2 4 4

4 2

ik sk si rs
ik i s sk k s si ik ik r s rs

i s k s r s

i k k i ik ik
i k k i

ik

A A A Ae A e A e A e A
x x x x x x x

C C Ce C e C e C
x x x x x

e A e
x

i

φ φφ φ φ δ δ φ φ

φφ φ φ δ δ φ

φ

 ∂ ∂ ∂ ∂∂ ∂ ∂ − + + − + − − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 

∂ ∂ ∂ ∂ ∂  − + − + + −  ∂ ∂ ∂ ∂ ∂  
∂

−
∂

+

2 2 2
0

1 1 1 1 1
2 2 2 2 2

s sk s si s rs
sk i si k ik rs ik r

i s k s r s

i k k ir r
rk rk ri ri i k ik

i r k r i k k i

A A AA e e A e e A e
x x x x x x

C CA A A A e C e e C e e C
x x x x x x x x x

φ φ φ
φ φ δ δ φ

φ φ φ φφ φ φ
φ φ δ

∂ ∂ ∂ ∂ ∂ ∂ − − − + + ∂ ∂ ∂ ∂ ∂ ∂  = ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ − + − + + + + −
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 
 
 

2
2 2 23 3 3 0

4 4 2
rs s rs

r s rs rs r
r s r s

A AC e C e A i e C e A e
x x x x x x

φφ
φ φ φ φ

   ∂ ∂ ∂∂ ∂ ∂   − − + + − + + =    ∂ ∂ ∂ ∂ ∂ ∂     
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Adheres to the Mexican hat potential, i.e. to the case of unstable equilibrium and in reference 
to ( 0.1.1) a  ( 0.1.2), obtain (omitted terms cubic and quartic in fields , , ih ζ φ ) 
(using h ς−  notation to be intact with  (A 2.2.2)  ) 
 

                                                                                                                         (1.5)        
 

  ( ) ( ) ( ) ( )22 2 2 2 2 2 2 21 1 1 1 1 1
4 2 2 2 2 8

ik
ik i i iL F F h e h hς νφ λν ζ λνζ ζ λ ζ= − + ∂ + ∂ + − − + − +  

 
 
 
where,

1note  
 
 
mass ( )hk ≡ eν  for h

2note  and mass  ( )kζ ≡ λν  for ς . 
 
Therefore, a massive gravitational field with mass hk  and a massive Goldstone-dark field 

with mass kς

3note  is obtained.  
 
note : 
1  coupling to a composite spin 1 field, i.e. electromagnetic and iB , leads to an expression 
       
for electromagnetic field  
     

( )ik i k k iF i φ φ= Π − Π , i i
i

i i
x
∂

Π = − Β
∂

 (in force-free case than  i
i

i
x
∂

Π =
∂

); 

for spin 1 iB  field, the following is obtained:   
  

 ( )ik i k k ii B B℘ = Π − Π , i i
i

i i
x

φ
∂

Π = −
∂

;  

2  indeed 1
i ih h

e
φ

ν
+ ∂a  ( )iz≡ ;  when Ricci theorem is applied for tensor analysis  

the following is obtained:   1
i i ik

ik

h
e g

φ
ν

+ ∂ ( )iz≡ ; 

 
3  the kζ   is not related to iφ , i.e. does not contain charge e  as a dark field does not interact  
with an electromagnetic field;  
kξ appears as a result of obtaining mass by Goldstone boson, i.e. kξ = kζ . 
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1.2.1. Force-free eq. 
 
Then Fierz-Pauli eq. for Ξ  massive spin 0 field without interaction is 
 

            
2 2 2 2

2 1 12 2 2 0
2 4

sk si rs
ik ik ik ik

s i s k r s i k

A A A Ck A A C
x x x x x x x x

δ δ
 ∂ ∂ ∂ ∂

− + + − − + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
W W  

                                                                                                                       (1.6) 
 

            
2

23 3 0
2 4

rk

r k

Ak C C
x x

∂
− + − =

∂ ∂
 

 
thus, satisfies P 2. 
 
As the appearance of the spin 0 field is described by Klein-Gordon eq., then referring to  the 
massive spin 0 field, i.e. ( )xΞ  in eq. ( 1.1 b), leads to (ref. Klein-Gordon eq.;                      
Gravitational interaction, Action) 
 

             ( ) 21 0ik
i kg g k

g Ξ
−

∂ − ∂ Ξ + Ξ =
−

                                                 (1.6.1 a) 

 
therefore, dark boson acquires a mass ( 0kΞ ≠ ) and is coupled with gravitational potential 

field ikg ; 

this coupling between ikg  and dark boson ( 0kΞ ≠ , so no singularity appears) is originated, as 

the source of the Ξ  field is the stress-energy tensor for scalar field note , which satisfies the Klein-
Gordon eq. 
 

( ) * *1ik i k i k ik ikT g g g g g g g k
k

α β β α αβ
α β Ξ

Ξ

= + − ∂ Ξ ∂ Ξ − Ξ Ξ    (1.6.1 b) 

 
 
note : 
 
as a gradient of scalar can describe only particles of spin 0, and applying analogous to the 
Lorentz condition for a dark field part (as for gravitational, (V. Fierz and W. Pauli, 1939)), 
the following is obtained:  
 

*ik ikT g kΞ= − Ξ Ξ  ikg∝  
 
(as in dark energy (G. ‘t Hooft,, 2008)); 
thus obeying P 1.  
ref. to Ξ  not ζ  as Goldstone field ξ  origin is different.  
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ii.  Model of masses for gravitational and dark fields (contribution of matter).  
 
 
Following is a presentation of obtaining masses by gravitational and dark components of a 
combined gravitational-dark field as a result of the interaction with matter.  
 
Ansatz Lagrangian

1note  viz., (B. Janssen, 2006), (S. Deser, 1970) 
 

               ( ) ( ){ } { }ik ik
FP h ik ikL L L k h T h T h hϕ ϕ ζ= + + + + ↔                          (2.1) 

 
where, 

FPL  is defined by (1.2.1); 

kinetic term   Lϕ  for matter field ϕ  acts as a mass term
2note  

 

              Lϕ = *1
2

i
iϕ ϕ∂ ∂                                                                                   (2.2) 

 
(ref. 4.4 Problems; (M. Kachelrieß, 2010) 

( )ik
ikh T ϕ  term represents the massive spin 2 field ikh , which couples with ( )ikT ϕ  like spin 2 

boson, and DVZ discontinuity disappears in a covariant case
3note , i.e. in the limit 

, 0hk Ξ → obtains a spin 2 boson and a scalar dark boson, which couples with the stress-energy 
tensor(matter); as the stress-energy tensor is defined in a form  
 

               ( ) ( )21
2

ik i k ikT ϕ ϕ ϕ ι ϕ= −∂ ∂ + ∂                                                          (2.3) 
note :   
1  term { }h ζ↔  corresponds to { }... for ikh  with substitution by ζ ; for ζ part  

ik ikgι εζ= −  
 
               ikgεΞ  

( ) ( )( )ik ik
ik ikk g T g TϕΞΞ + Ξ Ξ  

where, ( )ikT Ξ  denoted by ( 1.6.1 b); 
 
2 2m = ( )2ϕ∂  - mass due to the contribution of the matter; 
 
3  within the outlined mechanism, the disappearance of DVZ discontinuity is determined by 
the fact, that in 3D finite-mass relativistic bosons, characterized by BE condensation 
transition of the third order.  For bosons of mass 32(10 )O −  eV, the condensation transition is 
indistinguishable from the second order related to massless relativistic bosons (F. Zwicky, 
1961; S. Fujita, T. Kimura and Y.Zheng, 1991). 
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where, 
 
in Minkovski space linear perturbation ik ik ikg hι ε= −   
ε  - expansion parameter, 
allows for vacuum metric ik ikgι = ; (B. Altschul, Q. G. Bailey and A. Kostelecky, 2009) 

( )1 1exp log
2 2ik ik ii iig Tr h hι ε ι ε = + = +  

; { }h ζ↔  

1
pk M −= - coupling strength to the source ikT  ( pM - Planck mass). 

 
Consider

1note  
 

                ( ) ( ) ( )2 221 1
2 2

ik ik ik
ik ik ikh T h g h g hϕϕ ϕ ε ϕ= − + ∂ − ∂                           (2.4) 

 
as a kinetic term of ϕ , which acts as a mass term for ikh  proportional to 2h

2note . 
 
For h h−  field coupling is described by the term ( )ik ikh T h                                                                              
 

( ) 1 1 1 1
2 2 2 2

i
ik ik ik i k i k i k i k i ik FPh T h h h h h h h h h h h h L

ρλ ρ λ ρ ρ
ρλ ρλ ρ ρ ι = − − ∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ + 

 
 (2.5) 

 
where, 
 

( )ikT h -gravitational energy-momentum (stress-energy) tensor. 
note :  

           1  the outlined mechanism does not contradict the Coleman-Mandula theorem (S. Coleman 
and J. Mandula, 1967), as consistency is preserved due to the fact that the gravitational-dark 
field contains only one spin 2 field (gravitational) and one spin 0 (dark) field; 
 
2  term linear in ikh  is removed: 
 

( )21
2

ik
ikg gϕ ϕ− ∂ =0 

 
where,   
 
metric tensor is generated by matter (G. ‘t Hooft,, 2008)  
    

ik
i kgϕ ϕ ϕ= ∂ ∂ ; 

 
and eq. (2.5) takes into account nonlinear effects.  
 
Eq. (2.5) also takes into consideration massive (Fodor, Forgács and Grandclément, 2014) and 
massless or small-mass (Rosen, 2010) self-interacting real scalar fields. 
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Diffeomorphism invariance is restored from the breaking state due to the contribution of the 
last term in (2.5). Structurally, this term incorporates local field fluctuations and the restoring 
path (ref. the essence of the mechanism, Chapter 1), both of which are attributed to the 
appearance of scalar field in eq. (1.2.1). 
 
Local field fluctuations can point on the presence of Vainshtein-like behavior  
(A.I. Vainshtein, 1972) within the scope of the presented mechanism. As far as the restoring 
path is concerned, the appearance of negative energy states associated with the existence of 
dark boson, ref. eq. (3.6 a) can explain the appearance of ghost-like mode (D. G. Boulware 
and S. Deser, 1972) in nonlinear Fiertz –Pauli theory.  
 
Within the scope of the outlined mechanism, a coupling (tensor- gravitational, ref. Chapter 
III, paragraph 3, item 3.2, sub-item 1) regime and a decoupling (gravitational, ref. Chapter 
III, paragraph 3, item 3.2, sub-item 2) regime can correspondently explain the disappearance  
(for example, dRGT and bigravity) and the reappearance (for example, bigravity with doubly 
coupled matter) of ghost-like behavior note in different modifications and extensions of 
massive gravity. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

:note  
Massive gravity theory with all its modifications and extensions is not considered within the 
scope of the presented approach, since it is not relevant to the presented mechanism.  
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1.2.2. Model of boson masses.  
 
Introduction of interactions: gravitational –dark - spin 1 field interaction. 
 
Assume the interaction of a massive gravitational – dark field with a massless spin 1 field 
(i.e. vector field kΒ ): 
 

              k k
k

i i
x
∂

Π = − Β
∂

 

                                                                                                                          (2.6.0) 

             k i
ik i k k i

i k

B Bf i
x x

 ∂ ∂
= Π Π − Π Π = − ∂ ∂ 

 

 
massless kB coupling with massive ( ikh ,ζ ), viz. FP. Lagrangian in a form  
 

                                                                                                                          (2.6.1 a)  
                

{ }2 * * * * * * * * * * 2 * * *1 3 32
2 4 8FP ik ik l ik l ik r rk s sk ir rk ik r rk k r rk k l lL k A A A A A A f A A A C A C k C C C C= + Π Π − Π Π + + Π Π + Π Π − − Π Π

 
 
i.e. spin 1 field acquires mass as a result of the interaction with massive spin 2 and spin 0 
fields; 
mixed ikh ζ−  terms also account for self interaction; 
 
for h ,ζ , B  fields, the following is obtained:  
 

                                                                                                                         (2.6.1 b) 
 

FPL =  
 

* * *
2 * * * * *

* *
* * * * 2 * * *

*
* *

12 2
2

1 1 1 3 3 3
2 2 2 4 8 8

ik ik rk sk rk
ik ik l l ik ik r s rk sk

l l r s r k

rk
r k rk r k rk l l

r k l l

ik ik
ik l ik

l

A A A A A Ck A A B B A A B B A A
x x x x x x

A C C CB B A C B B A C k C C B B CC
x x x x

A AA B A
x

i

 ∂ ∂ ∂ ∂ ∂ ∂
+ + − − + ∂ ∂ ∂ ∂ ∂ ∂ 

 
∂ ∂ ∂ ∂ + + + − − − ∂ ∂ ∂ ∂ 

∂ ∂
−

∂ ∂
+

*
* * * *

** *
* * * * * *

2 2

1 1 1 1 3 3
2 2 2 2 8 8

rk sk ir
l sk s rk r rk ik rk ik

l r s i r

rk rk
k r rk k r rk l l

r k r k l l

A A BBB A B A B A A A A
x x x x x

A AC C C CB C B A B C B A B C B C
x x x x x x

 ∂ ∂ ∂∂
− + + − ∂ ∂ ∂ ∂ 

 
∂ ∂∂ ∂ ∂ ∂ + − − + − + ∂ ∂ ∂ ∂ ∂ ∂ 

 

 
f as a vector field mass term in Lagrangian is proportional to *

l lB B  ; 
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then consider note  
 
 

                                                                                                                         (2.6.2 a) 
             

{ }2 2 21 1 12 2 2 0
2 2 4ik ik i s sk k s si ik r s rs ir rk kr ri i k k i ikk A A A A A f A f A C Cδ δ + Π − Π Π + Π Π − Π Π + + + Π Π + Π Π − Π = 

 

                           23 3 0
2 4 r s rsk C C A− − Π + Π Π =  

 
 
which represents the Fierz-Pauli eq. for massive spin 2 and spin 0 fields with the interaction; 
 
for h ,ζ , B  fields, the following is obtained: 
 
 

                                                                                                                         (2.6.2 b) 
 

2
2 2

2
2

2 2 2 2 2 2

1 1 1 1 1 1
2 2 2 2 4 4

4 2 2

ik sk si rs
ik ik i s sk k s si ik

i s k s r s

ik r s rs i k k i ik ik
i k k i

s
ik sk

i

A A A Ak A B A B B A B B A
x x x x x x x

C C CB B A B B C B B C B C
x x x x x

BB A A
x x

i

δ

δ δ δ

 ∂ ∂ ∂ ∂∂ ∂ ∂ − + + − + − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂   + 
∂ ∂ ∂ ∂ ∂  + − + − + + −  ∂ ∂ ∂ ∂ ∂  

∂∂
− −

∂ ∂
2 2

0
1 1 1 1 1
2 2 2 2 2

sk s si s rs r
i si k ik rs ik r rk

s k s r s i

i k k ir
rk ri ri i k ik

r k r i k k i

A B A B A BB A B A B A
x x x x x x

B B B BB C C BA A A C B C B
x x x x x x x x

δ δ

δ

∂ ∂ ∂ ∂ ∂ ∂ − − + + + ∂ ∂ ∂ ∂ ∂ ∂  = ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ − + − + + + + −
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

 
 

2
23 3 3 3 0

2 4 4 2
rs s rs

r s rs rs r
r s r s

A B AC Bk C B C B B A i C A B
x x x x x x

   ∂ ∂ ∂∂ ∂ ∂  − + − − + + − + + =    ∂ ∂ ∂ ∂ ∂ ∂     
 

 
 
 
note :  
eq. for massive spin-1 field (by virtue of interaction) in contrary to free vector boson field, 
compare Proca eq. 
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2. Symmetry breaking mechanism (G-type). 
 
Following is a schematic representation of the symmetry breaking mechanism for 
participating gauge fields (with corresponding Lagrangians specified in: note eq. (0.1.1, 2)). 
 
As electromagnetic field iφ  is represented by U(1) group 
 

                   φ = ( )φ           
 
and for a gravitational-dark field  ( )xη  
 

                   ( )' ηΦ =           
 
after modification of the field, the following is obtained:  
 

                  ':υ φ → Φ           
 
where, 
 

                ( ): ,φ υ η φa φ =η ;         
 
represents spontaneous symmetry breaking as a symmetric system (gravitational – dark) goes 
into a vacuum state as a result of an interaction with an electromagnetic field: 
 

                     ( )' ,υ η φ φΦ =           
 
the following is obtained: 
 

                     ( ) ' 1,υ η φ φ −= Φ           
 
where, 
 

                     
η
ν ξ

 
Φ =  + 

= 'Φ + Φ          

 
and a fluctuating real value field with ( ) 0xξ =  ; 
vacuum expectation value 
 

                      
0
ν

 
Φ =  

 
        (2.7)  
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3. Quantization. 
 
Consider the noted in (A 2.1): 
 

            i. Following standard approach (F. Mandl and G. Shaw, 2010; R. Durka, 2008; Ivo van 
Vulpen, 2014) in application to the real scalar fields ( )ikcontr A , C  for ( )0iφ =  and the 

complex scalar field C  for ( )0iφ ≠ . 

ii. By referring to the gravitational field ikA  for ( )0iφ ≠ . 
 
Therefore, as item i) is well defined, refer to item ii).  
 
 
3.1. Gravitational field. 
 
1. The regular, unphysical spacetime  ( ), ikM g  address to the case ( )0iφ ≠ in Minkovski 
space.  
Minkowski space 1,1n−¡  with the flat Minkowski metric is the model of  the Lorentzian 
manifold. 
A Lorentzian manifold is a special case of a pseudo-Riemannian manifold in which the 
signature of the metric is (n−1, 1); such metrics are called Lorentzian metrics. 
So ikg  is the Lorentz metric on manifold M . 

The singular, physical spacetime  ( ), ikM g% %   related to ( ), ikM g  by function  Ω  is defined on 

M ( M M⊃ % ), such that: 
 

      2
ik ikg g= Ω%    , 0Ω >                                                                             (3.1) 

 
                                    0Ω →  on   Σ       
 
where, Σ  is a smooth spacelike hypersurface in M , called the singularity surface  
(Anguige and K.P. Tod, 2008), (ref. hypersurface). 
 
2. In gauge theory, curvature (scalar quantity) represents a field, i.e.: 
in case ( )0iφ ≠ , it can be associated with the gravitational field, thus pointing to the known 
association between curvature and gravity; 
in case ( )0iφ = , the existence of Weyl curvature for flat manifold determines the dark field 

Ξ component ( ∃  for 0iφ = ) of η note , which by virtue of  P 1 defines the value of dark energy. 
 
 
note:  
in case ( )0iφ = , derives a flat-space spin-2 theory, i.e. for tensor-gravitational field.  
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3. The manifested approach to the quantization of gravitational field 3.ii is reduced to the 
consideration 3.i.  
 
Eq. for ikA  (A 2.1, Viz.) in unphysical spacetime ( ), ikM g , in case ( )0iφ ≠ , take form: 
 
                                  ik ikA ih=  
 
then in physical spacetime  ( ), ikM g% % , obtain ref. ( 3.1): 
 

          2

1
ik ikA i h=

Ω
                                                                                                   (3.2) 

 
where, M M⊃ % ;  
according to § 3.1,1-2  0Ω →  for Σ   in ( ), ikM g , thus singularity can exist only in  

physical spacetime ( ), ikM g% %  viz.  ikA  not divergent. 
 
Q (A 2.1, 1.2.1), eq. ( 3.2) defined note : 
 
( * *

4 4 4ik ikih h i h i g= Ψ ⇒ = Ψ = Ψa ) 
 
 

            *
42

1
ik ikA g= − Ψ

Ω
%                                                                                      (3.3 a) 

 
where, 4Ψ is the Weyl complex scalar. 
 
From ( 3.3 a) using def. for 4Ψ , obtain: 
 

        ( )2

1
ik ikA g h ih+ ×= +

Ω
&& &&%                                                                                  (3.3 b) 

 
where, indexes and dots correspondently denote polarizations and time-differentiation of 
gravitational field. 
 
By virtue of the Klein-Gordon eq. time-differentiation can be addressed as follows  
 

         2 2 2 2
, ,(( ) )h ti k h i h+ × + ×− ∇ + = ∂                                                                    (3.3.1) 

 
 
note:  
thus, instead of referring to 3.ii   in form (A 2.1), it is reduced to the form ( 3.3 a) in 
case ( )0iφ ≠ , which is falls under the case 3.i. 
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then, obtain note      

       ( )2
2

2( ) )1 ( hik ik iA g h ihk + ×= − − +
Ω

∇ +%                                                        (3.4) 

and apply def. of Laplacian on an arbitrary curved manifold (ref. Laplacian) 

         
2

, ,2
,

ik i
i k i

h h
h g

x x x
+ × + ×

+ ×

∂ ∂
∇ = − Γ

∂ ∂ ∂
%                                                              (3.4.1) 

 

where, i
kjΓ  is Christoffel symbol of the first kind (‘potentials’) 

eq. ( 3.4) takes the form 

                                                                                                                       (3.5)         

  
2 2

2 2
2

1 i i
ik ik ik ik h ik hi k i i k i

h h h hA g i i g g k h i g k h
x x x x x x

+ + × ×
+ ×

 ∂ ∂ ∂ ∂
= − Γ + − Γ − − Ω ∂ ∂ ∂ ∂ ∂ ∂ 

% % % %  

according to note (ref. eq. ( 3.3 a)).  
 
 
note:  
1  in a general case Lorentz gauge can not be used: 
  

,( ) 0i h+ ×− ∇ =  
 
as spacetime is singular ( ), ikM g% %  and curved ( ∃ Weyl curvature on: ,M M%  for 0iφ = ; 0iφ ≠ ); 

in case 0iφ ≠  omit metric fluctuation in Minkovski space; 
 
2  (case 0iφ ≠ , in expanded form (eq. ( 3.5)): 
due to singularity  mass 2

hk  and ‘potentials’ i
kjΓ  renormalized by ikg%  ( ikg%  in general case, 

i.e. including metric fluctuations); 
∝ i

kjΓ  term is associated with the fact that the gravitational field determines the dark field 
appearance, as the source of the dark field is the stress-energy tensor (ref. a gradient of scalar; 
note eq. ( 1.6.1 b)); 
source-free equation terms include a metric and not a time part (in correspondence with 
note ref. (A 2.1.1)). 
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3.2. Tensor fields. 
 
1. Tensor-gravitational representation.  
 
Consider tensor-gravitational field h (eq. (3.4)), which satisfies the time-independent Klein-
Gordon eq. (ref. Klein-Gordon eq.) , using complex (‘charged’-- Ξ  mass) scalar field 
representation: 
 

         
( )

3

3( ) ( ) ( )
2 2

ipx ipx

p

d ph x a p e b p e
Eπ

+
− +

 
 = +
  

∫                                            (3.6 a) 

 
where,  

2 2
pE p kΞ= + . 

The first term (denote particle with 0hk > ) annihilates a particle with positive 
energy a graviton (tensor-gravitational mode). 
The second term (denote antiparticle with 0kΞ < );  and creates an antiparticle with negative 
energy a  dark boson. 
 
Scalar propagator defined note   
 

                         ( ) 2 2

1
F p

p k iεΞ

∆ =
− +

 

 
(Note the scalar field: the propagator for the complex field is the same as for the real field). 
 
2. Gravitational representation. 
 
Addressed from h  gravitational field ikh (ref. (A 2.1)), correspondently obtain  
(M. Kachelrieß, 2010) 

         
( )

3 *

3( ) ( ) ( )
2 2

r ipx r ipx
rik r ik ik

r p

d ph x a p e b p e
E

ε ε
π

+
− +

 
 = +
 
 

∑∫                          (3.6 b) 

 
where,  
 
tensor fields of rank n  corresponds to particles with spin s n= ; 
polarization tensor rε (polarization states r

ikε ). 
note:  
∴ consider ( 3.6 a) as corresponding to scalar mode, where tensor rank 2 mode disappears; 
scalar mode appears; 
 
Q consider ( 3.6 b) represents tensor mode, where rank 2 mode appears from a scalar mode 
(ref. graviton propagator, which is defined by scalar propagator), not from a tensor rank 2 
mode. 
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Propagator for spin 2s =  field is derived as a sum over polarization states r
ikε  times scalar 

propagator  
 

                          
*

( ) ( ) ( ) ( )ik ik
rF r F

r
D p p p p

ρσ
ρσ ε ε= ∆∑  

 
defined by metric fluctuations (correspond to case 0iφ = ) in ‘t Hooft gauge (M. Kachelrieß, 
2010) 
 

           
( )

2

1
2( )

ik i k i kik
F

g g g g g g
D p

p i
ρσ ρ σ σ ρρσ

ε

− + +
=

+
                      (3.7 a) 

 
in case of 0iφ ≠  
 

            2 2

1 2
2 3( )

ik i k i k
ik
F

h

g g g g g g
D p

p k i

ρσ ρ σ σ ρ
ρσ

ε

 − + + 
 =

− +
                 (3.7 b) 

 

             (Note the factor of 
1
3

 instead of 
1
2

 in the last term of the propagator. This is related to the DVZ 

discontinuity (ref paragraph 1.2, ii), i.e. massless gravity differs from the 0hk →  limit of massive 

gravity (J. Thaler, 2003); ref. gravitons of mass 32(10 )O − eV). 
 
Thus

1note  operators in eq. ( 3.6 a) - ( 3.6 b) denote: 
 
   2.1. First term with a positive mass means positive curvature and denotes graviton in 
   tensor-gravitational

2note  and gravitational representations correspondently; ref. positive 
   curvature  hypersphere (3D spherical surface);   
 
   2.2. Second term in eq. ( 3.6 a) - ( 3.6 b) with negative mass means negative curvature 
   and denotes dark boson and dark boson in form ikg%  coupled with dark field Ξ  
   correspondently; ref. negative curvature hypersaddle.  
 
           

:note  
1  applied Lorentz gauge, i.e. consider Lorentzian manifold ( ∃ Weyl curvature); 
 
2  case 0iφ ≠ , due to factor ikg%  in eq. ( 3.5) obtain:   
∴ (3.6 a); 
tensor-gravitational representation is defined by:  
renormalized by ikg%   tensor- gravitational form to denote gravitational field ikh . 
Causality: ref. 3.1.2 and (1.1 b) tensor- gravitational mode shifted. 
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3. Following this, consider two possible types of curvatures, which can exist in reference  to 
Σ (in case 0iφ ≠ ): 
 
   3.1.  
 
Euclidian manifold: 
 

0
i iφ φ=  corresponds to changing metric tensor from ikg  to ikg , i.e. ikg = ikg  

(Cartesian tensor). 
 
FLRW metric, 0k = . 
    
 Lorentzian manifold: 
 
FLRW metric, 1k = . 
 

0
i iφ φ>  , then ik ikg ο+     hypersphere : defines (A 2.1.1); tensor mode. 

 
FLRW metric, 1k = − (3-dim pseudo-sphere). 
 

0
i iφ φ<  , then ik ikg ο+     hypersaddle:   defines ( 1.1 a); scalar mode.                                            

 
   3.2.  
 

0iφ =   obtain case 1.1 ref. (A 2.1);     
 

0
i iφ φ?   obtain case 2.1 ref. (A 2.1). 

                                    
This outlines the case of changing geometry of spacetime.    
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4. The whole topological structure looks like the following compound: 
 

 
in a dark sector the time dimension          space represented by the circle and time is a 
is compactified

0note                                    line, so the spacetime is a cylinder. 
(ref. Appendix A2, item 1.2.1).                                         
                                   
                                       Fig.1 Fiber bundle (fiber- dark part, base- gravitational part) 
                                       hypersaddle represent dark part and hypersphere gravitational part. 
  
This geometry corresponds to AdS 3  (Lorentzian analogue to hyperbolic space) geometry on 

the dark part and Lorentzian CFT on the gravitational part (cases for Euclidean
1note  CFT and 

Lorentzian CFT, ref. 3, 3.1);  
the shape of the fiber bundle at every point is described by the Gauss-Bonnet theorem, 
which addresses the geometric classification of surfaces( paragraph 3, item 3.2,  
sub-item 3) according to the uniformization theorem. 
 
 ∧ where

2note ,  
 
a) Gravitational part ( )SO 3 group is isomorphic (ref. ( )Spin 3 ) to ( )SU 2 ;  
the conformal group is isomorphic to the  restricted Lorentz group SO+(1,3) , which 
preserves direction of time, thus addressing to the arrow of time problem. 

:note  
0  This explains the introduction of ‘cylinder condition’ in Kaluza-Klein theory. 
Also electric and magnetic parts of the Weyl tensor are compactified (G. ‘t Hooft,, 2008), 
(G. ‘t Hooft, 1990) ref.(A 2.1 b).  
 
1  Euclidean space is an analogue to Minkovski space; 
  
2  thus to tie the definition to the Lorenz group, i.e. one-particle states (address to the 
 reservations on applicability of FP theory by (S. Weinberg, 1965); 
 charged fields can not be observable, as they are not invariant under gauge transformations 
 (A.S. Fulling, 1973).    

  dark part 
 
  (tunnel) 

gravitation
al part 
(mass) 
 

La
yer
Z 
 
 

⇒   

de Sitter 
space 

anti-de Sitter 
space 

anti-de Sitter 
space 

hyperkähler 
manifold 
 

Space 
time 
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   Gravitational part due to the Weyl anomaly ( ∃ Weyl curvature, ref. Fig. 6 ) 
   characterized by the central charge (-- h  mass) £ , thus corresponding Hilbert space of 
   states is defined by Virasoro algebra for £ : 
 
   1. 0=£  conformal symmetry is unbroken and corresponds to the case 1.1;  
    
   2. 0≠£  conformal symmetry is spontaneously broken, i.e. case 1.2. 
 
   In case 2, the dark field does not interact with the electromagnetic field due to the fact 
   that ∃  conformal anomaly leads to the following: trace of electromagnetic stress-energy 
   tensor has non-vanishing expectation value.  In turn, for this to be true, the trace of 
   electromagnetic stress-energy tensor must 0≠ , which contradict to algebraic property 
   of electromagnetic stress-energy tensor, which is traceless. 
 
 
   f Massive scalar (dark) field from case 1 can not interact with electromagnetic field 
    in case 2. 
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b) Dark part represents the connected helicoids with two ends, each in separate points in 
spacetime. This corresponds

1note  to the Piccei-Quinn symmetry. 
 
 
 
4.1 ∴Tunnel and topological defects.  
 
1. Spontaneous broken symmetry addresses to the formation of cosmic strings inside and 
textures along the helicoids;  
 
Breaking the Piccei-Quinn symmetry

2note  in the tunnel resulted in ∃  of axion, which is 
described by: 
 
a) eq. (1.3 a) (G-type symmetry is not broken, i.e. addressed to the aforementioned 
symmetry breaking mechanism); 
 
b) coupling to the instanton field (the ‘misalignment mechanism’) correlated with the 
presence of the Bose-Einstein condensate; ref. Fig. 6. 
 
c) A cosmic string emits radiation: 
gravitational as part of the inference topology; 
electromagnetic as part of the ‘mixed’ state (also note 2). 
 
p   Axions as part of breaking the Piccei-Quinn symmetry. The dark boson combines 
 with an axion to form a complex scalar  field (A 2.1.2).  
 
 
 
 

:note  
1  the tunnel is characterized by ∃  of U(1) global symmetry (due to the absence of dark-
electromagnetic field interaction);  
 
2  in the tunnel part, PQ symmetry is considered as an additional component of U(1) global 
symmetry, which relates to the charged complex scalar field (the field is charged due to the 
mass of dark field ( Ξ ) ref. ( 1.3 b)); PQ symmetry is spontaneously broken by the 
expectation value of vacuum state, which leads (in case of non-interaction (1.3 a)) to the 
appearance of massless Goldstone boson (axion).  In case of interaction, gauge symmetry is 
broken [ ]2,2  and as a result the dark boson combines with an axion to form a complex scalar 
field (A 2.1.2).  
2,2  ref. to the appearance of the mass of dark boson (i.e., no massless Goldstone boson 
appears in this case).   
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2. This inference topology 
1note  (ref. 4 ii-iii, below) can enclose any object, which leads to: 

 
   2.1. Zero-inference topologya field transverses through the tunnel, as massless (forces 
   long-range); gravitational part exists, as massless. 
   2.2. Before symmetry breaking inference topology a  tunnel shrinks, as dark part 
   becomes massive (forces are reduced to short-range), negative mass is transferred to 
   the objects enclosed by the tunnel; gravitational part exists, as massless.    
   2.3. After symmetry breaking inference topology a tunnel is not changed from the 
   previous state; gravitational part exists as massive, thus transferring positive mass 
   to the enclosed object. 
 
 
5. Vacuum structure in the tunnel. 
 
a) If considering layer Z with thickness L λ=  of a smooth vector field iφ  inside, in the 

physical vacuum the process of creation of electron-(positron, hole)
2note  pair is defined 

by the process of absorption or emission of vector field iφ  ( λ -wavelength).  
According to eq. (A 4.2)      this is described by entropy in layer Z , therefore, 
changing entropy in Z can be associated with vacuum fluctuations in Z. 
 
b) In the application to the electromagnetic field, detailed calculations are outlined in 
Appendix A - Additions Chapter represents the structure of modes and radiation from layer Z . 
As seen from eq.(26), modes are characterized by strongly marked peaks of radiation,  
therefore, if the right side fiber bundle is attached to the left side fiber bundle ( Fig.1), it 
will obtain surfaces of revolution, where: 
 
    1. Max kink will correspond to the superposition of maximum radiation from the right- 
    left fiber bundle connection; 
    2. Min radiation will correspond to the superposition of minimum radiation from right- 
    left fiber bundle connection.  
 
The surfaces of revolution (obtained due to consideration of smooth vector field iφ  structure 
of radiation (ref. eq.(26)) represent a universal cover, which defines the structure of compact-
3 manifold (eq. (A 4.2)). 

:note  
1  ‘inference topology’ radiation dynamics that corresponds to the solution of the Navier- 
Stokes eq. (A 5.0.1) in blow-up regime leads to the schema (N.H. Katz and N. Pavlovic, 
2004; Y. Habara, Y. Nagatani, H.B. Nielsen and M. Ninomiya, 2007), where energy flow is 
const at the reduction of volume, due to the existence of 3D steady-state vortex solution 
along the helicoids from within the tunnel; 
 
2  state of this pair is ‘mixed’, which corresponds to ref. (note, eq.( 1.1 b)),  
described by density matrix ref. (Appendix A - Additions Chapter, eq. (16)); also ref. 
Appendix A4. This description is referred to the Dirac hole-theory. The applicability of this 
theory for bosonic systems is specified in (N.H. Katz and N. Pavlovic, 2004; Y. Habara, Y. 
Nagatani, H.B. Nielsen and M. Ninomiya,  2007).  
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CHAPTER IV:  RESULTS AND DISCUSSION 

 
  i. Considered here is the new bosonic mechanism for describing the obtaining of masses 
by bosons. This mechanism is constructed upon a model of spontaneous breaking of local 
symmetry (applies only in the context of the essence of the mechanism, Chapter I)  and the 
hypothesis that the dark energy is represented as energy of a dark field in a single gravitational-
dark field.  
 
 ii. The model describes massive gravitational and dark fields and their interaction with the  
vector field based on the Fierz-Pauli approach. 
 
iii. Gauge bosons acquire masses note  as a result of the interaction with a massive  
combined gravitational- dark field. 
 
iv. Fermion masses are not considered.   
                  
 v. Physical interpretation of terms proportional to *

l lB B  (ref. description in Appendix A5,  
paragraph 4, eq. (2.6.1 b)).  
The following is an explanation of the physical meaning of the terms of eq. (2.6.1 b): 
 
a) in the ‘mixed’ state the representation (gravitational-dark field (A 2.1.1)- (A 2.1.2)) is 
reduced to case characterized by scalar mode.  This corresponds to the Higgs model: 

f gauge vector boson mass term is determined by * *3
8 l lB B CC−  (ref. eq. (2.6.1 b)), where C  

is in the form of eq. (A 2.1.2); 2 *3
4

k C C− is the corresponding free-field term; 

 
f  electromagnetic (gauge) field is massless due to non- interaction with scalar mode. 
 
b) in the ‘pure state’ the representation (gravitational-dark field (A 2.1.1)- (A 2.1.2)) is 
reduced to case characterized by tensor mode.  This corresponds to ‘the new bosonic 
mechanism’ model: 
f  gauge vector boson mass term is determined by * *

l l ik ikB B A A  (ref. eq. (2.6.1 b)), where ikA is 
in the form of eq. (A 2.1.0); 2 *

ik ikk A A  is the corresponding free-field term; 
 
f  electromagnetic (gauge) field is massive due to non minimal interaction with tensor mode 
(ref. Appendix A3, eq. (A 3.2)) , thus corresponding to the Ginzburg -Landau model note . 

:note  
Ginzburg -Landau model relations (ref. Fig. 3): 
p area a) is related to Higgs model; 
 
p area b) represents the renormalization group flow from area a) →  area c); and is defined 
by the β - function (ref. Appendix A4, paragraph 3); 
 
p area c) is related to sigma model on Calabi-Yau manifold.  This model describes the low 
energy dynamics of complex 2-dim theories with monopoles (ref.  Fig. 6, Mark 2, 4). 
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CHAPTER V: CONCLUSION 
 
  i. The theory originally addressed the subject of obtaining masses by vector gauge bosons 
but the suggested approach is different from the Higgs mechanism.  
It includes topological issues and specifies the property and characteristic radiation of  
physical vacuum. 
 
 ii. In the framework of the outlined approach the subject of dark energy and dark matter is  
addressed.  
It is shown, that the origin and the mathematical description of dark sector naturally 
follows from a specified mechanism. 
 
iii. As the theory spans over cosmological sector and includes items 1 and 2, it incorporate   
the complete Lagrangian note  of the theory, EoM and canonically quantized  
gravitational field.  
It was checked for the asymptotic behavior and coincides with Einstein eq. within 
appropriate limits. 
 
iv. Obtained results have specific applications, for example:  
   
1. Case of changing spacetime geometry; 
2. It is shown how the theory naturally leads to AdS/CFT correspondence; 
3. Obtained reformulation of quantum mechanical wavefunction, i.e. presented the way 
to treat wavefunction as a continuous function, which describes the object from inside 
and outside; 
4. Based on the group theory, mathematically demonstrated the solution to the arrow of 
time problem; 
5. Obtained a mathematical topological explanation to the entanglement problem and a 
mechanism of the existence of stable traversable and non-traversable wormholes. 
 
 v. Introduced physics approach, which allows the solution of the Navier-Stokes 
 existence and smoothness problem. 
 
vi. Discussed the cancellation mechanism (ref. Appendix C - Supplementary Chapter, 
paragraph 1), which can explain the absence of the observable Cherenkov radiation in the 
theory.   
 
vii. In order to prove this theory it must be shown to satisfy precision experimental 
constraints on quantum corrections. 
 
 

:note   
Lagrangian for the outlined mechanism is described by the formula eq. (1.4.1 a). 
 
Gauge vector boson mass terms are defined in Lagrangian eq. (2.6.1 b) and    
are proportional to *

l lB B ;  their description is outlined in Appendix A5, paragraph 4. 
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APPENDICES 

 
Appendix A 
 
1. The second channel of the mass source for dark field. 
 
1. Derivation of eq. (1.6.1 a) from eq. (1.6) (in case 0iφ = ). 
 
From the first eq. condition ( )0=  is satisfied for:  
 

2 2 2
2 12 2 2 0

2
sk si rs

ik ik ik
s i s k r s

A A Ak A A
x x x x x x

δ
 ∂ ∂ ∂

− + + − = ∂ ∂ ∂ ∂ ∂ ∂ 
W  

                                                                                                                       (A 0.1) 
 

2 1 0
4 ik

i k

C C
x x

δ
∂

− + =
∂ ∂

W  

 
then using relations 
 
 

2 2 2 2

;sk si si sk
ik ik

s i s i s k s k

A A A A
x x x x x x x x

δ δ
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
 
with the second eq. 
 
 

2
23 3 0

2 4
rk

r k

Ak C C
x x

∂
− + − =

∂ ∂
                                                    (A 0.1a) 

 
will obtain (A 0.1) in a form: 
 
 

2 23 32 2 3 0
2 4ik ik ikk A A k C Cδ  − + − + = 

 
W  

                                                                                                                         (A 0.1.1) 
 

2 1 0
4 ik

i k

C C
x x

δ
∂

− + =
∂ ∂

W  

 
 
follow (V. Fierz and W. Pauli, 1939) for symmetrical tensor ikA  whose trace vanishes, then 
consider;  
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case i k≠   
 
 

2 0ik ikk A A− =W  
                                                                                                                          ( )A 0.1.1 a  

 

0
i

C
x

∂
=

∂
 

 
to satisfy eq. (A 0.1.1). 
 
By substitution (A 2.1) into ( )A 0.1.1 a  from  first eq., eq. ( 1.6.1 a) is derived. 
 
 
2.  Ansatz Fierz-Pauli eq. ( 1.6) for ( )0k = viz., 
where derivation of the metric is a small quantity of first order (V. Fierz and W. Pauli, 1939) 
for:  
 
the metric tensor 
 

,ik ik ik iig δ γ γ γ= + =  
 
and the metric fluctuation 
 

1 ,
4ik ik ikA C Cγ δ γ= + = ; 

 
 
is reduced to the same eq. as Einstein eq. for space containing no matter: 
 
 

                                                                                                                         (A.1) 
       

2 2 2 21 1 1 1 1 0
4 4 4 2 4ik ik lk lk li li ik lr lr

i k l i l k l r

CA C A C A C C A C
x x x x x x x x

δ δ δ δ δ
 ∂ ∂ ∂ ∂       − + − + + + + + − + =        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

W W

 
 

2 1 0
4lr lr

l r

C A C
x x

δ
∂  − + = ∂ ∂  

W  

 
 
where C  is defined by (A 2.1) (in case 0iφ = ); 
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from this eq., a system of eq. for A C−  components is obtained correspondently: 
 
 
          

2 2 21 0
2

lk li lr
ik ik

l i l k l r

A A AA
x x x x x x

δ
∂ ∂ ∂

− + + + =
∂ ∂ ∂ ∂ ∂ ∂

W  

                                                                                                                                 (A1.1a) 
 

2

0lr
l r

A
x x
∂

=
∂ ∂

 

 
 
 
and C  component 
 
 
 

2 2 2 21 1 1 1 1 0
4 4 4 2 4ik lk li ik lr

i k l i l k l r

CC C C C C
x x x x x x x x

δ δ δ δ δ
 ∂ ∂ ∂ ∂       − − + + + − =        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

W W  

 
                                                                                                                                 (A1.1 b) 

 
2 1 0

4 lr
l r

C C
x x

δ
∂  − = ∂ ∂  

W  

 
 
this eq. (A1.1 a) - (A1.1 b) is reduced to  
 
 
 

                                                     
2 2

0lk li
ik

l i l k

A AA
x x x x

∂ ∂
− + + =

∂ ∂ ∂ ∂
W                                             (A1.2 a) 

 
                  

 
2 2 21 1 1 0

4 4 4ik lk li
i k l i l k

CC C C
x x x x x x

δ δ δ
∂ ∂ ∂     − − + + =     ∂ ∂ ∂ ∂ ∂ ∂     

W                                         (A1.2 b)  
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where ikA  satisfies the wave eq.  
 
 

                                      2
ik ikA k A=W                                                                 (A1.3.1) 

 
 
with condition 
 

                                                     0ik

i

A
x

∂
=

∂
 

; 
 
 
for   0kΞ =  , 0kξ =  
 
 

                                                     0ik

i

A
x

∂
≠

∂
 

 
but choosing a gauge to satisfy 
 
 

                                        0ik

i

A
x

∂
=

∂
                                                                       (A1.3.2) 

 
 
this is an analog to the Lorentz condition for electromagnetic potentials; 
 
 

                                    
2

0ik

i k

A
x x

∂
=

∂ ∂
                                                                    (A1.3.3) 

 
and  
 
 

                                   0C ≠                                                                              (A1.3.4) 
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2. Lagrangian of the presented theory. 
 
Consider an expression for Lagrangian from which equations in full nonlinear form are 
derived. 
 
Let us consider eq. (1.4.1 a) and compare it with eq. (A 2.0) (general form of eq.  
(1.2.1 a)). 
 
 

2 2 23 32
4 8

ik ik rk sk rk
FP ik ik

l l r s l l r k

A A A A AC C CL k A A k C
x x x x x x x x

∂ ∂ ∂ ∂ ∂∂ ∂ ∂
= + − − − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
          (A 2.0) 

 
 
this FP eq. can be obtained from eq. (1.4.1 a) in case of no interaction. 
 
According to the approach developed in § 1.1.: 
 
i. The following correspondence exists: 

                                                                                                                          (A 2.1)   
 
case 0iφ =  | 0i

jlkC =                                      case 0iφ ≠  |  0i
jlkC ≠  

 

( )

k
k

ik ii

i
x

contr A
C

ι

ν ξ

∂
Π =

∂

= Ξ

= +

                                              
'

k k
k

ik ik

i ie
x

A ih
C i

φ

ν ξ ξ

∂
Π = −

∂

=

= + +

 

 
where 
 
a wave-field ikA  is a symmetrical tensor of the second rank (ref. Fierz-Pauli); 
C  is an auxiliary scalar field. 
 
1. For 0iφ =   dark field is not coupled ( ref . 

1note eq. ( 1.4.1)), follow FP schema ikA  real, 
also C  real. 
 
1.1. According to (Anguige and K.P. Tod, 2008) the electric and magnetic parts of the Weyl 
tensor of ikg  are defined by: 
 

1
2

c d
ik idk c

cd f e
ik ie kcd f

E C t t

B C t tε

=

=
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where 
 

dt   unit timelike vector, 
is determined by ∃ 0i

jlkC ≠ ; 
 
i.e.  ikg ⇔ ( ),ik ikE B  , 0i

jlkC∀ ≠  
 
(ref. theorem on constructing spacetime from compact manifold); 
 
1.2. If  0i

jlkC = : 
 

 
0
0

0

ik

ik

ik

E
B
g

=

=

=

           ii iiA ι⇒ = Ξ                                                                                           (A 2.1 a) 

 
by Weyl curvature hypothesis at start-up time (Lorentz metric);  
 
1.2.1.  If  0i

jlkC ≠ : 
 

0
0

0

ik

ik

ik

E
B
g

≠

≠

≠

             { },ii ii ik ikA contr E B ihι⇒ = Ξ +                                                           (A 2.1 b) 

 
then obtain the case of ( tensor-dark field), i.e. ikg  decoupled from the dark field Ξ  

viz. ik
ik ikA g Aa ;  

 
if ikg  is coupled with the gravitational field ikh ( tensor-gravitational field), then 

Goldstone-dark field ς ( ref . 
2note eq. ( 1.3.0)) can be considered; 

 
if ikg  coupled with the dark field Ξ , then Goldstone and dark fields is of different origin. 
 
∴ ( )ih x  is the Weyl complex scalar 4Ψ  (ref. Weyl scalars);  
this term leads to the Mexican hat potential and determines a Goldstone boson existence 
(ref. complex scalar field theory). 
 
 
 



 51  

2. for 0iφ ≠  dark field does not interact with the electromagnetic field, therefore, omit the 
Goldstone-dark field terms; according to the FP schema, ikA , C  are complex. 
 
2.1.  If  0i

jlkC ≠ : 
 

0
0
0

ik

ik

ik

E
B
g

≠

≠

≠

        ⇒ ik ikA ih=                                                                                                 (A 2.1 c) 

(Lorentz metric) 
 
where 
 

ikοQ  metric fluctuation, i.e. ik ikg ga : 

( ),ik
ik ik ik ik ik ik ik ikih i g h ig h ig g h g g ο= = = +a  

 
1 ik

ik ik ikA ih gο = +                                                                                       (A 2.1.0) 

 
second term represents the gravitational entropy. 
 
3. combining cases 1, 2 (ref. (A 2.1)) note  
 
∴ a wave-field ikA : 
 

    ( ) ( ) ( )0 0 0 0 0 01 1 ik
ik ik ii ik CA ih gφ φ φ φ φδ δ δ ι δ δ δ δ   + − = Ξ + − + −                       (A 2.1.1) 

 
can exist in states described by ikh  and Ξ , then it can exist in a state described by the 
gravitational - dark field η (ref. ( 1.1 a)), i.e. further referring to a gravitational field, 
however, where it is appropriate it refers to the gravitational -dark field; 
compare ( 1.1 a) and case 1.2.1, , 0i

ii jlkA i Cη= ∀ ≠  is obtained. 

ikA  ( ): 0, 0i
jlk iC φ∋ ≠ =   represents a state, which incorporates a characteristic of time (time 

scalar iiι ) and characteristic of space (metric tensor ikg ), thus defining spacetime. 
∴ an auxiliary scalar field: 
 

     ( )' 01C i φν ξ ξ δ= + + −                                                                                  (A 2.1.2) 
 
where complex scalar field referred to by Goldstone theorem and ( )0iφ =  represents 

massless Goldstone bosons; when ( )0iφ ≠  represents pseudo-Goldstone bosons.   
note:  
this interpretation corresponds to the principle of general covariance in general relativity 
(ref. Wheeler- DeWitt eq.), compare to case 2.1. 
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ii. By substituting (A 2.1) correspondently into mass terms for eq. (1.4.1 a) and  
(A 2.0 ): 
 

 |………………………………………………………………………………à ∴ (A 2.2.1)   
 
case 0iφ = : 
 
compare ( 0.1.1) and mass term for eq. (A 2.0 ) and by virtue of Goldstone theorem ( 0kξ = ) 
and (ref. ( 1.3 a) note 3) , obtain 
 

( )222 2 22 ik
ikk g Aλ ν ΞΞ =   

i.e. k λνΞ : (if quartic interaction terms are omitted and the constant terms are contracted), 
masses for dark field (ref. ( 1.3 b)) are obtained. 

|………………………………………………………………………………à∴ (A 2.2.2)   
 
case 0iφ ≠ : 
 

            from eq. (C. Itzykson and J-B. Zuber,  1980; M.E. Peskin and D.V. Schroeder, 1995) 
of complex massless boson field coupled minimally with an electromagnetic field (compare  
( 0.1.2)) and eq. (1.4.1 a) by virtue of dark field, which does not interact with electromagnetic 
field, therefore Goldstone-dark field can be omitted altogether, and the following is obtained 
 

( )2 2 *1
2 ik ik h ik ikh eA k A Aν∂ + =  
 
then ref. to eq. ( 1.5)

2note , obtain masses for gravitational field hk eν: . 
   
Thus, it is confirmed that mass terms in FP eq. (A 2.0 ) and (1.4.1 a) and eq. ( 1.3 b) and  
( 1.5) correspond and have the same values.  
 
f Based on the following facts: 
 
1. FP Lagrangian (A 2.0 ) is a non interactive limit of  (1.4.1 a); 
 
2. Fierz-Pauli field eq. ( 1.2.2 a) and (1.4.2 b ) for massless gravitational and dark fields 
can be obtained correspondently from (A 2.0 ) and (1.4.1 a) by performing the variations.  
 
p f Therefore, follows the conclusion that eq. (1.4.1 a) is sought for Lagrangian note . 
 

:note  
the mechanism of appearing mass terms in FP eq. (A 2.0 ) and (1.4.1 a) is specified in 
paragraph 1. 
 



 53  

 
 
 
3. Considering of non-minimal coupling. 
 
In additional terms the fields , , ih ζ φ  in (1.5) appear, i.e. note  
        

1
hL ζ− = ( ) ( ) 2 22 2 2i i i i i i ie h e e h e e hφ ζ νφ φ ζ νφ φ ν∂ + − ∂ + +  

                                                                                                                          (A 3.1) 
 
            ( )2 2 2 2 2

h iL e hζ φ ζ− = +  
 
where 
 
Noether’s current (or real-valued fields) is 
 

( ) ( )i i i i ij i h e h eζ νφ ζ νφ= ∂ + − ∂ +    
 
see ref. in note 2 on ( 1.5); 
 
last term in 1

hL ζ−  of hν −  coupling. 
 
Therefore, the following is obtained: 
 
(A 3.1.1) 1

hL ζ− = 2 i ii e jφ 2 22 ie hφ ν+  
 
               ( )2 2 2 2 2

h iL e hζ φ ζ− = +  
 
 
To retain a correct number of degrees of freedom for spin 2 field, non minimal interaction 
term is to appear (C.R. Hagen, 1972) 
 
 

  min
1
4

i
non iL ieh F hαβ

α β=                                                                                      (A 3.2) 

 
 
 

:note  
this approximation holds in the case of minimal electromagnetic coupling. 
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4. The quantum effects and underlying statistical field theory. 
 The structure of quantum effects. 
 
1. Following with the consideration of the theorem of Stokes’ and corresponding connections 
to gradient, curl, and divergence theorems (ref. Stokes’ theorem); obtain (I.E. Tamm, 1979): 
 
curl theorem 
 

        s n
L s

ds rot dsφ φ=∫ ∫
r

Ñ                                                                                    (A 4.1) 

 
where  
            
       0n

s

rot dsφ =∫
r

Ñ  

 
 divergence theorem 
 

       n
s V

ds div dVφ φ=∫ ∫
r

Ñ                                                                                      (A 4.2) 

                   
Green’s theorem 
 

       ( )2 2

s

dV ds
n n
ϕ ψ

ψ ϕ ϕ ψ ψ ϕ
∂ ∂ ∇ − ∇ = − ∂ ∂ ∫ ∫Ñ                                               (A 4.3) 

 
using Helmholtz diff. eq. and Lie brackets definition, from (A 4.2) , (A 4.3), derives: 
 

        [ ],n n divψ ϕ φ− =r r
r

                                                                                        (A 4.4) 
 
where :note   

:note   
noted that in order for necessary and sufficient condition for a smooth vector field φ

r
 to be the 

gradient of F - function, the curl of φ
r

 must be equal to 0 (Poincare’s theorem), since  

       FgradF n
n

∂
=

∂
r ,     

obtained 

       ( ) ( )n ngrad n n
n n
ϕ ψ

ψ ϕ ψ ϕ−
∂ ∂

= − −
∂ ∂

r r
r r  

where, factorized on boundary, i.e. due to the existence boundary conditions on surface S  
when changing from n−

r
 to n

r
: 

      ( )n ngradφ ψ ϕ−= r r
r

 ;  
      ,n nψ ϕ−

r r  are wavefunctions of state of the inside and outside surfaces ( i − shapes) 
correspondently. 
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p eq. (A 4.2) denotes the correspondence of compact-3 manifold to compact -2  
manifold

0note ;  
sφ  represent information written on the surface.         

pExistence of the singularity follows from eqs., refers to the contour L  of surface S ,  
 which limits volume V .  
 This contour determines the boundary of the singularity under consideration. 
 
 
1.1. The following addresses to singularity. 
 
   i. use parallelism of eq. for the entropy of the set of events and the quantity of  
   information described by this set through the eq. 
 

                           ( ) ( )
1

log
n

j a j
j

H P A P A
=

= −∑                                                  (A 4.5) 

 
( )jP A  is probability of event jA ; 

and the formula, which specifies the entropy of a discrete variable X  with defined  
probabilities

1note  
 

                            
1

log
n

j a j
j

H p p
=

= −∑                                                              (A 4.6) 

 
jp  is probability of value jx ; 

and refers to the reflective correspondence(bijection) between the event and the microscopic 
state of the (defined by singularity) system, which can comprise from injective metric spaces.  

:note  
0  This leads to the AdS/CFT correspondence taking into account the following: 
1. condensation of massless relativistic bosons in 2D phase transition of the third order is  
consistent with the condensation of  3D finite-mass relativistic bosons (F. Zwicky, 1961;  
S. Fujita, T. Kimura and Y.Zheng, 1991); 
2. a) and assumption on barrier – black hole dynamic (ref. Appendix A4, paragraph 2.1, 
Fig.7). This results in the appearance of free massless relativistic bosons moving in 3D. 
    b) Since no condensation occurs in 1D (F. Zwicky, 1961; S. Fujita, T. Kimura and 
Y.Zheng, 1991), this dimension represents quantum (Bohmian) trajectories (ref. note 2, 
Appendix A5, paragraph 2.2, sub-item ii). 
 
1  Also addresses to the differential entropy (with continuous series of values): 
 

                              ( ) ( )logaH f x f x dx
∞

−∞

= − ∫   

 
( )f x is probability density function, can be expressed through the wavefunction of 

Schrödinger eq. in the framework of   a certain physical system model (ref. note 2,  
Appendix A4, paragraph 1, item 1.1, sub-item ii). 
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 ii. Viz., correspondence between continuous distribution of value of non-observables 
 and discrete distribution of the events, noted by the eq. 
 

                                ( ) ( )
1

n

k k
k

f x p x xδ
=

= −∑                                                      (A 4.7) 

 
where the events addressed to the microscopic states of the system under consideration, 
described by the quantum mechanics of non-observables

2note . 
 
iii. injective metric spaces directed into the interior of the black body is indeed the entropy 
generation attributed to the emission of radiation into a vacuum; 
according to (P. Würfel, 1988) generation of entropy is not due to the emission of radiation 
into the vacuum, but rather the absence of absorption from the vacuum, which comprises the 
case.  
 

 
                                                  Fig. 2 System (black body + singularity)  
                                                            Ref. (Fig. 1 (P. Würfel, 1988));  
 
2.  eq. (A 4.4)     addresses the collapse wavefunction, as postulate of quantum mechanics, 
which is complete information about the system encoded in its wavefunction; 
 
therefore, the wavefunction

3note  can be considered as probability to obtain specific i − shape 
(i.e. particle) received at particular point as a projection of information at particular time, 
described by entropy at this point  - divφ

r
. 

:note  
2  to develop this approach, a certain physical system model (time series to address non-
observables) is utilized; 
ref. Appendix B – Extensions Chapter. 
 
3  iP , which is defined in the section Appendix B – Extensions Chapter determines quantum 
potential for the i − shape. 

x 

Singularity  -
gravitational 
 
(heat reservoir) 

Black hole -
coordinate 
singularity 
(black body) 

0 

Vacuum 

r  R 

( ) ( )n x n= ∞  

  photon number 
(‘mixed’ state) 
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3. eq. (A 2.1.1) addresses the structure of a wave-field 
 
 
                             
 
 
 
 
 
 
 
 
 
                                         related by renormalization group flow 
                                 
 
 
 
 
 
                                                  Fig. 3 By dint of a),b),c) 
 
 
 
 
a) 0iφ = , ikg : ik

ikih g∴ ;  
 

b) 0iφ ≠ , ikg : 0ik
ik ig g φ∴ = ⇒ ; ( )*, ,nV V Hom V C= =¡ : *

k i
k
ih V V

      
      ∴ = ⊗ ⊗ ⊗
      
      

 

with a tensor representation of ( )GL n ( )3 ( )SO GL n∧ ⊂  
 
c) 00 :i i iφ φ φ≠ > , ikg : ( ) ( ) (1 )ik ik

ik ik ik ik ik ik ik ikihg ih g ih g g ih gο ο ο∴ = + = + = +  
 
ref Appendix A2, paragraph 2.1.  

0 Ξ  

ikih  

a) 

b) 

c) tensor 
bundle 

0 

σ  models of Calabi-
Yau manifolds 

Landau- Ginzburg 
model 
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                                                  Fig. 4 Metric tensor as a representation by the power law    
                                                           function ( )niφ  
 
1. area a)-b) Fig. 3:     0

i iφ φ<  
 

( )( ) ( )( )n nik i i k i i k ikg φ ϑ θ φ ϑ ϑ δ= + + + +  

 
and represents dyadic product;  
where 

1 2n = ; 
iϑ -stochastic uncertainty     
i jlk i

jlkCϑ ε= ,  
i.e. stochastic uncertainty defined by the Weyl curvature tensor (ref. Viz., ( 1.1 b)); 

kθ  is the torsion 2-form (due to the metric torsion tensor:  ref. connected helicoids,  
paragraph 3.2, item 4). 
 
2. area c) Fig. 3:        0

i iφ φ>  
 

ik ik ikg g ο= +  (ref. case b), Fig. 3);                                                    

ikο  - metric fluctuations are due to entropy (T. Jacobson, 1995). 
:note  

metric variations are separated into two parts: 
1. induced ( vacuum(quantum)) metric fluctuations, which determine the existence of 
primordial fields, are due to stochastic source leading to the exponential instabilities; 
2. intrinsic ( classical) metric perturbations, which relate to the entropy and represent 
feedback mechanism, cancel instabilities arising due to the induced part.  

0 
0
iφ  

2 

1 

due to metric fluctuations 

due to topological soliton (topological defect), i.e., 
one dimensional cosmic string corresponding to Mexican 
hat potential 

ikg  

ikg  

ikg  
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Therefore, sector a)-b) Fig .3 represents a renormalization group with a specification of the 
renormalization trajectory (for the group equation) of the metric parameter ikg  by the power 
law function. 
 
f Dependence of the β -function

0note  on the energy scale is determined by dint of the  
mechanism generation of entropy (Fig. 2), which is caused by iφ  and is described by 
the Gell-Mann-Low eq.(consideration address fixed physical mass) and not of 
Callan - Symanzik type.  

                  Figure 4 (in the framework applied to Calabi-Yau manifolds in two complex dimensions) 
                  outlines the importance of account for topological defects considering renormalization group 
                  flow (G. Zumbach, 1995). 

 
The power exponent addresses the critical exponent

1note  in the phase transition. 
 
i. In the order phase (spontaneous symmetry breaking of G-type), specifies: 
   
   1. order parameters indicate the presence of line-like excitations such as vortex (note1, 
    Fig.1, paragraph 5) or defect lines (G. Zumbach, 1995). 
 
ii. according to (C. Grebogi, E. Ott and J.A. Yorke, 1986), values of the critical exponents for 
boundary crises and interior crises regimes are obtained: 
 

1 2n =   for one-dimensional maps with a quadratic maximum; a cosmic string. 
 

2n =  for two-dimensional maps, also applies to three-dimensional continuous-time systems. 
( a domain wall, False vacuum). 
 

1n nx p x+ = −  
 
which recovers a Henon map for the case 0J →  for a one-dimensional map; and  
 

1n n nx p x Jy+ = − −  

1n ny x+ =  

For a two-dimensional map, 

where 

J  is the Jacobian of the map ( const). 

 :note  
0  explicit expression for β -function in case of scalar 4Φ  theory is in ref. (A.A. Vladimirov 
 and D.V. Shirkov, 1979);  
 
1  it has no explicit dependence on the reduced temperature. 
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1. The chaotic transient regime and the intermittent bursting addresses to the Mark 1 on 
Fig. 6; (ref. to example: Ikeda map). 
∃  iφ  as part of composite system with field η (ref. note eq.( 1.1 b)). 
 
2. Intermittent switching addresses to the Mark 3 on Fig. 6; (ref. to example: Forced 
double-well duffing equation)  
 

2

2 sin( )d x dx Vv p t
dt dt x

ω
∂

+ + =
∂

 

where 

4 2

4 2
x xV α

β= −  

with two minima  

1
2

x β
α

 = ± 
 

 

case: cp p=  corresponds to eq. ( 1.3 a); 

the external force determined by the presence of radiation from layer Z ( ref., Fig.1);  

case: cp p>  corresponds to the intermitted switching between 0x >  and 0x <  wells; 

this can address to forming the conditions of ∃  wormhole geometry in a tunnel area (Fig.1). 

, cp p  - parameters and addresses to the critical value. 
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4.  Application to wormhole geometry. 

Inference topology structure (Fig.1) in a double symmetric geometry can connect these 
geometries by a double tunnel. 

 
 
 
 
 
 
 
                                                  double tunnel (wormhole) 
                                                 
                                               Fig. 5.1 two tunnels construct a wormhole structure 
                                                            (dynamics of tunnels is defined by:  
                                                             ref. Paragraph 4.1, item 2:  2.1-2.3).                                                      
 
 
 
Inverse topology of the geometrical model in Fig. 5.1 represents connected chain 
as depicted in Fig. 5.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                      connected chain is formed 
 
                                              Fig. 5.2 inverse geometrical model. 
 
 
 
 
 
 
 

   tunnel mass 

           tunnel tunnel mass mass 

           tunnel mass 
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5. Connections between different topics within a single theoretical framework. 
 
To a unified field theory 
 
 
 
 
 
 

 
 
 
 
 
 
 
                              
                                                   Fig. 6 Ref. Symmetry breaking mechanism and eq. (1.1 b) 
                                                             (EM: electromagnetic field, D: dark field,  
                                                             G: gravitational field). 
                                                             
 

 
 
 
 
Goldstone-dark 

EM-G-D       2 
BE condensate 

Spontaneous    3 
( 0.1.1)  

Spontaneous     4        
( 0.1.2) 

G       5              
 

EM 

't Hooft (monopole) 
Q  vector field 
(Weyl curvature) 

ν  expected value 
broke symmetry 
spontaneously 
(global symmetry) 

Appearance of scalar fields G-D, 0iφ∃ =  

Tensor –
gravitational field 

D 
Goldstone 
field 

Instanton solution, 0iφ∃ ≠ , ∧   Uncertainty principle 
Expected value of the tachyon condensate from the BE-
tachyon condensate (funnel, Dirac monopole)ν  
increases as Weyl curvature increased; 
broke symmetry spontaneously (local symmetry) 

split 

Instability 
point             1 

Soliton solution, 0iφ∃ ≠ , ∧  
Uncertainty principle 
 

Stable solution; Dark mattter, iφ¬∃  

Unstable solution, 0,i ikgφ∃ = ∃  ; vacuum  
manifold 
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Mark 1: 
 
low entropy content; Weyl curvature tensor vanish. 
 
Mark 3: 
 
   i. ∃  scalar mode comprises a tensor-gravitational field + dark field; consider the Weyl 
curvature increase; 
 
   ii. assign mass to the dark boson, ref. ( 1.3 a). 
 
Mark 4:  
 
assign mass to the gravitational field and the appearance of the massive Goldstone boson,  
ref. (1.5).         
 
Mark 5: 
 
assign mass to particles, ref. Model of boson masses. 
 
Corollary: 
 
The EM field does not interact with the D field, due to the difference in underlying 
mechanisms of appearance. 
The G field is present during noted processes, i.e. it can be applied to the D and the EM 
fields. 
 
 
p  Possibility for the asymmetry between baryons and antibaryons. 
 
1. Mark 1-3 outlines a possibility for asymmetry between the baryonic and dark matter due to 
the appearance of the electromagnetic field in a ‘mixed’ state after gauge, conformal 
symmetry breaking.  The annihilation of massive dark matter particles results in antimatter 
production which (according to the mechanism described in Appendix A5, paragraph 3, sub-
item a)) leads to the CP violation (ref. Appendix C - Supplementary Chapter , paragraph 1) in 
the presence of the electromagnetic field in a ‘mixed’ state and results in asymmetry.  
 
2. Mark 4-5 corresponds to obtaining mass by particles as a result of a spontaneous symmetry 
breaking with the electromagnetic field in a ‘pure’ state. 
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1. Consideration note  of the Bose-Einstein-tachyon condensate with funnel leads to  
the Navier-Stokes eq. in the form (N.H. Katz and N. Pavlovic, 2004; Y. Habara, Y. Nagatani, 
H.B. Nielsen and M. Ninomiya,  2007): 
 

     ( ) 1v v v v p f
t

ν
ρ

∂
= − ∇ + ∆ − ∇ +

∂

r r r r ur
                                                                  (A 5.0.1)                           

 
where v

r
-velocity vector field; ν -coefficient of  kinematic viscosity; f

ur
 -represents gravity 

and includes electromagnetic forces; ρ -density; p - pressure. 
 
According to the outlined approach, define the convection term, by a vector calculus identity 
 

        ( ) ( )
2

2

v
v v v v

 
 ∇ = ∇ + ∇× ×  
 

r
r r r r

                                                                 (A 5.0.2) 

 
where, the second term defines the funnel (Dirac monopole);   
 
also term f

ur
 can represent in the form 

 
      i if z=                                                                                                         (A 5.0.3) 

 
where  
 

1
i i iz h

e
φ

ν
= + ∂ , ref. (note 2, eq. ( 1.5)). 

 
As specified in (in: D. Vorberg,  W. Wustmann, R. Ketzmerick and A. André Eckardt, 2013) 
rotating the Bose-Einstein condensate develops vortices, which are phase singularities (ref. 
note1, 3.2-5 and Appendix A5, paragraph 2.1, sub-item iii). 
 

:note  
the condensation temperature cT  of this condensate comprised of free relativistic bosons 
massless and massive is specified in ref. (F. Zwicky, 1961; S. Fujita, T. Kimura and Y.Zheng, 
1991). 
. 
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2. Instability point note . 
 
Define the point in spacetime 0ε  
 

      0

0
lim

ε
ε ε

→
=                                                                                                   (A 5.1)  

 
Q 0ε+ → , 0ε− → , ∴ noise fluctuations appear in the area ε  around 0ε = , i.e. 
 
∃  resonator due to noise-induced fluctuations around equilibrium⇒  
 
∴ inherent fluctuations Q lack of global restoring force due to a continuous global  
symmetry.  
 
 
Corollary: 
 
i. curve and rift spacetime in 0ε  ∴ Weyl curvature appears with a characteristics  
mark 1; source of ν , ref. note (paragraph 1.1).  
 
ii. define entropic arrow of time Q mark 2 (Weyl curvature increase),  
ref. Appendix A2, paragraph 1.1. 
 
iii. refer to the scalar domain ⇒   
mark 3: due to mass for the D ( )xΦ∴  is charged (i.e. complex scalar);  
tensor gravitational field refers to the renormalization group, ref. Fig. 3;   
     
∴ in eq. ( 1.1 b), applies to the phase domain. 
 
 
 
 
 
 
 
 
 
 
 

:note  
Ref. Kibble mechanism and address the sector a)-b) Fig .3. 
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2.1. Instanton solutions note . 
 
Consider black holes ( ∃  exclusive principle), i.e. : 
 
i. Area bounded by event horizon [ [,0r  denoted by the Heisenberg uncertainty principle

1note  
   

       
2

E t∆ ∆ ≥
h                                                                                                  (A 5.2) 

 
where, 
 

       p 0t∆ → , E∆ → ∞ ;                                                                              (A 5.2.1 a) 
 
this solution corresponds to the Bose-Einstein condensate represented by fields, which lost 
both information component

2note  ∀ 0x =  and  mass ∀ [ [,0x r∈ . 
 
ii. Quantum tunneling

3note , which occurs under the barrier – black hole, characterized by  
[ [,0x r∈   

 
       f t ε∆ : , 0E∆ ?                                                                                   (A 5.2.1 b) 

 
⇒  transmitted wave constitutes energy flux and can be related to the Hawking 
      radiation; 
      spectrum of radiation is analogous to spectrum of black body radiation. 
 
iii. Bose-Einstein condensate indicates ∃  't Hooft monopole. 
Phase domain Appendix A5, paragraph 2, sub-item iii , related to spontaneous symmetry 
breaking and emergence of scalar fields in vacuum ref. ( 1.1 b). 
 
 
                                                 

:note   
3D steady-state vortex solution of (A 5.0.1); 
 
1  reservations by Pauli regarding time operator can be addressed by the following 

            considerations (V.S. Olkhovsky and E. Recami, Nuovo Cimento, 1974); 
 
2  ref. Appendix A4. 
 
3  The graviton mass 32(10 )O −  eV (F. Zwicky, 1961; S. Fujita, T. Kimura and Y.Zheng, 
1991) appears under this consideration as the mass of the ground state (Kaluza-Klein) modes, 
which exist in BE condensate.   
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                                                            Fig. 7 Corollary of instanton solution 
                                                            ( [ [0, ,0i x rφ = ∀ ∈ ; [ [0, 0,i x Rφ ≠ ∀ ∈ ); 
                                                            by dint of a), b). 
 
 
a)  ik

ikh h  is tachyon condensation, ref. tensor-gravitational field  h  is included in complex 
part of eq. ( 1.1 b); 
 
b) mathematical expression for spacetime is reduced to scalar ik

ikg g . 
 
Barrier – black hole in the area 0x =  ‘peels off’ note  information structure and mass 
from matter fields, thus obtaining a ‘sandwich’ structure within the framework denoted by  
eqs.  (A 4.1) - (A 4.3). 
 
 
 
 

G Dm −  

ν  

ε−

ε+  0  

. .b hm  

r
 

R R 

ik
ikh h  
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:note  
1  this represents a virtual particle, which infalls into b.h.; the outside virtual particle state 
correlates with the state of the particle in b.h., i.e. these two particles (subsystems) exist in a 
‘mixed’ state. Complete quantum system comprised from these subsystems exists in a ‘pure’ 
state [1,1] , i.e. accounting for off-diagonal elements of the density matrix, which represent the 
coherences in the system of the ‘mixed’ states.  This takes into account correlations between 
vacuum entangled states (the state of the particle in b.h. is defined in the framework of 
AdS/CFT correspondence) (G. ‘t Hooft, 1990), but not the correlations between outside 
states, which do not exist in thermal case. The decoherence of quantum superposition of 
outside states in low-energy limit is due to the contribution of gravitational field when 
background spacetime is considered, ref. (I. Pikovski, M. Zych, F. Costa and Č. Brukner, 
2015). 
 
1,1  proof of this statement utilizes formulas (2.3), (3.11) and (4.2) from Appendix B.  The 
concluding results are represented by the following eqs. ( [ ] ] ]'1, , ,b n b n ma a , i.e. 

correspondently orthogonal and non-orthogonal sets of the whole set 'b b× a [ ]1,m  ): 
a) for density matrix: 
 

[ ] ] ]
'

'

2
1, ,

b b
r rm n m

bb

P Pρ ρ= =∑                                                                                               (A 5.2.2 a) 

 
where 
 
the state of the particle in b.h.(non-observables) is described by the non-orthogonal set; 
the state of the outside particle (observable state, which is vacuum entangled with non-
observable state) is described by the orthogonal set. 
Thus the whole set, which represents ‘mix’ of these sets (‘mixed’ set) corresponds to the 
‘mixed’ state. 
According to the formula above, the unitarity is preserved due to the contribution of  
off-diagonal elements, which represent interactions and correlations between the outside 
virtual particle state and the state of the particle on the horizon. 
 
b)  for the trace of the density matrix: 
                               

( ) 2 1b
b

Tr kρ = =∑                                                                                                      (A 5.2.2 b) 

 
due to the normalization of the total probability. 
 
2  Under this framework, vacuum is represented as a self-consistent system comprised of 
a positive energy (b.h.) component and a negative energy (w.h.) component. 
The vacuum fluctuations appear as a result of stochastic nature of equilibrium between 
these two components, which are interconnected by the mechanism of broken symmetry 
(ref. Chapter III, paragraph 1, note item 0.1). 
Under the Dirac hole-theory notation, this system is represented as a zero band-gap structure 
with valence and conductivity bands formed by w.h. and b.h. correspondently. 
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At equilibrium this system is compensated (i.e. preserves a zero band-gap structure) and goes 
out of equilibrium due to the symmetry breaking, thus leading to the appearance of a non-
zero band-gap.   
 
 
2. 2. Soliton solutions

1note ( ∃ exclusive principle). 
 
Consider a certain physical system, i.e. : 
 
i. area denoted by the Heisenberg uncertainty principle (5.2) 
 
where, 
 

       p t∆ → ∞ , 0E∆ →                                                                                (A 5.3) 
 
this solution corresponds to the orbit structure; 
 
the state of the inside and outside surfaces (as described in note to eq. (A 4.4)) reflects the 
homomorphism between the structure of the field, where the quantum mechanical description 
of the outermost part is given by quantum mechanics of non-observables (ref. Appendix B-
Extensions Chapter), and connection with the innermost part which is given by eq.  (A 4.4). 
 
ii. Developed in the Appendix B-Extensions Chapter mechanism is an outline, which presents 
deriving of a well- defined particle trajectories

2note  in the relation to the Nelson stochastic 
mechanics (E. Nelson, 1966), and directly related to the forming of such trajectories in the 
mechanism described by the crisis-induced intermittency (C. Grebogi, E. Ott, F. Romeiras and 
J.A. Yorke, 1987) in the case of the quadratic map (ref. to example: Pairwise merging of 
chaotic bands in period-doubling cascades). 
 

, mp p  parameters and address to the forming of unstable orbits of period m . 
                                              
 

:note  
 
1`  given mathematical description of this solution in the framework of the soliton solution of 
(A 5.0.1). 
 
2  quantum (Bohmian) trajectories form the microscopic structures ( i − shapes), i.e., a 
microscopic quantum state described by the wavefunction iP , which comprise BE condensate 
(i.e., a macroscopic quantum state described by the wavefunction superstateP ).  This 
wavefunction determines quantum potential of BE condensate. 
Both wavefunctions mentioned above are defined in the section Appendix B-Extensions 
Chapter. 
Creation of this macroscopic quantum state occurs as a result of free massless relativistic 
boson condensation moving in 3D and relates to the condensation condition cT T<  
(F. Zwicky, 1961; S. Fujita, T. Kimura and Y.Zheng, 1991), i.e., black-body radiation regime 
referenced in Appendix A4, paragraph 1.1, sub-item iii.  
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3. In the application to the exciton model for the Bose-Einstein condensate. 
 
Consistence of a condensate can be represented by two types of component structures 
which comprise it, namely: 
 
i.  bh-bf:  black hole + baryonic foam;  
 
ii.  wh-df:  white hole + dark matter foam. 
 
These two types of exciton-like structures comprise the BE condensate corresponding to: 
 
1. Mark 2: in the form of ‘mixed’ state. Corresponds to Fig. 4, 1; 
 
a  case i), iφ∃  is a part of ‘mixed’ state: 
 
this type represents spacetime in the granulated form, i.e. inference structure Fig.1 collapses 
to a chain of mass parts as tunnel parts are reduced to zero. 

iφ  confined to a surface of mass parts as r
r

 granulated in a micro b.h. (mass part) and a 
baryonic foam (tunnel part).  
Ref. Appendix A5, paragraph 2.1 note . 
 
a  case ii), ¬∃  iφ  as a part of ‘mixed’ state: 
 
this type represents the granulated form, which consists of micro w.h. and a dark matter as a 
foam. 
In this case Appendix A5, paragraph 2.1 can not be applied Q iφ  can not enter area of 3, ii. 
 
2. Mark  4: in the form of ‘pure’ state, where condensate is shaken by EM.  
Corresponds to Fig. 4, 2; 
 
a  case  iφ∃  is a part of ‘pure’ state: 
 
this type represent continuous, smooth gravitational structure;  iφ  localized to volume 
as r

r
 is not granulated. 

 
a  Case  ¬ iφ∃  is a part of ‘pure’ state: 
 
this type represents a continuous, smooth dark matter structure; iφ  does not exists.  
 

:note  
in previous version of this document dated Aug. 27,  2009, the following is outlined: 
there exists a possibility of tunneling near b.h. as a mechanism leading to the Hawking 
radiation ( i.e. applicability of the Schwinger effect); 
there exists an analogue b.h. laser-like structure, which appears as a result of quantum 
tunneling (Appendix A5, paragraph 2.1, sub-item ii; also, ref. experiment (J. Steinhauer, 
2014)) with periodic boundary conditions. 
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The following conjectures on CP symmetry are related to inference topology: 
 
a) As result of contact with a thermal bath note , provided that dark part does not interact with 

iφ , the component structure bh-bf leads to: 
 
     1. Mass part is broken; 
     2. Tunnel part is unbroken.  
 
b) As result of absence of contact with a thermal bath, provided that iφ  cannot enter the area, 
the component structure wh-df  leads to: 
 
    1. Mass part is unbroken; 
    2. Tunnel part is broken.  
 
 
p  So the structure of the inference topology adheres to the CP symmetry and by dint of  
 
the Landau-Yang theorem  determines the hypothesis, which is due to postulates  
P1, P2. 
 
 
 
f A micro b.h. (mass part) and a baryonic foam (tunnel part) corresponds to topological 
structure ref. Fig. 1 and represents positive energy. 
 
The topological structure of micro w.h. and a dark matter as a foam corresponds to anti- 
structure ref. Fig. 1 and represents negative energy. 
 
Cancellation of these two types of structures creates vacuum structure with vacuum state ν . 
Cancellation mechanism is analogous to the creation of cooper pairs in BCS theory, but in 
this case micro b.h.- micro w.h. components are bound by the exchange of dark bosons. 
 
 
 
 

:note  
Fig. 2 addresses the case of time-periodically driven by electromagnetic field in a ‘mixed’ 
state systems in weak contact with a thermal bath (in: D. Vorberg,  W. Wustmann, R. 
Ketzmerick and A. André Eckardt, 2013). 
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4. Implication of quantum fluctuations. 
 
Considering inference topology presented in Fig.1, then due to the second law of 
thermodynamics and as specified in paragraph 3.1, i) the following is obtained: 

 
system of  baryonic foam – thermal bath- micro b.h.(considering Hawking’s radiation) comes 
to the thermodynamic equilibrium, i.e. state with max symmetry. 
 
 
 
 
 
 
                                                              
                                                             Fig. 8.1 The explanation of the value of mass 
                                                                          acquired by gauge bosons.                                                                       
 
1. As referenced in paragraph 1, item 1.2.2 the vector boson mass term is determined by  

* *
l l ik ikB B A A  (ref. eq. (2.6.1 b)), where ikA is defined in the following form eq. (A 2.1.0); 

 
2. combined dark boson - axion mass term (ref. Paragraph  4.1.1) is determined by 

* *3
8 l lB B CC−  (ref. eq. (2.6.1 b)), where C  is in the following form eq. (A 2.1.2). 

 
            a) Mass of axion (cold dark matter) (L. Visinelli and P. Gondolo, 2014; D.J.E. Marsh, D. 

Grin, R. Hlozek and P.G. Ferreira, 2014) 
1note  is in the range of 100 Gev, which corresponds 

to the gauge boson masses.  
This correspondence follows from the fact that mass term for the reversible 

2note  ‘inference 
topology’ structure (dark - axion ↔  gravitational, Fig. 1. 4) is reduced to the vector boson 
mass term (as explained in paragraph 4, item 4.1.2, sub-item 2.3). 
 

:note  (G.W.Fraser, et.al., 2014; C. Bonvin, R. Durrer and R. Maartens, 2014): 
1,1  denotes experimental proof of axion existence; 
1,2  the appearance of Dirac monopole (ref. Fig. 6, Mark 4) is determined by existence of 
primordial magnetic field, which also addresses the magnetic field in Primakoff effect.  
 
2  reversibility reflects geometrical equivalence between dark and gravitational sectors and 
mathematical symmetry between corresponding terms in Lagrangian eq. (2.6.1 b). 

mass part represented by micro b. h. + 
foam of virtual b. h.(a thermal bath); 
micro b.h. accretion of matter corresponds 
to the increase of entropy; 
virtual b.h. is produced by tachyon 
condensation of axions; 

tunnel part is represented by 
baryonic foam; 
baryonic symmetry is violated 
due to presence of virtual b.h.; 
 

virtual b.h. determines  
the existence of 4 space-
time dimensions; 

micro b.h. remnant (particle), 
soliton solution; 



 73  

 
 
Structure:  WIMP - Gravitational instanton 

1note  
 
 
 
                                           
 
 
 
 
 
 
 
 
 
 

           Fig. 8.2 Gravitational instanton (ref. Fig. 6 below,  
                        Mark 2, 4);  WIMP (ref. Fig. 6, Mark 3). 

 
 
WIMP (dark part ⇔ tunnel) interacts with baryonic matter by means of gravitational 
instanton (gravitational part ⇔ mass). 
 
b) The value of dark energy

2note  is determined by the requirement to cancel local vacuum 
fluctuations (i.e. maintain thermodynamic equilibrium between the baryonic sector and the 
thermal bath). 
 
 
 
 
 

:note  
1  Gravitational instanton ⇔  4-dim hyperkähler manifold (ref. Fig.1); 
instanton is defined as vector bundle with self-dual connections on 4¡ . 
 
2  In case of ( )0iφ ≠ , the value of dark energy is defined based on the conditions   
indicating equality between the baryonic sector’s entropy constraint reduced to    
4 natsπ  on one side and the entropy of thermal bath – micro black hole (b.h.) system 
determined by eq. ((A 4.6), note 1) and (A 4.7) on another side. 
Dark energy influence is incorporated explicitly into eq. (A 4.7) by means of 
replacing eq. (4.1, ref. Appendix B – Extensions Chapter)) with eq. denoting the forced 
NLSE with the dark energy as driving force. 
 
In case of ( )0iφ =  the value of dark energy (ref. paragraph 3, item 3.1, sub-item 2) 
is determined by eqs. (A 2.1 a)- (A 2.1 b). 
 

     tunnel mass 

gravitational 
instanton WIMP 
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Appendix A – Additions Chapter: Electrodynamics of thin (non-geometric case) layers. 
 
An interzone radiation from plane-parallel plate due to direct-band-gap transitions is theoretically 
studied. 
 The plate thickness in one direction is less or of the order of the radiation wave length. The system 
of characteristic nodes for the radiation being emitted from such a plate is obtained.  
It is shown that the radiation has strongly marked radiation peaks for resonance transmission. 
 
 
1. Introduction and purpose. 
 
Over prolonged periods the problem of investigation of cavity resonators radiation character for 
non-geometrical optics has been given a significant attention.  
 
A sufficiently completed overview of investigations in this field is given in (H.P. Baltes and F.K. 
Kneubuhl, 1972), where different studies containing solutions in the form of infinite series with 
residual terms of different kinds are listed; also, the radiation of samples of different geometry is 
considered. 
These results remain topical until present. As the appropriate review showed, the works published 
afterwards do not comprise any significant supplementary information. 
The aim of this section is to obtain an analytically precise solution for the problem being discussed 
as applied to physical vacuum, which enables to appropriately take into account the properties of a 
plane-parallel plate as a resonator. 
The solution for the problem in case of different geometries may be found in a similar way. 
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2. Plane-parallel plate modes. 
 
a) The system of modes. 
 
Transitions between two different states of a hole in the filled band under the secondary  
quantized radiation emission are represented by the Hamilton operator: 
 

                         ( )2
r r

p p
eH A A
c

∧
= − +

r r
r r
r rr r

v v                                                                    (1) 

where, 
 

                               
2

*2r r rcA b a b a
V ν ν ν ν

ν ν

π
ω

+ = +∑  
 

r r rr h r r                                                    (1a) 

 
Here the denotations are as follows: 
 

pr
r
v  - holes velocity operator; rA

rr
- secondary quantized vector potential; νω  − ν  mode  

frequency; b bν ν

+

 - Bose operator of creation (annihilation) for ν -mode; raν

rr
 - describes the polarization 

characteristics and space structure for ν -mode; 
ν  includes: µ  - polarization index ,s p . j -mode index , ,r l L . 
qP
r

 
- longitudinal wave vector; the mode cross structure is determined by wave vectors –  

continuous ones q , q
:

   
for ,l r  modes, and discrete k  - for L   mode;

, ,r l L  - right, left, and in-plate localized modes respectively; V  - normalized volume. 
As stated in (V.S. Pekar, 1974), the modes system for the medium with dielectric constant  rε

r
 is derived 

from the following equations: 

                                      
2

0r r rrot rot a a
c
ν

ν ν

ω
ε − = 

 

r r rr r                                                                  (2)         

                                   
( )

*
' '

1 r r r

V

dr a a
V ν ν νν

ε δ=∫
r r rr r r                                                                 (2a) 

which should be solved separately for S   -polarization 0rdiv aν =
rr  and p   - polarization 0rdiv aν ≠

rr . 
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In a one-dimensional case with inhomogeneous conditions being under consideration  
( ( ), , xr x eτ=
r r r - normal to the plate) the solution for the system (2-2a) will be as follows: 

 

       ( ) ( )2exp xr xp ps
qx x qx qxx

e q iq da iq a e a a
q q dx

ν νν
ν τ ε

ε

  ×     = + +  
   

r P P
P

P P

r r r
r r r r                                             (3)                  

 
where the first item represents the solution for S  -polarization, and the second and the third  
ones - for p   -polarization. 

Let us consider only S  -type solutions for which the scalar functions s
qxaν

  
are derived from  

the following equations: 

                         

                   
22

2
2 0

s
qx x s

qx

d a
q a

dx c

ν
ννω

ε
  + − =  
   

P                                                             (3a) 

                           
( )

* '

'

1 x s s
qx qx

s sL

dx a a
L

νν

ν ν
ε δ=∫                                                                  (3b) 

 
where, L    - normalized length in x  - direction. 
 
b) Mode structure. 
 
For the piecewise-homogeneous medium, the wave equation is solvable for regions where  

x constε = . At jumps of xε  the boundary conditions  
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0 0

0 0
0 0,| |q x

q x

d a
a

d x

+ +

− −

= =                                                                                 (4) 

 
are used. 
 
In order to find all the constants of the wave equation for stratified medium, in addition to the  
boundary conditions (BС) at all the jumps of xε - , two ВC’s at ±∞ are needed. 
 
Types of solutions: 
 
r  - and l - solutions: the amplitude of right-incident ( )r  or left-incident ( )l  wave is given i.e.  
two BC’s are set at +∞  or −∞ . 

 
L  - solutions: localized modes for which  | 0qxa +∞

−∞ = . 
 

raν

rr
 is continuous at jumps of xε  (i.e. s

qxaν
  and p

qxa
ν

  functions are continuous), but  

p   - polarization-generated  term 
 

px
x qx

i d aq dx
νεε

 
 
 
 P   

has a jump at the interface. 

 
Since the system (2 – 2 a) is linear and homogeneous, one of the constants for L     -solutions is  
not determined by BС and dispersion equation is obtained. 
 
Let us consider three-layer medium case: 

 

 
1, 0

,0
,

x s

x
x d

d x
ε ε

ε

<
= < <
 <

                                                                                                                     (5) 
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Solutions for the system (3 а, b) are sought in the following form: 
 

 

( ) ( )
( ) ( )
( ) ( )

exp exp , 0

exp exp ,0

exp exp ,
qx

A iqx A iqx x

a a ikx a ikx x d
B iqx B iqx d x

+ −

+ −

+ −

+ − <


= + − < <
 + − < % %

                                                                           (6) 

 

where, wave vectors: 
 

2
2 2

2
2 2

2
2 2

s

q q
c

k q
c

q q
c

ν

ν

ν

ω

ω
ε

ω
ε

 = −  
  

 = −  
  

  = − 
  

P

P

P%

                                                                                                                (6a) 

 
Using (4) at jumps of xε  will be obtained: 

( ) ( )

0x

A A a a
q A A k a a

+ − + −

+ − + −

=

+ = + 
− = − 

                                                                                                       (7a) 
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      ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

exp exp exp exp

exp exp exp exp

x d

a ikd a ikd B iqd B iqd

k a ikd a ikd q B iqd B iqd
+ − + −

+ − + −

=

+ − = + −

− − = − −      

% %

% % %

                                    (7b) 

 
 
L  -solution 
 
System (7 a, b) takes the form: 

 

( )
( ) ( )

( ) ( )

'

exp exp
' exp exp

A a a

q A ik a a

B a ikd a ikd

q B ik a ikd a ikd

+ −

+ −

+ −

+ −

= + 


= − 
= + − 


− = − −  %

                                                                                                                (8) 

 
where, 

2
2

2
2

' 0

' 0

q q
c

q q
c

ν

ν

ω

ω
ε

  = − > 
  


 = − >  

  

P

P%

                                                                                       (8a) 
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Frоm (8) a system of two equations for  a+  , a−  solvability condition is obtained, which  
leads to the dispersion equation: 
 

 
 

( ) ( ) ( ) ( )

' '
0' 'exp exp

q ik q ik

q ik ikd q ik ikd

− +
=

− + − − −% %

                        

      
                                                  (9) 

 

 
Frоm (9) an expression for a discrete set of vectors k can be obtained  

 

 
 

( )
2' '

' '
q q k ctg kd

k q q

−
− =

+

%

%
                                                                                              (10) 

 
 
 
When all the coefficients in (8) are expressed through a+ , the following is obtained: 
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( )
( ) ( )

( ) ( ) ( )

2 'exp , 0'

'
exp exp , 0'

' 'exp exp exp ,'

qx L

ik q x x
ik q

ik qa a ikx ikx x d
ik q

ik qikd ikd q x d d x
ik q


 <
 +

 −= + − < <

+
 −   + − − − <    + 

%

  

  

  

                                                    (11) 

 

where,  La a+≡ . 
 
 
l -solution 
 
System (7 a, b) will take form: 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
exp exp exp

exp exp exp

A A a a
q A A k a a

a ikd a ikd B iqd

k a ikd a ikd qB iqd

+ − + −

+ − + −

+ − +

+ − +

+ = + 
− = − 
+ − = 
− − =   

%

% %

                                                                (12) 

 
 
When all the coefficients in (12) are expressed through  a+  and a new normalization constant  

( )expl a ikda +=  is introduced, the following is obtained: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

exp
exp exp

2

exp
exp exp , 0

2

exp exp , 0

2 exp ,

qx l

iqxk qq k ikd q k ikd
k q q

iqxk qq k ikd q k ikd x
k q qa a

k qik x d ik x d x d
k q

k iq x d d x
k q

 −
+ − + − + 

 − −
+ − − + + <   + = 

− − + − − < <       +

 − <   +

%
%

%
%

%
%

%
%

  

  

  

                    (13) 

 
r  -solution   
 
System (7 a, b) will be: 

                                                                                                                             

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
exp exp exp exp

exp exp exp exp

A a a
qA k a a

a ikd a ikd B iqd B iqd

k a ikd a ikd q B iqd B iqd

− + −

− + −

+ − + −

+ − + −

= + 
− = − 
+ − = + − 
− − = − −      

% %

% % %

                              (14) 
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When all the coefficients in (14) are expressed through a−  , the following is obtained: 

                                                                
                                                                                                                                       

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 exp , 0

exp exp , 0

exp
exp exp

2

exp
exp exp ,

2

qx r

k iqx x
k q
k q ikx ikx x d
k q

a a iq x dk qq k ikd q k ikd
k q q

iq x dk qq k ikd q k ikd d x
k q q

 − < +


− + − < < +=  −  −   + + − − + 


− −  −  + − + + − <  + 

%
% %

%

%
% %

%

  

  

          (15) 

 
 
where, ra a−≡ . 
 
After substitution of expressions (11), (13), (15) into the normalization condition (3 b), the 
constants La  , la  , ra    are obtained respectively. 

 
 

3. Equation for photon density one-particle matrix. 
 
In the problem being considered, the interaction between holes and the photons emitted by the holes 
during the transition from the heavy to light part of the energy spectrum are assumed to be 
weak. 
According to (V.G. Barjachtar and S.V. Peletminsky, 1963), stationary quantum kinetic 
equation for one-particle matrix for photon density will be: 

              ( ) ( ) { }' ' ' ,p

vv
N fi N Lνν νν

ω ω− =                                                      (16) 

 
   

where, ( ) { }' ,p N fL
νν

 
- collision operator. 
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Similarly, as presented in (F.T. Vasko, 1988), in case of great distances equation (16) is 
transformed, with respect to Wigner representation, in to the following form: 
 

                              
( ) ( )

'

,
jj

q p
R

N q x
L

x
⊥

⊥ =
∂

∂ r
Pv                                                                         (17) 

 
 
where, ( )p

RL  - relaxation mechanisms governing the process of photon attenuation beyond the  
d   -layer (holes are localized within the layer, with thickness 1d q−

⊥= ). 
Boundary condition for equation (17) is: 

 

                    ( ) ( ) { }
''

,0, |d p jjjj
q q qN q x L f⊥ ⊥ ⊥

=r r
P P

v                                                                         (17a)                                   

 
where, the expression for non-diagonal (with respect to index j ) photon generation rate   

( ) { }
'

,
p jj fq qL

⊥
r
P

   
 
presented using dipole approximation for matrix transition element has the 

following form:  
 
 
                                                                                                                                                   

       

( ) { } ( ) ( ) ( )
2' '

' ' ' '
' '

' '

2 ' ' 1 ,,

*
' ' ' ' ' '

p jj jj
q np q nps n p n pq q nn ppq

x xjj j j
q q p q p

e
L f M np n p f f

V

e q e q
M np n p np a n p np a n p

q q

π
δ ε ω ε

ω ε ⊥⊥

⊥ ⊥ ⊥

 = − + −∑ ∑  
 

    ×   ×         = ⋅ ⋅          

r rr rr rrP

P P
r r

P P

h r r

r r r r
r rr r r r r rv v

                   (18) 

 

where, npε r , npf r
  
- dispersion laws and distribution functions for light ( n l= ) and heavy ( 'n h= ) 

holes respectively. 
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Given description for photon emission is applicable where conditions 

                                  
1 1

ph px q l q− −
⊥ − ⊥? ? ,                                                                      (19) 

 
are satisfied ( ph pl − − photon relaxation length in case of on -hole scattering). 

The left hand inequality is satisfied where photons are registered in the far-field zone, 

while the right hand inequality eliminates from consideration the term specifying on-hole 

photon relaxation. 
 
 
4. Formula for far zone field energy. 
 
Let us consider the secondary quantized operator for Poynting's vector in symmetrized form: 

 

                      ˆ ˆ ˆ ˆ ˆ
4 4
c cS i E H H E
π π

    = × − ×        

r r r r r
                                                          (20) 

 
The first term in (20) in view of (1 a) is re-presentable in the following form:  
 
 
                                                                                                                                                 

( )
' * *

' ' ' '1 '

ˆ
4

r r r riS b rot a b rot a b a b aν
ν ν ν ν ν ν ν ν

νν ν

ω

π ω

+ +    = − + × −∑         

r r r rr h r r r r                                     (20a) 

 

 
With a precision of the second order nonzero contribution (with respect to photon interaction) 

to the average value  Ŝ
r

 will be only from 'b bν ν

+

 and 'v
b bν

+

; 
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from (20 a) it is obtained: 
 
                                                                                                                                                   

 

         ( )
' * *

' ' ' '1 '4
r r r riS b b rot a a b b rot a aν

ν ν ν νν ν ν ν
νν ν

ω

π ω

+ +    = − × − ×∑      

r r r rr h r r r r                             (21) 

 
 
Similarly, examine the second term in (20);  
 
thus, the following is obtained: 
 
                                                                                                                                                   
 

      ( )
' * *

' ' ' '2 '4
r r r riS b b a rot a b b a rot aν

ν ν ν νν ν ν ν
νν ν

ω

π ω

+ +    = − − × + ×∑      

r r r rr h r r r r                          (22) 

 

 

 
            From (20) the average value for Poynting's vector operator in symmetrized form is obtained, 

which, when (21), (22) under approximation of photon mode macro occupancy  
                (V.B. Berestetsky, E.M. Lifshyts and L.P. Pytayevsky, 1989)  is taken into account, will have 

the following form:  
 
                                                                                                                                                   

 

  ' * *
' ' ' '

'2
r r r rS b b rot a a b b rot a aν

ν ν ν νν ν ν ν
νν ν

ω

π ω

+ +    = × − ×∑      

r r r rr h r r r r                                  (23) 

 

 
Consider radiation in 0x <  area. Using (23) with respect to (6) (in which 0A+ =  are set) and (17 a), 
the following is obtained: 
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        ( ) ( ) { }
' '*

' ,2
p jj j j

x q qqj j
S e L f A A

π
−

− −
⊥⊥

= − ∑ ∑ rr
P

r r h
v

                                                                    (24) 

 
Using (13), (15) (L    -mode is excluded for it attenuates beyond the plate), and (18), compute (24) 
for Lattinger's  isotropic model (V.F. Hantmacher and I.B. Levinson, 1984). Then, the following 
is obtained:  
 
 
                                                                                                                                                                                                                        
 

( )

( ) ( ) ( )
( ) ( )

( ) ( )

5
2 2

2
1

22

22 221
22 2 2 2 2 22

2 22

1 1

3 sin
2

4
sin

exp exp
1 1 1

x
s

l r
q

q

q q

l h

eS e
V m

a k a
k q q k q k q kd

q k q k q

T T
m m

kT kT

η
θ

π ε

ω

ω η ω η
µ µ

− −

⊥

− −

− −

= −

   − + − − +∑    + +  

        − −             + − +    
    
        

r

r r

h

% %
%

h h

v

                                       (25) 

where, ',
^

p pθ = r r , 1 1 1

l hm m η
−

− =  
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Using (25), it is obtained:  
 
                                                                                                                                              
 
 
 
                                                                                                                                                   

 

( )

( ) ( ) ( )
( ) ( )

( ) ( )

5
2 2

2
1

22

22 221
22 2 2 2 2 22

2 22

1 1

3 sin
2

4
sin

exp exp
1 1 1

n
s

l r
q

q

q q

l h

e sS ds
V m

a k a
k q q k q k q kd

q k q k q

T T
m m

kT kT

η
θ

π ε

ω

ω η ω η
µ µ

− −

⊥

− −

− −

=∫

   − + − − +∑    + +  

        − −             + − +    
    
        

r

Ñ
h

% %
%

h h

v

                       (26) 

 

 

 

 
Thus, the theoretical study of physical vacuum radiation for non-geometrical optics is 
conducted. 
It is shown that the radiation is characterized by strongly marked peaks for resonance transmission 
as can be seen from (26). 
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 Appendix B – Extensions Chapter: The quantum theory of non-observables.  
 
This mathematical modeling can be considered primarily as a contribution to applications of 
quantum mechanics. 
Consider many-objects interaction systems on sampling of a certain physical system.  
In this article presented is a general expression of the interaction Hamiltonian for pair 
interaction, which can be used in Schrödinger’s equation and can be applied to any many- 
objects mathematical modeling. Consideration is given to a mathematical description of a  
model, which uses quantum mechanics formalism to determine the outcomes depicting an 
average of the non-observable measurements for i-th ‘pure’ state and the ‘superposition’ 
state.  
Also calculated is the influence of perturbations on quantum states, and a specified 
condition for noise induced fluctuations. 
A central problem of quantum mechanics is formulating a probabilistic model of the time 
evolution of quantum states measurements, allowing reliable predictions on their future 
deviation, when taking measurements of specified quantum mechanical value from its average 
value. 
Theoretical and statistical analysis of data questions martingale model, i.e. the use of a random 
walk and more general martingale techniques to model behavior of quantum states 
measurements. 
Measurements do not completely follow the random walk (a Winner process is the scaling 
limit of random walk in dimension 1) (R.N. Mantegna and H.E. Stanley, 2000), (D. Rickles, 
2007). Noted model can be considered as approximation limit of the approach

0 note , which is 
based on the Schrödinger equation (A. Khrennikov, 2006), (D. Dürr, S. Goldstein and N. 
Zanghi, 1992). 
Such relation between the Brownian motion and the Schrödinger equation is specified by the 
Feynman-Kac formula (P.E. Kloeden and E. Platen, 1992).  
In this article the presented quantum mechanics approach is also in references (W. Seagal and 
I.E.  Seagal, 1998), (E. Nelson, 1966), (N.C. Petroni and M. Pusterla, 2009) which is based on 
a hidden analogy between modeling for the states of a certain physical system on one side, and 
the many-objects problem in quantum mechanics on the other. 
The behavior of the i-th state in a certain physical system is affected by a certain physical 
system perturbations and other states. A certain physical system can be considered as a 
physical system (K. Ilinski, 2001), (P. Bak, S.F. Norrelykke and M. Shubik, 1999), which 
undergoes the same many- objects interactions, but with states in place of the bodies. 
Using this analogy as the way to account for state -to- state interactions, and influence of 
different certain physical system perturbations on state, which have affected state and a certain 
physical system over time, a mathematical wavefunction formalism of quantum mechanics 
may be introduced. 
The main goal is to introduce mathematical formalism for a wavefunction of a whole certain 
physical system superstateP  and a specific i-th state in a certain physical system iP . This approach 
allows to define time dependence for an average  of non-observable measurements for i-th 
state iq  and a certain physical system q . Individual behavior of iq  and q  related to the 
presented model used for forecasting various univariate GARCH-type time series properties in 
the conditional variance and an ARMA specification in the conditional mean (D. Wurtz, Y. 
Chalabi and Y. Luksan, 2002). 
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1. Perturbation theory. 
A certain physical system can be viewed as a sum of two parts: a replication part and a 
replicable part. The replication part should consist of a min- number of states, which is 
sufficient to represent a certain physical system.  

            If wavefunction of a certain physical system is superstateP with wavefunctions of the replication 
part is rP  and the replicable part is 'rP  (r -replication, r' -replicable), then, based on a 
superposition principle (A.S. Davidov,1976):  

 
            superstateP = rP + 'rP                                                                     (1.1)                                                        

 
will present as a linear approximation (such that accuracy of the approximation tends to 
improve as the number of the degenerate states gets smaller) 
 

            
superstateP =

1

n
i
r

i
P

=
∑   + '

1

m
i

r
ni

P
= +
∑                                         (1.2)                                 

  

wherein n represents a replication state and m represents all states in a given certain physical 
system i -state (state in a certain physical system). 

            According to (A.S. Davidov,1976) in the first term (1.2), the wavefunction i
rP  is multiplied by 

coefficients of expansion (any complex numbers, not depending on time), corresponding to the 
same state, and, analogically, in the second term (1.2) for P

i

r '   (scale invariant), therefore, 
expansion coefficients in (1.2) may be omitted: 
 

                        '
sup

1 1

n m
erstate i i

i r i r
i i n

P a P a P
= = +

= +∑ ∑  

 
Consider the first term, replication part, as the ‘superposition’ state and the second term as the 
replicable part, as perturbation to the ‘superposition’ state, which is how all states in a certain 
physical system, not included into the first replication part, are affected by it. This is a standard 
consideration of perturbation theory (L.V. Keldysh, 1964). 

0:note 1  Developed approach does not address the Bohmian wave modeling, up to the point of  
considering the guiding eq. in specified context [ref. note 3  to eq. (B 17)] with the main focus on  
nonlocality and contribution of the electromagnetic field  φ

r
 (ref. note to eq. (A 4.4)).  This 

consideration of the guiding eq. complements the description of wavefunction whose [1,1] value  
on the boundary is the same as the value on the opposite boundary (periodic boundary condition). 
 
2  Also (O.A.  Choustova, 2007) distinguish between different studies from the perspective of 
relevancy to the aforementioned problem and to decouple from the consideration of other 
applications of quantum mechanics formalism for noted research, e.g. (E. Haven, 2003); or 
implementation of the path integral methods (B.E. Baaquie, 2004) within the framework of the 
developed formalism. 
 



 

 91

 
- Suitable criteria for the state to be entered in the replication or the replicable part 
      correspondently.  
 
Consider an orthonormal basis (S. Lang,  1984). When adapted to a certain physical system it 
requires determination of states, which forms a states system coordinate, in which all other 
states can be presented. Analogous to a mathematical system coordinate, this ‘superposition’ 
state must consist of orthogonal securities (not correlated). It is a matrix of orthogonal states, 
which will create this system and size of matrix - n  from the equation (1.2) and will determine 
the ‘superposition’ state size. 
 
Such system as a mathematical normal system will be independent. It will not necessarily be 
stable or self consistent all the time, because a certain physical system dynamics a certain 
physical system can frequently go out of equilibrium (F. Allen, S.C. Myers and R. A. Brealey, 
2006). 

 
2. Proposed model. 
 
The general method of calculating a wavefunction of a normal (orthogonal) part –the 
‘superposition’ state was described in Appendix B1. This method is based on eliminating a 
not-normal (non-orthogonal) part from the ‘superposition’ state. 
 
Based on the foregoing, an approach to a certain physical system can be formulated as follows: 
 
Lemma (2.1):                                                                                                              
 
a) Consider a certain physical system as a set of states, characterized by wavefunction  Pi    
for i-th system state.            
                                            
b) Each wavefunction Pi  represents a state from an orthogonal system (‘superposition’ state)     
or non-orthogonal system, which can be represented through expansion by use of 
‘superposition’ state states.   
                                                                                                         
c) Wavefunction superstateP  of a certain physical system at t  comprise superposition of 
wavefunctions Pi  for each system states in t .         
                                                           
d) A dynamic of a system wavefunction  superstateP is arrived at by superposition of dynamic 
(sum of dynamics) Pi  wavefunctions for each of the system states.         
                                
e) A dynamic of wavefunction Pi  for i-th system state described by the Hamilton- 
Schrödinger equation.                                                                                        
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- Representation of non-orthogonal input through an orthogonal system of states. 
 
According to Appendix B1 it is possible to find a wavefunction of orthogonal part Pr , but a 
real system distorts at any given moment   t   out of equilibrium because of the contribution of 
a wavefunction of the non-orthogonal part Pr '  of the system. 
 
To estimate a total contribution of Pr '  into superstateP   in equation (1.1) uses form (1.2)  

            Pr ' = ∑
+=

m

ni

i

rP
1

'                                                                                          (2.2)                                                                                            

 
where P

i

r '   is a wavefunction of an i-th state from a non-orthogonal part. 
 
Can P

i

r '  express through wavefunctions of the i-th state from the ‘superposition’ state: 
 

           P
i

r ' = Pk
b
r

n

b

i

b∑
=1

                                                                                      (2.3)                                                                 

 
where k

i

b -expansion coefficient for wavefunction of the i-th state from the non-normal set Pr '  

on orthogonal basis of wavefunctions for states from normal set b
rP . 

 
 
 
- Representation of a system dynamic. 
 
Presented is a system as a combination of an equilibrium part, characterized by a normal 
system- the ‘superposition’ state and represented by the H 0 - orthogonal Hamiltonian: 
 

           
1

n i i
r rr ri

P PH F
∧ ∧

=

= ∑                                                                                (2.4)                                            

 
where −F operator of equilibrium system meaning orthogonal; 
and a non-equilibrium part characterized by a non-normal system -other states are not included 
into the ‘superposition’ state (dependable on the ‘superposition’ state) and represented by 
the H int - non-orthogonal Hamiltonian.  
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Dependable states play a role of getting the ‘superposition’ state out of equilibrium, so they 
play a role of an outside perturbation related to the ‘superposition’ state and can be presented 
as: 
 
 

           ' '
' '

1

m i i

r rr ri n
P PH F

∧ ∧

= +

= ∑                                                                              (2.5)                                                                      

 
where F r '  - operator of a non-equilibrium system meaning a non-orthogonal. 
 
Then total Hamiltonian is represented based on (1.2), (2.4) and (2.5) as 
 

           PH
∧

= H 0 + H int
                                                                               (2.6)                      

where  H H P
∧ 

≡ 
 

 ; 

the operators F
i
r
 and F

i

r '
  will depend on time t  and  P

i
r , P

i

r '  will not depend on time t  

(Heisenberg picture).  Future consideration will be based on the Schrödinger picture, 
where  F

i
r
 and F

i

r '
 do not depend on time t , but P

i
r , P

i

r '  are time dependent.  

 
 

3. Considering Hamiltonian. 
 
Applying the following properties for the orthogonal part P

i
r  and the non-orthogonal part P

i

r '  
correspondently: 

a) configuration-space of measurements for the orthogonal part Q+ = R
n

+ , R+ -real set 

domain 

    =q ( q1
 , …, qn

),  where qi
  is the measurement of  i-th state on interval i ∈ [ ]n,...1 ;     

    configuration-space of measurements for non-orthogonal part Q
'

+
= R

nm

+
−

,  

    =q  (qn 1+
, …, qm

), where qi
  is the measurement of i-th state on interval i ] ]mn,...,∈         

   where the whole set Q
m = Q ×  Q

'
( ≡ R

n × R
nm− ), R -real set; 

b) time t . 
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- Calculation of the respective contribution of the orthogonal and non-orthogonal parts. 
 

Will represent operators of number of 
∧

F
i

r
  of the i-th orthogonal state in the form (operator 

∧

F
i

r
 is the operation of multiplication bymi ): 

 

             
∧

F
i

r P
i
r mi= P

i
r   ,  i ∈ [ ]n,...1                                                             (3.1)                                                              

 

mi  - number of degenerate of i-th state (orthogonal) on i ∈ [ ]n,...1 ;  

 

and correspondently: 
∧

F
i

r '
 - operators of number of the i-th non-orthogonal state, 

m i
'  - number of degenerate of i-th state (non-orthogonal) on i ] ]mn,...,∈  . 

     
 
- Calculating a contribution of perturbations.                   
 
Into (2.6) H int  also include the system perturbations (mathematical perturbation as a weak 
disturbance to the system, etc), which contributes as an outside perturbation related to the 
‘superposition’ state and can be presented in the following form: 
 
 

            ( )qnqH i ,...,1
int                                                                                        (3.2)                                                                           

 
where i ∈ [ ]n,...1 , because do not have to take into account 'q  properties of a non- 
orthogonal system, which can be represented through orthogonal states of the system 
characterized by properties q . 
 
Consider configuration-space for sources of perturbation N s=α , N -normal set, then 

 
             )( ,...,1 ααα s=                                                                                 (3.3)                                                           

 
where α l - l-th perturbation is defined on interval [ ]1,...,l s∈  and corresponds to perturbations 
(also ref. Appendix B13). 
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Allowing that perturbation and changing the measurement of i-th state independently (locally), 
affects each state of the system, represented in the following form: 
 

           ( )αα
ll

i qnqH ,,...,1
int  = ∏

=≠

n

ji 1

( )qq ji
i
jH ,int   Al

i

i
α ( )qq ii ,                      (3.4)                                              

 
where  
 
first term - allows that changing of the measurement of an i-th state affects the behavior of  
a j-th state i ≠ j (non-local interaction); 
second term- includes contribution of perturbations α l  and needs not contain a non-local 
interaction of states (i.e. local i j= ). 
 
 
- Representation of a non-factorized states interaction term. 
 
Lemma (3.5): 
 
a). For a non-local interaction, if there is any change in measurement, one state will affect 
measurements  of all other agents of the system and represent a symmetric form: 
  

       ( )qq ji
i
jH ,int =  ( )qq ij

j
iH ,int                                                                       (3.5.1)                                             

 
which encompasses a symmetry property of H

i
j  following from the invisibility of the i, j-th 

states on the complete space Q
m . 

 
b). Perturbations, which do not contain interactions, can be represented in a bilinear form: 
 

         Al
i

i
α ( )qq ii, = Al

i

i
α ( )2q i                                                                          (3.5.2)                                                                                      

 
where  
 
Hamiltonian has symmetric and bilinear properties to satisfy both of these  
property forms, must be a symmetric bilinear form, which is equivalent to a quadratic 
form, then obtains (3.5.2). 
 
c). Form (3.5.2) must be real by definition and this property corresponds to a 
Hermitian form and a Hermitian form (symmetric sesquilinear form) is a sesquilinear 
form (S. Lang,  1984) on a complex vector space V is a map V×  VàC, a susquelinear 
form generalizes to the Euclidian form: 
 

         ( )qq ji
i
jH ,int = ( )qq ji

i
jHint                                                                      (3.5.3)                                                                    
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d). Because correspondence between quadratic forms on V and symmetric forms  
on V given by (over a ring where 2 invertible): 
 

         ( ) 




= −−+ )()()(2

1, qqqqqq jijiji QQQB                                (3.5.4)                           

  
and on V×  VàC can be presented by a wavefunction of an orthogonal part for the i-th state as 
(in a form according to Lemma (2.1, a)): 
 

             ( ) eiqq i
iiP =                                                                                        (3.6)                                                

defined on the configuration-space of measurements Q+ and satisfying conditions (a)-(d). 

Then satisfying the Lemma (3.5,) obtained an interaction term between states i≠ j in the 
following form: 

            ( )qq ji

i

jH ,int = im jm e iqiq ji






−            

                                                                                                                          (3.7)                     

               ( )qq ji
i
jH ,int = i

jm e qq ji                                                                                                        

 
influence of perturbations (mathematical perturbation as a weak disturbance to the system, etc) 
can present in the following form: 
 

            Al
i

i
α ( )qq ii, = l l

i im mα α  
2( )

i
li qe

α

                                                                        
                                                                                                                           (3.8) 

             Al
i

i
α ( )qq ii, = i

l
imα

2

i
l qe

α−                                                                                      
 
where  
 
there are different perturbations to the interaction Hamiltonian α∈ set (3.3) (independent or local). 
Substituting in (2.6) with (3.4), (3.7), (3.8) is computed as: 
 

                    H =    em q
i

i

i

n

i
∑

=1
   + 

                                ∑
+=

m

ni 1

    mi

' e q i
i '    + 

                                ∏
=

s

l 1
∏

=

n

i 1
∏

=

=≠

nj

ji 1
em qq ji

i

j
  ml

i

i
α

2

i
l qe

α−                           (3.9)                                                

where  H i 







≡

∧

PH i
 defined on set Q

m . 
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Substituting in (2.6) with (3.9) can present a system in terms of orthogonal states 
(‘superposition’ state): 
 

                    H =   em q
i

i

i

n

i
   

1
∑

=

 + 

                               ∑
+=

m

ni 1
    ∑

=

n

b 1
mi

' ( ) ( )'

bi

r r
R

y y ydP P
+

∗
∫ b

iqe   + 

                              ∏
=

s

l 1
∏

=

n

i 1
∏

=

=≠

nj

ji 1
em qq ji

i

j
  ml

i

i
α

2

i
l qe

α−                           (3.10)                                                                                                    

 
 

the coefficients of the expansion in (2.3) of the wavefunction P
i

r '  by the normal orthogonal system of 

functions P
i
r   determined by the formula (A.S. Davidov,1976) 

: 
 
 

           k
i

b = ( ) ( )'

bi

r r
R

y y ydP P
+

∗
∫                                                               (3.11)                    

 
 
Can represent H int

 (third term) in (3.10) in the form: 
 

         H int
 = ∏

−

=

1

1

n

λ
∏

+=

n

j 1λ

2

m j

λ e qq j

n

j

n

λ
λλ

∑∑
+=

−

= 1

1

1
2   ∏

=

s

l 1
∏

=

n

g 1
ml

g

g
α   e qg

ln

g

s

l

2

11

α

∑∑
==

−    (3.12)             

 
 
and after substitution (3.12) in (3.10) obtains: 
 

              H =  em q
i

i

i

n

i
   

1
∑

=

 + 

                       ∑
+=

m

ni 1

    ∑
=

n

b 1
mi

' ( ) ( )'

bi

r r
R

y y ydP P
+

∗
∫ b

iqe   + 

                      ∏
−

=

1

1

n

λ
∏

+=

n

j 1λ

2

m j

λ e qq j

n

j

n

λ
λλ

∑∑
+=

−

= 1

1

1
2   ∏

=

s

l 1
∏

=

n

g 1
ml

g

g
α  e qg

ln

g

s

l

2

11

α

∑∑
==

−     (3.13)                            
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4. Hamilton-Schrödinger equation. 
 
         The dynamic of the i-th state wavefunction ( )tqiiP ,   is described by Hamiltonian 
equations in the form of the Schrödinger equation (T. Tao, 2014; A.R. Bishop,  M.G. Forest, 
D.W. McLaughlin and E.A. Overman II, 1990): 

 

            
( )1,..., 1, 1,..., ,, ;i li i i ntq q q q qP

ih
t

α− +∂

∂
= H i ,                                               (4.1)                                                                                            

 
with initial condition ( ),0i iqP = ( )i iqP ,       

where H  represented by (3.13) and defined on set Q
m . 

 
If know ( ),0i iqP  then using (4.1) can find the i-th state wavefunction dynamic (also ref. to 

Appendix B8): 
 

             ( )1,..., 1, 1,..., ,, ;i li i i ntq q q q qP α− +
= e h

itHi−

( )0,qiiP     

                                                                                                                          (4.2)  

            ( )1,..., 1, 1,..., ,, ;i li i i ntq q q q qP α− +
= 

iitH
he

−

iiqe                      

                                                          
 
 
 
According to Lemma (2.1, d) the dynamic of a wavefunction for a certain physical system 

superstateP ( )1,..., , ; ln tq q α can be presented as a superposition (1.2) of the dynamic of 

wavefunctions for each state of the system ( )1,..., 1, 1,..., ,, ;i li i i ntq q q q qP α− +
. 

 
Applying solutions (4.2) of Hamilton-Schrödinger equation obtains:  
 

superstateP ( )1,..., , ; ln tq q α = ∑
=

n

i 1
  ( )1,..., 1, 1,..., ,, ;i li i i ntq q q q qP α− +

=  ∑
=

n

i 1

  e h
itHi−

( )0,qiiP  (4.3)                                                                                                     
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- Consider the application of the Hamiltonian for Schrödinger equation in the form of degree 
n=2. 

 
Applying equation (3.13) to (4.1) obtains: 
 
 

( )1,..., 1, 1,..., ,, ;i li i i ntq q q q qP
ih

t

α− +∂

∂
=  ( )iqH 0  + ( )lniiil

i qqqqqH αα ,,..,,,..,; 111
int

+−    (4.4)                                                                          

 
 
For first state (4.4) with third term in equation (3.13) in the form of degree n=2 (simple case 
interaction only with second state) 1:note : 
 
 

            
( )1 21, ; , lt qqPih

t

α∂

∂
=   ( )10 qH + ( )int

1 21 ; ,l lq qHα α                             (4.5)                                                                                                                        

 
Let l =1, then from (4.4) obtains: 
 
 

            
( )1 2 11, ; ,t qqPih

t

α∂

∂
= em qi 1

1  + ( )
121

1
int

1 ,; αα qqH                              (4.6)                                             

                                                                        
where 
 

( )
121

1
int

1 ,; αα qqH = 
21

2m e qq 21
2 m1

1

1
α m1

2

2
α e qq 










+−

2

2

12

1

1 αα

;                                        
 

1 1 1 1 1 11 1 1 2
2 2 1 1 1 2 2 2, ,m m m m m m m m mα α α α α α= = = . 

 
 
From equations (4.2) and (4.6), obtain a Hamilton-Schrödinger dynamic for a wavefunction of 
the first state in the form: 
 

            ( )1 2 11, ; ,t qqP α = e h
itH1−

( )0,11 qP                                                      (4.7)                                                  

 
 
where   

1H = em qi 1
1  + 

21

2m e qq 21
2 m1

1

1
α m1

2

2
α e qq 










+−

2

2

12

1

1 αα
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Analogically for the second state (4.4) with the third term in the equation (3.13) in the form of 
the degree n=2 (simple case interaction only with the first state): 
 
 

             
( )2 12, ; , lt qqPih

t

α∂

∂
=   ( )20 qH + ( )int

2 12 ; ,l lq qHα α                           (4.8)                                                                                                                        

 
 
 
Let l =1, then from (4.4) obtains: 
 

             
( )2 1 12, ; ,t qqPih

t

α∂

∂
= em qi 2

2  + ( )
112

1
int

2 ,; αα qqH                            (4.9)                                   

                                                                        
where 
 

( )112
1

int

2 ,; αα qqH = 
21

2m e qq 21
2 m1

1

1
α m1

2

2
α e qq 










+−

2

2

12

1

1 αα

                                         
 
 
From equations (4.2) and (4.9), obtain a Hamilton-Schrödinger dynamic for a wavefunction of 
the second state in the form: 
 

           ( )2 1 12, ; ,t qqP α = e h
itH2−

( )0,22 qP                                                   (4.10)                                                                           

 
where   
 

2H = em qi 2
2  + 

21

2m e qq 21
2 m1

1

1
α m1

2

2
α e qq 










+−

2

2

12

1

1 αα

                     
 
 
Follow (4.3) applying (4.7) and (4.10): 
 
 

          superstateP ( )11 2, , ;tq q α = ( )1 2 11, ; ,t qqP α + ( )2 1 12, ; ,t qqP α                 (4.11)                                                                 
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obtains: 
 

superstateP ( )11 2, , ;tq q α = e h
Hit 1 int

1
α−

 [ ( )0,11 qP
11

iq
h

itme
e

−

+ ( )0,22 qP
22

iq
h

itm e
e

−

]    (4.12)                                                                                                                       

 
and ( )112

1
int

2
,; αα qqH ≡ ( )

121
1

int

1
,; αα qqH  can represent in the form: 

 
 

( )
121

1
int

1 ,; αα qqH = 
21

2m e qqqq )
2

1

1

1

21(2
αα

− m1
1

1
α m1

2

2
α

2

2

1

1

1

e qq 









−−

αα

                         
 
 

qq 2

1

1

1 αα

−  is spread; 

1 1
1 2 1 2q q q qα α−   is the most important factor of measurements in different frames of reference 

of specified quantum mechanical value and is determined by the contribution of the 
perturbations. 
Individual outcomes of the measurements for the i-th state iq  and a certain physical system q  
are purely statistical (O.A.  Choustova, 2007). 

            In the Schrödinger picture use quantum-like formalism to determine the outcomes (time 
dependence) for an average  of non-observable iq  and q  , (A.S. Davidov,1976) 
: 
 

                                                                                                                          (4.13)          

l
i

q
α

= ∫ ( )1,..., 1, 1,..., ,, ; li i i n
i

tq q q q qP α− +

∗
iq ( )1,..., 1, 1,..., ,, ;i li i i ntq q q q qP α− + ( )1 1 1,..., , ,..., ni i

d q q q q
− +

        

 
where 0 , 0i i lq q α→ = ; , 0l

i i lq qα α→ ≠ ; [ ]1,...,l s∈ ; 
 

l
q

α
= ∫

nQ
( )sup 1,..., , ;erstate ln tq qP α

∗ q ( )sup
1,..., , ;erstate

ln tq qP α ( )qqd
n,...,1

       (4.14)                                                                                 

 
(also ref. to Appendix B10). 
    

:note  
In general, in case of the ‘superposition’ state: 
 

( ) ∑
=

=
n

in
tm

1

1 )(tmi  ; ( )
n

tq 1
= ∑

=

n

i 1
)(tqi      

 



 

 102

 
5. Predicting future values in time series. 
 
1. Consider stochastic process with a state space q , i.e. stochastic process F  is a collection 
 
                    { }:tF t T∈  
 
where each tF  is q  - valued random variable (( 

1 2
, ,...

kt t tF F F ) is random variable taking values 

in kq ). 
 
Let F  be an q -valued stochastic process, such that 
 

           ( )F ≡  ( )2, tF µ σ                                                                                  (5.1) 
 
 

1.1)  This process includes random shocks, which is represented by perturbations, thus 
         these shocks can propagate to future values of the time series.                     

 
2. Follow finite mixture ARMA heteroskedastic model approach for nonlenear modeling 
 

2.1)  without assumptions: 
                     a) independent identically-distributed random variables (i.i.d.); normally  
                     distributed data; 
                     b) mean ( )tE q is identical for all values of  t . 
            2.2 ) incorporate conditional heteroskedasticity, which can be attributed  
                    (G.C. Lamoureux and W.D. Lastrapes,1990) to a time dependence in the rate of  
                    information arrival to the system. 

ARMA ( ),p l  with tµ  and 2
tσ  incorporated correspondently in (B 3), (B 8)  

attn. Appendix B10:   
 

             
1 1

t

p l

t t i t i i t i
i i

q F q Fµ ϕ θ− −
= =

+= + +∑ ∑                                               (5.2) 

 
 
where 1..., pϕ ϕ  ( )for AR ; 1,... lθ θ ( )for MA  are parameters of the model; tF  ( )for CH denote the 

error terms 2
tσ -defined, that is not an ARCH approximation. 

 
- The derivation of equation for a model with input ( )2, tF µ σ . 
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1. Referring to (5.2), then simulating a random vector approach, which reduces ( )2, tF µ σ  to  

a white random vector tε : 
  

          tF ε µ=ℵ +                                                                                        (5.2.1) 
 
where  
                     

                    
1
2Eℵ = Λ , 

 
E , Λ is related to a diagonalization of a covariance matrix ( )cov F (for the calculation of E , Λ  
refer to Appendix B11); 
 

( )2,t tfε µ σ:  i.e.  incorporate heteroskedasticity,  ref. 2.2; f    not a normal distribution.    
 
Multiplying (5.2) by t mq −  and taking expected value yields: 
 

E [ ]t t mq q − = tµ [ ]t mE q − + [ ]t t mE F q − + [ ]
1

p

i t i t m
i

E q qϕ − −
=
∑ + [ ]

1

q

i t i t m
i

E F qθ − −
=
∑          (5.2.2)            

 
 
Calculate separately each term in (5.2.2): 
 
                  [ ]t mE q − = t mµ δ ; 
 
                  [ ]t t mE F q − = ( )t t mE qε µ −ℵ +   = 2

t mσ δℵ + t mµ µδ ; 
 

                  [ ]
1

p

i t i t m
i

E q qϕ − −
=
∑ =

1

p

i m i
i

ϕ γ −
=
∑ , 

 
where autocorrelation function of q  
 
                  [ ]m t t mE q qγ −= ; 
 
 

                  [ ]
1

l

i t i t m
i

E F qθ − −
=
∑ = ( )

1

l

i t i t m
i

E qθ ε µ− −
=

ℵ +  ∑ = 2

1

l

t m i
i

t m µ µδ θσ θ
=

+ℵ ∑ ; 
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Then can present (5.2.2)   in the form: 
 

             mγ =  2 t mµ µδ + 2
t mσ δℵ + 

1

p

i m i
i

ϕ γ −
=
∑ + 2

1

l

t m i
i

t m µ µδ θσ θ
=

+ℵ ∑       (5.3) 

 
 
For an AR model, modified Yule-Walker equations (R. Prado and M. West, 2010) 
provide a fit. From (5.3) obtains: 
 

(5.4)             mγ =   
1

p

i m i
i

ϕ γ −
=
∑ + 2

t mσ δℵ + t mµ µδ  

 
for  0m ≥ . 
 
For 0m < : 
 
                           

            2

1

p

m i m t mm i
i

tγ ϕ γ δ µ µδσ− −
=

= +ℵ +∑                                              (5.4.1) 

 
For 0 :m >  
 

                        

0 1 2
1 1

2 1 0 1 2

γ γ γ
γ ϕ

γ γ γ γ ϕ

− −

−

 
 

    
    =    
       

 
  

K

K
M MOM

 

 
 
solving all ϕ . 
 
For 0m = : 
 

         2
0

1

p

k k t
k

tγ ϕ γ µ µσ−
=

= +ℵ +∑                                                         (5.4.2) 

 
 
solving µ . 
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2. Follow the two-stage LSM (N. Sandgren and P. Stoica,2006)  calculate tF  in the form: 

 
          

               ( )t tF B q= Φ                                                                                      (5.5) 
 
 
where 
 

            ( )
1

1
p

i
i

i
B Bϕ

=

Φ = + ∑                                                                               (5.5.1) 

 
B -backshift operator; 
                        

              t tF ε= ℵ                                                                                              (5.5.2) 
 
 
solving tε ; 
 
than obtains: 
 
 

                [ ]
1

1...
t

t t l

t l

F
q F

F
θ θ

−

−

 
 − ≈  
  

M                                                                       (5.6) 

 
 
 
solving all θ . 
 
 
The model order p  selected via the Akaike’s information criterion;  2p l= . 
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6. Summary. 
 
In this Appendix B - Extensions Chapter the model for predicting future values in time series 
is presented.  
Using parallelism (E. Nelson, 1966) between stochastic approach and quantum mechanics a 
Schrödinger equation can be applied to incorporate complicated behavior of a certain physical 
system, which is considered as many- objects interaction system. 
Within the model framework obtained is the theoretical expression in lover limit 
approximation ( 1 1, 1lα = = ) and  int

1
iHα   in the form of degree n=2  

for an average  of non-observable q  and a standard deviation σ  of  q , which specifies 
how the actual value (final measurement) is dispersed from the average value (mean final 
measurement) attn. Appendix B10 and incorporates heteroskedasticity features. 
 
1. Introduced is the corresponding stochastic process to model stochastic behavior of the  
system. 
As a result, the formulation of the stochastic process ( )2, tF µ σ  underlying the model  
incorporates the behavior of a certain physical systems through the Hamiltonian of the  
Schrödinger equation. 
This process represents an input of the model and is not restricted by the i.i.d. assumption and   
is related to the correlated, non-normally distributed data. 
 
2. Obtained an expression for conditional mean of measurement of i -th state, which depends 
on time, meaning it allows for non-stationarity. 
 
3. Calculated an expression for conditional variance of measurement of  i -th state, which 
depends on time, meaning it incorporates heteroskedasticity. 
 
4. Shocks (perturbations) are assumed to be uncorrelated, but not necessarily i.i.d. conditioned. 
Calculated influence of shocks on states behavior. 
 
5. Specified condition for measurements in different frames of reference of a specified  
quantum mechanical value. 
 
6. Noted applicable time interval for the model. 
 
7. Obtained expression for standard deviation of measurement can be considered as a ‘signal’ 
for noting fleeting moves in states  behavior. 
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7. Expression for a normalized wavefunction. 
  
Normalization condition for the wavefunction of the first state considering that the 
integral diverges (A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, 1986) 
 
 
 

         
1 1

1

0

2 sintm q
h dqe

∞

∫ →∞                                                                          (B 0.1) 

 
 i.e. ( )1 2 11, ; ,t qqP α is not square-integrable can present in the form:                                        

 

       ( )
0 1 1
1

0 0 1
1 1 1 0

1

2 sin2

: 2

tm qq n
h

q q q n
q

t dqe
π

π

+

∈ +
∝ ∫ϒ = 122 i tmn

h
π  

 
 

0J  , n N∈  (B 0.2) 

 
 
only on the interval 0 0

1 1 1, 2q q q n π ∈ +  , the ϒ - probability is defined on the interval 1q . 

The integral is defined on the space ( )2L Q  where Q  is the configuration measurement space 
nQ R +⊂ , let denote map  

 
 
                 0 0

2 1 1,L q q k q + ∆   →  0 0
2 1 1, 2L q q n π +  , , nn N k R +∈ ∈  

then  
 

       ( )
0 1 1
1

0 0 1
1 1 1 0

1

2 sin

:

tm qq k q
h

q q q k q
q

t dqe
+ ∆

∈ + ∆
∝ ∫ϒ = k q∆ 12i tm

h
 
 
 

0J , 1n =   (B 0.2.1) 

                   
 
Transition from the equation (B 0.1) to (B 0.2) means that on the interval 1q  a continuous 
spectrum can be approximated as discrete, so the wavefunction can be normalized, then can 
represent a normalized wavefunction of the first state in the form: 
 

        ( )1 2 11, ; ,t qq αΨ = 1
N

 ( )1 2 11, ; ,t qqP α                                                   (B 0.3) 

 
where 2N - the norm of the wavefunction ( )1 2 11, ; ,t qqP α . 
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Equation (B 0.2) satisfies a condition on the 0t ∈ t -interval; 

from the outcome of the measurement for the  first state  ( )1 tq  at 0t  defined as 1 1: tq q→  
can obtain:  
 
                  0

1q = ( )1 0tq  ⇒   0t = ( )1 0
1 1q q−  

 
where 1

1q −  - inverse function of ( )1 tq  on the interval 1q ( 0
1q ∈ 1q ), 0t  ↔ 0

1q and bijective on the 
domain t  and the codomain 1q   if considered for one exchange; 
 
then can represent (B 0.2) in the form: 
 

       ( )0 0 0
1 1 1: 2q q q

t
π∈ +

ϒ ∝ 0 12
2

i t m
h

π  
 
 

0J =
( )1 0

1 1 12
2

i q q m
h

π
− 

 
 
 

0J = 2N        (B 0.4.1) 

 
 
Consider (B 0.2) in the small vicinity of ( )0

1 1q n = , then 
 
                     0

1 1 2q q k q π− < ∆ =  
 
and from (B 0.4.1) obtains: 
 
 

      ( )0 0 0
1 1 1:q q q k q

t
∈ + ∆

∝ϒ k q∆ 0 12i t m
h

 
 
 

0J = k q∆
( )1 0

1 1 12q q m
h

− 
 
 
 

0I            (B 0.4.2) 

 
 
 
 
Considering (B 0.4.2), a normalized wavefunction (has a unit norm) of the first state is 
computed as: 
 

          ( )1 2 11, ; ,t qq αΨ = 
( )1 0

1 1 12

1

   
q q m

k q
h

− 
 ∆
 
 

0I

( )1 2 11, ; ,t qqP α                (B 0.5) 

 
 
and is defined on the interval 1q . 
 
 



 

 109

 
8. Constant h in eq. (4.1). 
 

             Ref. (A.S. Davidov,1976)  if associate fields ( )i tφ  in classical field theory with a 

measurement of the state ( )iq t , then transition from the classical to the quantum field theory is 

provided by interpreting conjugate variables, i.e.  ( )iq t  and its conjugate ( )iq t
•

 as subjected to 
the canonical commutation relations 
 
 

           ( ) ( ) ( ),i jq t q t ih i jδ
•  = −  

                                                                   (B 0.6) 

 
 
where 
 
,i j  indexes of states; 

so h  is const in commutator for the measurement and measurement time derivative of the 
state. 
 
 
9. Expression for an average of non-observable measurement. 
  
In explicit form, the average of non-observable measurement of the first state 

1
q , in fixed state 

( )1 2 11, ; ,t qqP α  is computed as: 

  
                                   

          
1

q = 
( )1 0

1 1 12

1

 
q q m

k q
h

− 
 ∆
 
 

0I

1 1

1 1

0

2 sintm q
h dqe q

∞

∫                                (B 1) 

       
 
where          1q ] [0,∈ ∞   ,    
 

1tm  - tuning parameter for the system (refer to the linear approximation in (1.1)). 
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Considering that the integral diverges, i.e. can only be computed on the interval, [ ]1 0,q nπ∈  
obtains: 
 

          
1

1 0:q n
q

π∈
   = 

( )1 0
1 1 12

1

 
q q m

k q
h

− 
 ∆
 
 

0I
1

1 1

1

2 sin0

0

tm qn
h q dqe

π+

∫             (B 2) 

 
let denote map  
 
                    [ ]2 0,L l q∆  →  [ ]2 0,L nπ , , nn N l R +∈ ∈  
 
Consider (B 2) in the small vicinity of ( )1 1q n = , then              
 
                     1q l q π< ∆ =  
 
and from (B 2) obtains 
 
 

1
1 0:q l q

q
∈ ∆

   = 
( )1 0

1 1 12

1

 
q q m

k q
h

− 
 ∆
 
 

0I
1

1 1

1

2 sin0

0

sin

tm ql q
h q dqe

+ ∆

∫    , 1n =    (B 2 a)                 

 
 
 
Can represent (B 2 a) in the form: 
 
 

1
1 0:q l q

q
∈ ∆

   = 
( ) 1

1 1

11 0
1 1 1

2 cos
2

2

2

1 cos

 

l q tm q
h

q q m
k q

h

q dqe
π

π
−

+ ∆ −

 
 ∆
 
 

− ∫
0I

          (B 2.1)          
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and from (B.2.1) obtains: 
 
 

1
1 0:q l q

q
∈ ∆

= 
( )

1
1 0

1 1 1

2

2

1

 

i tmil q
hq q m

k q
h

−

 − ∆     
 ∆
 
 

1

0

J
I

                  (B 2.1 a)        

                                                                                     
 
Can present in the form: 
 

            
1

1 0:q l q
q

∈ ∆
=

( )1 0
1 1 12

1

 
q q m

k q
h

− 
 ∆
 
 

0I

12tml q
h

 ∆  
 

1I                              (B 3) 

 
 
 
10. Expression for standard deviation of measurement. 
 
Uncertainty of measurement iq  in the fixed state ( )1,..., 1, 1,..., ,, ;i i li i nP q t q q q q α− +  is expressed as: 
 

                    

( )

( ) ( )

( ) ( )

22 2

2
1,..., 1, 1,..., , 1,..., 1, 1,..., ,

2

1,..., 1, 1,..., , 1,..., 1, 1,..., ,

, ; , ;,

, ; , ;,

i i i i

i i il li i i n i i i n

i i il li i i n i i i n

P q q q

q t tq q q q q q q q q q

q t tq q q q q q q q q q

P P

P P

σ

α α

α α

− + − +

− + − +

= − =

 
 
 

 − 
 

                       (B 4) 

 
 
For the first state 

1
q  in the fixed state ( )1 2 11, ; ,t qqP α obtains (in Schrödinger picture): 

 
( )

( ) ( )

( ) ( )

1

22 2
1 1 1

2
1 1 12 1 2 11 1

2

1 1 12 1 2 11 1

, ; , , ; ,,

, ; , , ; ,,

P q q q

q t q t qq q

q t q t qq q

P P

P P

σ

α α

α α

= − =

 
 
 

 − 
 

                                                            (B 4 a)      
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Let’s compute a standard deviation for the first state 

1
q  in the fixed state ( )1 2 11, ; ,t qqP α , 

calculate each term in (B 4 a) separately:     
 

            
( )

1 1
2

1 11 01 1 1 1

2

2

2

sin
1

0 

tm q
h

q q m
k q

h

e q dqq −

∞

 
 ∆
 
 

= ∫

0I
                              (B 5) 

 
where          1q ] [0,∈ ∞   ;    
 
on the interval, [ ]1 0,q nπ∈  obtains: 
 
 
 

           
( )1

1 12

1 11 01 1 1 1

2

0:

0 2 sin

2 0

1

 
n

n tm q
h

q q q m
k q

h

q dqq e
π

π

−
∈

+

 
 ∆
 
 

= ∫
0I

                  (B 6)   

 
 
let denote map  
 
   
                    [ ]2 0,L l q∆  →  [ ]2 0,L nπ , , nn N l R +∈ ∈  
 
Consider (B 6) in the small vicinity of ( )1 1q n = , then              
 
                     1q l q π< ∆ =  
 
and from (B 6) obtains: 
 

 
2

1
1 0:q l q

q
∈ ∆

   = 
( )

1 1

2
1 11 0

1 1 1

0 2 sin

2 0

1

 

sin
l q tm q

h
q q m

k q
h

q dqe
−

+ ∆

 
 ∆
 
 

∫
0I

   , 1n =    (B 6 a)                 
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Can represent (B 6 a) in the form: 
 

  
2

1
1 0:q l q

q
∈ ∆

   = 
( ) 1

1 1

2
11 0

1 1 1

2

2

2 cos

2

1

 

cos

l q tm q
h

q q m
k q

h

q dqe
π

π
−

+ ∆ −

 
 ∆
 
 

∫
0I

           (B 6.1) 

 
and from (B 6.1) obtains: 
 
 

2

1
1 0:q l q

q
∈ ∆

=
( )1 0

1 1 12

1

 
q q m

k q
h

− 
 ∆
 
 

0I

1

1

23
2

i tmhl q
itm h

  ∆    
   

1JΓ                   (B 6.1 a)         

 
 
 
Can present in the form: 
 
 

2

1
1 0:q l q

q
∈ ∆

=
( )1 0

1 1 12

1

 
q q m

k q
h

− 
 ∆
 
 

0I

1

1

23
2

tmhl q
tm h

  ∆    
   

1IΓ                          (B 7)              

 
 
Substituting (B 3), (B 7) in (B 4) obtains: 
 
  

( )11P
qσ =

( )1 0
1 1 12

1

 
q q m

k q
h

− 
 ∆
 
 

0I

2
1 1

1

223
2

tm tmhl q l q
tm h h

     ∆ − ∆            
Γ 1 1I I   (B 8)       

 
 
where 
 
there is an existing dependence on 0

iq ( )( )0
0i iq q t= ; 

randomness is included through parameter q∆ (for the i-th state  0
i i iq q q∆ = − ). 
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11. Expression for E , Λ . 
 
As F  is a stochastic process with a state space q (ref. Appendix B5, paragraph 1), the random 
vector F  takes values in the column vector q  
 
                

                      q =
1

k

q

q

 
 
 
  

M  

 
then ( )cov F   represents a covariant matrix of the vector q  in the form: 
 

            qqK = ( )cov q = [ ]( ) [ ]( )T
E E E − −

 
q q q q = ( )T TE µµ−qq            (B 9) 

 
 
is Hermitian symmetric and positive semidefinite, can diagonalize the matrix as: 
 

                   qqK = ( )cov q = TE EΛ                                                        (B 9 a)            
 
where 
 
E - orthogonal matrix of eigenvectors ( k -column is eigenvector kq  of qqK , ( )1,...., qNk = ; 
 

 
1

N

i q
i

N
λ

=

Μ =∑ , iΜ - geometric multiplicity of kλ ),  

 
Λ - diagonal matrix of eigenvalues (i.e. kk kλΛ = ); 
 
can represent eigenvalue equation in the form: 
 

               qqK q = λ q                                                                                       (B 10) 
 
this yields a characteristic equation: 
 

               ( )det 0qqK Iλ− =                                                                             (B 11) 
 
solving all of eigenvalues kλ . 
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For each eigenvalue kλ  has a specific eigenvalue equation: 
 

             ( ) 0qq kK Iλ− =q                                                                                (B 11 a) 
 
solving for eigenvectors kq  associated with the eigenvalue kλ . 
Algorithm for solving (B 11), (B 11 a) is iterative.  
 
 
12. Specified applicable time interval for the model. 

As a result of consideration (refer to Appendix B10): 

                         ( )1q q t∆ = ∆ ⇒ ( )1
1t q q−∆ = ∆  

where ( )1q t  is defined by (5.2); 
time interval can be represented in the form: 
 

                ( )1lq t π∆ =                                                                                      (B 12) 
 
 
13. Influence of perturbations. 
 
Allow, that local interaction of states affected by perturbations can consider dependence 
measurement of the i -th state on perturbations lα , i.e. l

iqα ( )( )liq α≡  in equation (3.8). 

Consider shock wave lα  in the form l A ( )0J t  (S. Solomon, 2002) disturbance - disturbance 
interactions as a response to lα . 

Then represent l
iqα  as convolution of measurement of the i -th state iq  , not affected by 

perturbations lα  and a shock wave, which approached the system: 
 

                  ( ) ( ) ( )0

0

l
t

l
t

ii
t

A q J t dqα τ τ τ= −∫                                                     (B 13) 

 
 
 
where  
 

( )iq t  defined by (5.2);  

0t t− - time delay between time, when shock wave reaches system 0t  and system responses; 
l A    - shock wave amplitude; 
t τ− - define information in a form of durations between system events.  
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In particular durations supplemented by information on disturbance activity and a no-
information case, represented by Poisson arrivals of events (M. Coppejans and I. Domowitz, 
1999). 
To model the durations of disturbance within the time interval, use an autoregressive conditional 
duration (ACD) model to describe the evolution of time durations for (high disturbance) states  note : 
 
                   t t txt θτ τ =− =                                                                              
 
 
where  
 

tx  i.i.d. random variables, 0tx > ; ( ) 1tE x = ; 
 

                    0
1 1

q p

t i t i i t i
i i

θ α α τ β θ− −
= =

= + +∑ ∑  

          
 
and    0 0, 0, 0, 0i i iα α β> ≥ ≥ > ; 
 
for approximate time interval refer to Appendix B12.            
 
 
 
 
 
 
 
 
 
 
 
 
 

:note  
the ACD model and GARCH model refer to the clustering of data in systems.  
The autoregressive form of  ACD ( ),q p  allows to capture the duration clustering observed in 
high frequency data, i.e., small (large) durations followed by other small (large) durations in a 
way similar to the GARCH model accounting for deviation, when taking measurements of 
specified quantum mechanical value from its average value clustering (M. Pacurar, 2006).  
This is the difference between the use of ACD-type and CH (GARCH-type) in (B 13) and (5.2) 
correspondingly. 
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Consider Taylor series expansion, in the small interval t∆ : 
 

                  ( )01 t tq + ∆
0

| t t t∆ = − = ( )1 0q t + ( )1 0q t
t

t∂
∂

V                                        (B 14) 

 
 
From (B 12) obtains: 
 

                
( )

0
1

0
1 0

lqt t
q t

t

π −
= +

∂
∂

                                                                              (B 14 a) 

 
 
and substituting (B 14 a) in (B 13) can present in the form: 
 
 

                   ( )
( )

( )1 1

0
1

0
1 0

0

1 1 0

lqt
q t

t

t
q A q J t dα

π

τ τ τ

−
+

∂
∂

= −∫                                           (B 15) 

 
 
Applying mean-value theorem for (B 15) obtains: 
 
 

                                                                                                                        (B 16)  
       

( )
1

0
1 1

1 1
1 0

0
lqA

q t
t

tq qα πθ

  
  − =  

∂    ∂  

+ ×

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 0,0 0 1, 1

0 0 0 0 0
1 1 1 1 1

1 0,0 0 1, 1
1 0 1 0 1 0 1 0 1 0

t J t S t J t S t

lq lq lq lq lqt J t S t J t S t
q t q t q t q t q t

t t t t t

π π π π π

− −

− −

  ∆ ∆ ∆ − ∆ ∆ − 
          
           − − − − −
 ∆ − ∆ − ∆ − − ∆ − ∆ −         

∂ ∂ ∂ ∂ ∂                    ∂ ∂ ∂ ∂ ∂          




  


 
 
  
 
 
 
where  
 
0 1θ< < . 
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:note  

1  superposition principle, i.e. system 'r r∪  can exist in the states described by Pr  

and Pr ' , then it can exist in the state described by superstateP ; 

and this is equally related to parts r ⊂ 'r r∪ described by i
rP  and r' ⊂  'r r∪ described by '

i

rP  

for Pr  ,  Pr '  correspondingly;  

so superstateP , Pr , Pr '  are wavefunctions of states which can attain to the system 'r r∪  and r, r' 
parts; 
according to the superposition principle, sum of ‘pure’ states is again ‘pure’ state, so a certain 
physical system is expanded to orthogonal and non-orthogonal terms ( ‘pure’ group states), 
eq. (1.1); 
each group state is expanded to a set of i-th system states, where i ∈ [ ]n,...1   on orthogonal set; 
i ] ]mn,...,∈  on non-orthogonal set correspondently, eq. (1.2). 
 
2  wavefunction Pi  for i-th system state expressed in a form of solution of the Schrödinger 
equation (4.4). 
Viz. as an approximation limit of the Schrödinger equation;  
ansatz a general expression of the interaction Hamiltonian for pair interaction, which can be 
used in the Schrödinger’s equation. 
 

iP  is factorized for non-interaction approximation, i.e. 

( )lniiil
i qqqqqH αα ,,..,,,..,; 111
int

+− =0; 

probability distribution is characterized by probability density function ( )f y defined by 

( ) ( )
*

i iP q P q . 
 
Pi  is not factorized (the behavior of the i-th state of the system is affected by system 
perturbations lα   and other states  j ), so any changes of measurement iq  will change the 
measurement of other states i ≠ j; 
i.e. ( )lniiil

i qqqqqH αα ,,..,,,..,; 111
int

+− 0≠  
conditional probability distribution is characterized by conditional probability density function 

( )| l
Yf y X xα =  defined by ( ) ( )

*
| . | .i i i iP q P q  where 

i def Y  related to ( )0 iH q ; 

iy q= ; 

| .)  def { }1 1 1,.., , ,.., ,l
li i nX q q q qα α− +=  related to ( )lniiil

i qqqqqH αα ,,..,,,..,; 111
int

+− ; 
lx Xα∈ , jx q= . 

 
            Ref. (A.S. Davidov,1976). 
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3  a) In reference to the subject of the stochastic structure of spacetime, consideration of 
nonlocality (ref. eq. (4.1) and compare notes 0 [1] , 0 [1,1]  (M. Veltman, 2013)) the mechanism 
continues from the connection between Bohmian mechanics and Schrödinger eq. 
Consider contribution of 1n −  states, i.e. for i -th state (4.4) with third term in eq. (3.13) in the 
form of degree 1n −  and apply eq. (4.3). 

The configuration space Q+  of 1n −  states evolves according to the guiding eq., accounting 

for an electromagnetic field applying to i -th state measurement, points to the connection with 
Bell’s theorem and the direction of measurement: 
 
                                                                                                                                             (B 17) 

( ) ( ) ( )
( ) ( ) ( )

( )

sup
sup 1 1

sup
sup1 1

2
sup

1

,..., , ; ,..., , ;

1 ,..., , ; ,..., , ;
2

1

,..., , ;

erstate
erstate il ln n

erstate
erstatei il ln n

i
erstate

ln

iht tq q q q

dq iht tq q q q
dt

e
tq q

PP

P P

P

α α

α α

φ
α

 ∗  − ∇  
  

∗  − − ∇ =    
 
 × −
 
  

r r r r

r r r r r

r

r r

 

 
Applying (B 12) obtains: 
                                                                                                                                           (B 17 a) 
 

 

( ) ( ) ( )

( ) ( ) ( )

( )

sup
sup 1 1

sup
sup1 1

0

2
sup

1

,..., , ; ,..., , ;

1 ,..., , ; ,..., , ;
2

1

,..., , ;

erstate
erstate il ln n

q
erstate

erstateil ln n
i

i
erstate

ln

iht tq q q q

iht tq q q qq dt

e
tq q

PP

P P

P

α α

α α

φ
α

 ∗  − ∇  
  

∗  − − ∇ =    
 
 × −
 
  

r r r r

r r r rr

r

r r

1
i l

π −
 
 

∫  

where 
i iq q→

r  in eq. (4.3) - (4.4). 
 
f thus defines dependence on iφ

r
, and determines existence of the described stochastic process 

( )2, tF µ σ , which defines iqr . 
 
b) The approach specified in (A. Chantasri, J. Dressel and A.N. Jordan, 2013) determines the 
path for chosen initial and final quantum states that satisfy both preselection and postselection 
boundary conditions. 
The outlined mechanism does not require specifying postselection condition and defining path 
as trajectory associated with a specific quantum state.  
The prediction of postselection result is based on the underlying progressively measurable 
stochastic process tq  (ref. eq. (5.2)). 
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Appendix C - Supplementary Chapter. 
 
1. On the subject of Lorentz violation. 
 
1.1. This chapter addresses physical and mathematical considerations related to Lorentz 
violating terms in eq. (2.6.1 b).  Detalization of physical origin of approximately non-
manifestation of Lorentz violations in experiments and corresponding mathematical 
interpretation reflecting underlying physical processes is related to the context of the paper 
outlined in paragraph 4, item 4.1.2, sub-item 2.3. 

 
                                                                 Fig. 9 Mathematical correspondences required to  
                                                                           formulate underlying physical processes. 

Gauss-Bonnet 
theorem                1  

Calabi-Yau manifold 
in 2-complex 
dimensions →  
{ }SU(2) isomorphic Å
4-real dimensions 
Calabi-Yau 3-folds + 
time) 
 
c  
hyperkähler manifold 
 { }(1)SpÇ  
    (Ricci flat manifold 
    0ikR = ;  
 is changed due to 
∃ Weyl tensor i

jlkC )   
           c                           
Weil-Petersson metric                             
(Z. Lu and M.R. 
Douglas, 2009) 
 
a  
3D steady-state vortex 
solution along the 
helicoids (hyperbolic 
surfaces)                                           
                              

‘inference topology’-- 
geometrical image of  
gravitational-dark field 
(A 2.1.1)- (A 2.1.2)        3 

Katz schema                   4 

Navier-Stokes  
existence and  
smoothness problem 
                                      5 

conformal Ricci flow 
a   
the surfaces of revolution 
represent a universal 
cover, which defines the 
structure of compact-3 
manifold, ref. (eq. (26))  
                                 
                                     6 

reflects 
Fig.1 
ref. (paragraph 4, item 
4.1.2, sub-item 2.3) 

address (N.H. Katz and N. 
Pavlovic, 2004; Y. Habara, Y. 
Nagatani, H.B. Nielsen and M. 
Ninomiya,  2007) 

corresponds to (A.E. 
Fischer, 2003) 
 

(A 2.1.1)- (A 2.1.2) →   
complex mode  
tensor (2-dim) 
                b          
      Fig.1 (Morin surface)                     
n connected− →  
Homotopy principle →  
Smale’s paradox 

Schema to connect 
1 ↔ 2 specified in 
[60] 

AdS 3  

Lorentzian 
CFT 
 

leads to   ADS/CFT 
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The following scheme is applied: 
 
1. In the ‘vacuum state’ the radiation dynamics of ‘inference topology’ is related to 
the classical statistical case (Ref. paragraph 4, item 4.1.2, sub-item 2.1); 
 
2. in the ‘mixed’ state the radiation dynamics of ‘inference topology’ is related to 
the classical statistical case and is determined by the first law of thermodynamics 
(Ref. paragraph 4, item 4.1.2, sub-item 2.2). 
     
This results in the following: 
 

 
                                                       Fig. 10.1 Tunnel- gravitational part dynamics (step 1). 
 
3. in a ‘pure’ state the radiation dynamics of ‘inference topology’ is related to 
the quantum statistical case and is determined by the dynamics of  Navier-Stokes eq.  
(A 5.0.1) (ref. paragraph 4, item 4.1.2, sub-item 2.3). 
 
This results in the following: 
 
 
 
 
 
 
 
 
 
 
 
 
                                                        
                                                       Fig. 10.2 Tunnel- gravitational part dynamics (step 2). 
 
Fig. 10.2 represents ‘direct’ path:  
 
‘zero geometry’ in tunnel part ↔ ’Lorentz consistent geometry’ in gravitational part. 

Tunnel shrinks as ν  expected value of 
vacuum state breaks global symmetry 
(ref. Fig. 6, Mark 2) 

Gravitational part (scalar mode, ref. eq.(2.4)) 
increases due to the accretion of matter  
 

Gravitational part increases up to the  
‘Lorentz consistent geometry’, which 
 corresponds to Bekenstein bound 
 constraint 

The expected value of the tachyon condensate 
from the BE-tachyon condensate (ref. Fig. 6,  
Mark 4) breaks spontaneous symmetry (local 
symmetry). The increase of the expected value 
leads to tunnel shrinking to ‘zero geometry’. 
 

geometrically 
denotes  
Bekenstein 
bound 
constraint 
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represent 
 
 
 
 
 
 
 
 
 
                                                          
                                                          Fig. 10.3 Tunnel- gravitational part dynamics (step 3). 
 
Fig. 10.3 represents ‘feedback’ path: 
 
‘Piccei-Quinn geometry’ in tunnel part ↔ ’Lorentz violating geometry’ in gravitational part. 
Negative CP violating

1note  spread in tunnel part cancels positive Lorentz violating spread in 
gravitational part.  This leads to obtaining geometry of Bekenstein bound constraint (Fig. 10.2),  
which corresponds to normalized Ricci flow. 
As such, the compensation of these two mechanisms

2note  can explain the negative results of the 
experimental searches on the Lorenz violation (V.A Kostelecky and N. Russell, 2014).   
 
The cases of breaking symmetry is defined by Mark 2 for global and Mark 4 for gauge 
correspondingly (ref. Fig. 6). 
 
f Mark 2 describes obtaining axions (massless goldstone boson from paragraph 1.1).  In this 
case, Lorentz symmetry is global.  
 
f Mark 4 is described by eq. (A 2.1.2); Goldstone boson becomes massive in tensor mode (ref. 
eq. (1.5), note 3).  In this case, Lorentz symmetry becomes local (V.A Kostelecky and  
N. Russell, 2014)  (Lorentz symmetry breaking does not force CPT symmetry breaking).   

:note  
1  broken Piccei-Quinn symmetry addresses CP violation dynamic, which is related to Lorentz 
violation dynamic( Fig. 10.3); 
 
2  spontaneous breaking of CPT and Lorentz symmetry is related to the vacuum instability 
(topological soliton (topological defect), i.e., domain wall) and becomes CPT- and    
Lorentz-symmetric in the vacuum stable case, even though other non-related to the vacuum 
stability symmetries (ref. eq. (0.1.1)-(0.1.2)) can be violated. 
In this case, CPT symmetry breaking implies Lorentz symmetry breaking, thus   
∃  CP  violation forces ∃  Lorentz violation as the compensating mechanism. 

Tunnel increases up to ‘Piccei-Quinn geometry’ 
as a result of breaking global symmetry (in 
addition to global U(1) symmetry (ref. eq. 
(0.1.1)) and the adjustment for approximate 
global symmetry (ref. paragraph 4, item 4.1.1, 
note 2)). 
 

Gravitational part increases up to the  
‘Lorentz violating geometry’ 
 
 

Lorentz 
consistent 

Lorentz violating 
is positive as it 
increases beyond 
Lorentz consistent 

Piccei-Quinn dynamic 
represents negative 
spread as it increases 
past ‘zero geometry’ 
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Physical program: 
 
 
 
 
 
 
 
 
 
                                                              
                                                                Fig. 10.4 Tunnel-gravitational part dynamics (step 4). 
 
Dark part (tunnel) dynamic restores the state of maximum symmetry from the state of 
symmetry breaking (ref. Conclusion; Framework, paragraph 2), which leads to ‘vacuum state’ 
thus obtaining steady Ricci solution. 
 
As specified in (Z. Lu and M.R. Douglas, 2009) (ref. Fig.9, Mark 2), a) ⇔ is b) where: 
 
a) Calabi-Yau manifold (D. Gaiotto, S. Gukov and N.Seiberg, 2013) in 2-complex dimensions 
(Z.L. Gao and S.-T. Yau, 1986) (4-real dimensions ↔  Calabi-Yau 3-folds + time); 
 
b) Hyperkähler manifold ( ⊂  Ricci flat manifold 0ikR = ) ⇔  Weil-Petersson metric.                              
  
Ricci flow note  affects metric (ref. paragraph 3), thus Thurston model geometries can be 
considered: 
 
f  Ricci-flat (Euclidian) is unchanged; 
 
f  sphere (Lorentzianian) is collapsed to a point (for unrenormalized Ricci flow) in case of   
positive curvature (mass part).  This point acts like an attractor (for renormalized Ricci flow) in 
case of positive curvature;                        
 
f  hyperbolic is an expansion for negative curvature (example: tunnel is negatively curved  
 2-manifold, n-connected).  
                                                                            . 

:note   
ref.  Hamilton - Perelman theory of Ricci flow. 

Gravitational part (tensor mode) 
decreases due to Hawking’s radiation 

Tunnel increases due to elimination of the 
second mass channel (ref. eq. (1.6.1 a)) 

Physical program to define 
Katz scheme [16] 

Fig. 9  
Mark 4 → Mark 5 ↔ Mark 6 

Steady 
Ricci 
solution 
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Corollary: 
 
i)  Ricci flow produces singularities (ref. Appendix A4); 
 
ii) The a) case related to Fig. 10.4 points out correspondence between cigar soliton solution    
(complex plane ≡ complex mode in the bosonic mechanism) ↔ ‘Bryant soliton’+ time 
(ref. Appendix A5, paragraph 2.2). 
 
iii) In case of Ricci flow, Thurston model geometries act like an attractor, thus 
pointing out the applicability of  the developed chaotic attractor theory (ref. Appendix A4,  
paragraph 3, sub-item ii)). 
 
iv) All closed 3- manifolds accept metrics with negative Ricci curvature (B.R. Greene, C. Vafa 
and N.P. Warner, 1989).   
This directly follows from the ‘inference topology geometry’ (Fig.1), which admits to 
positive (mass) and negative (tunnel) geometries.  
 
 
 
1.2. Presented below (Fig.11) is the graphical representation of the connections between   
a) the symmetry breaking approach note  developed in the theory and b) the Lagrangian of the 
theory (including case - Lagrangians) in the context of Lorentz non-invariance of the presented 
theory Lagrangian eq. (1.4.1 a).  
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

:note  
specified in the section 1.1 the dynamic cancellation of Lorentz violation is applicable to the 
Lagrangian (1.4.1 a).  In this context, references to ‘direct’ path and ‘feedback’ path are 
interconnected with ‘direct’ and ‘restoring’ paths of the symmetry breaking mechanism, which 
refers to dark sector of the theory as the driving force for restoring broken symmetry and, at the 
same time, appears as the source of Lorentz invariance violation.  Ref. (D. Blas, M. M. Ivanov 
and S. Sibiryakov, 2012) on possibility of constraining deviation from Lorentz invariance in 
dark sector. 
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                                                           Fig. 11 Symmetry breaking relations, case -  
                                                                        Lagrangians and EoM.                                                                                         

Before symmetry breaking (non-
interaction with electromagnetic 
field in ‘mixed’ state). 

Massive FP 
Lagrangian (1.2.1 a) 

Massless FP  
Lagrangian (1.2.1 b) 

Lagrangian for non-
interaction (1.3 a) 

(First channel) 
appearance of mass for 
dark field 

Massless FP eq. (1.2.2 a) 

Massless FP eq. for  
gravitational field 
(no matter) (1.3.0 b)  

Massless FP eq. for  
dark field 
(no matter) (1.3.0 a)  Inline with 

Einstein eq. 
without matter 

Reduced to 
zero 

After symmetry breaking 
(interaction with electromagnetic 
field in ‘pure’ state). 

FP eq. for massive 
gravitational field 
(matter) (2.1)  

FP eq. for massive 
dark field 
(matter) (1.6.1 a)  

(Second channel)  
appearance of mass 
for gravitational 
field 

(Second channel)  
appearance of mass 
for dark field 
 

Massless FP eq. (1.4.2 b) 
Massive FP 
Lagrangian (1.4.1 a) 

Massless FP  
Lagrangian (1.4.1 b) 

Lagrangian for 
interaction (1.5) 

(First channel)  
appearance of mass for 
gravitational field 

The explanation of 
symmetry breaking (global, 
local) within the framework 
of the outlined mechanism 
is presented in different 
parts of the manuscript 
depending on the context 
(i.e., in Abstract; in the 
essence of the mechanism in 
Chapter I, item i; in 
discussion of different 
gauges in Ansatz Chapter II, 
paragraph 2; in reference to 
Elitzur theorem in note 
Chapter III, paragraph 1, 
item i. 
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                                                       Fig.12 Representation of obtaining spin 1 boson masses. 
                                                                                                                                            
 
1.1, 1.2 f   
 
1. ‘direct’ path is associated with symmetry breaking and is related to scalar mode.  
This mode is Lorentz invariant, ref. (F. Halzen and A.Martin, 1984); 
 
2. ‘restoring’ path which is associated with restoring symmetry from the breaking state is 
related to vector mode note . This mode is characterized by the cancellation of gauge field in 
‘pure’ state ref. the essence of the mechanism (Chapter 1), but maintaining it in ‘mixed’ state. 
This mode violates Lorentz invariance as this path is determined by the role of dark sector. 
 
The subject of spontaneous Lorentz breaking is addressed in the article by B. Altschul, Q. G. 
Bailey and V.A. Kostelecky, 2009 where the gravitational coupling involving Lorentz violation 
is said to be controlled by coefficient fields (ref. V.A. Kostelecky, 2004).  The article and 
references therein also address constraints on some coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
note  
 
This is due to the vector character of gauge field and the bivector structure of dark sector. 
 
 
 

Interaction with massless 
vector gauge boson 

FP  Lagrangian (2.6.1 b) FP eq. (2.6.2 b) 
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1.3. Mathematical analysis of eq. (2.6.1 b) and (1.4.1 a) is conducted in accordance with  
physical considerations which are presented in Appendix C - Chapter 1 in paragraph 1.1 and in 
paragraph 1.2 correspondently.  
 
a) The analysis of eq. (2.6.1 b) can be conducted based on the analysis of eq. (1.4.1 a) (theory 
Lagrangian).  Ref.  Fig. 10.1-Fig.10.4 for the connection to physical structure. 
 
f  case of photon in ‘mixed’ state 
  
1. Tunnel- gravitational part dynamics (step 1– symmetry breaking direction): 
  

1.1. terms of type ik

l

A
x

∂
∂

 and h.c. is 3 form− denote volume dynamics; 

 
1.2. terms of type C:   and h.c. spontaneously break global U(1) symmetry

1note . 
 
f case of photon in ‘pure’ state 
terms of type 2

lφ  represent mass terms for photon. 
  
2. Tunnel- gravitational part dynamics (steps 2 and 3 – symmetry breaking direction):  
 
‘direct’ path 
 

2.1. terms of type i

rx
φ∂

∂
  and h.c. correspond to scalar (divergence) and bivector fields

2note   

are responsible for breaking local symmetry (i.e., gauge field explicitly breaks local symmetry, 
ref. Elitzur theorem). 
 

:note  
1   In ‘mixed’ state, according to G-type mechanism (i.e., symmetry breaking with 
electromagnetic field in ‘mixed’ state), eq. (2.7) results in νΦ = . 
This value corresponds to nonvanishing vacuum expectation of Nambu-Goldstone mode 
eq. (1.1 b), while vanishing value equals 0 . Complex form of this eq. account for appearance 
of Nambu-Goldstone mode for scalar field Φ  due to global symmetry breaking by  
electromagnetic field in ‘mixed’ state. 
 
 2 Listed below is the definition of ∇  acting on the space dimensions 
 
                   M M M∇ = ∇ ⋅ + ∇ ∧  where M  is multivector field. 
 
M  υ

ra  : M∇ a υ υ υ∇ = ∇ ⋅ + ∇ ∧
r r r ,  where υ −

r  vector field; 
M ωa  : M∇ a ω∇ , where ω −  scalar field.   
 
∇  acting on type ( ),r s  tensor field of order n  a  tensor field of order  1n +  . 
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‘feedback’ path (in the context of returning to global symmetry breaking)  
 
3.1. redefined according to the transition from ‘mixed’ ref. Fig. 6, Mark 2 to ‘pure’ ref. Fig. 6, 
Mark 4 states, terms of type C:  and h.c. break global symmetry (Piccei-Quinn).  
 
4. Tunnel-gravitational part dynamics (step 4 – symmetry restoring direction): 
 
‘restoring’ path ref. note, Appendix C - Chapter 1, paragraph 1.2 
 
4.1. terms of type 2k:  , ikA  (a  ( )ikcontr A Ξ:  i.e., dark field); and of type   

2k:  , ImC:  (a ReC  i.e., corresponding to unbroken symmetry for the constraint 0iφ = ) 
are eliminated from eq. (1.4.1 a), which denotes ‘vacuum’ state.  Simultaneous elimination of 
the noted terms and the reduction of constraint 0iφ =  can be interpreted as the mutual 
cancellation of dark field (i.e., tensor-dark field reduced to scalar form) and gauge field (i.e., 
transfer photon in ‘mixed’ state); ref. Appendix C - Chapter 1, paragraph 1.1, item 1. 
 
From eq. (1.4.1 a) under a specified constraint, the following is obtained (viz. ( ),k k η ζ≡ ): 
 
terms of type ( )ikcontr A Ξ:  include multiplier 2k Ξ  (cf. eq. (1.1 a); Q ( . .)s t∋  ‘mixed’ state  
∴ 0hk = ) 
 
where  
 
eq. (1.1 a) is the mathematical representation of the ‘inference topology’ geometrical structure 
v.s. ‘vacuum’ state; 
 
terms of type ReC  include multiplier 2k Ξ  (cf. note 2, eq. (1.2.2 a); Q ( . .)s t∋  ‘mixed’ state 
∴ 0kξ =  ). 
 
The mass part of eq.  (1.4.1 a) in ‘vacuum’ state is determined by the contribution  
of mass from dark sector, i.e. mass terms of ‘pure’ state are reduced to mass terms of  
‘mixed’ state. 
 
v.s. mass part in eq. (1.4.1 b) is related to the consideration of ‘mixed’ state as non-interaction 
limit of the ‘pure’ state (cf. eq. (1.4.1 a).  Under this notation, ‘vacuum’ state accounts for the 
existence of mass terms due to the dark sector.  
 
b) The eq. (2.6.1 b) for spin 1 boson would be analyzed in the same way. 
Eq. (2.6.1 b) and eq. (1.4.1 a) are invariant under the following substitution: 

k kB eφa  (cf. eq. (1.4.0) and eq. (2.6.0)). 
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f f  Thus, the following is obtained (viz. eq. (1.4.1 a) ( . .)s t∋  eq. (A 2.1)) note  : 
 
 

                                                                                                                        (C 0.1.4.1 a) 
 
 

( )

2 *

2 *

*
2 2 *

* *
2 *

, , 0, , ' '
0, 0, , ' '

, , , , ' '

12 2
2

h ik ik ik ik i

FP i

ik ik ik ik i

ik ik
l ik ik

l l

rk sk rk
r s rk sk

r s r

k A A A ih h pure
L h mixed

k A A A contr A vacuum

A A e A A
x x

A A A Ce A A
x x x

φ η ζ ξ

φ η ζ ξ

φ η ζ

φ

φ φ

Ξ

 = ∃ ≠
 

= ∃ = + 
 ¬∃ Ξ Ξ 

∂ ∂
+

∂ ∂

∂ ∂ ∂ ∂
− − +

∂ ∂ ∂ ∂

M a a <
M a a <

M a a a <

* *
2 * 2 *

2 * '

2 *

2 2 *

*

1 1 1 3
2 2 2 8

, , 0, , ' '
3 0, 0, , ' '
4

, , , , ' '

3
8

rk
r k rk r k rk

k r k l l

i

i

i

l

ik
l ik

l

A C C Ce A C e A C
x x x x x

k C C C i h pure
h mixed

k C C C vacuum

e CC

Ae A e
x

i

ξ

φ φ φ φ

ν ξ ξ φ η ζ ξ

φ η ζ ξ

ν ξ φ η ζ

φ

φ φ

Ξ

∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂

 = + + ∃ ≠
 

− ∃ = 
 = + ¬∃ Ξ Ξ 

− +

∂
−

∂

M a a <
M a a <

M a a <

* *
* * * *

* * *
* *

12 2
2

1 1 1 3 3
2 2 2 8 8

ik rk sk r i rk
l ik s sk r rk rk ik rk ik k

l r s i r r

rk
r rk k r rk l l

k r k l l

A A A AA e A e A A A A A e C
x x x x x x

C A C C Ce A e C e A e C e C
x x x x x

φ φ
φ φ φ

φ φ φ φ φ

 ∂ ∂ ∂ ∂ ∂ ∂
− + + − + − ∂ ∂ ∂ ∂ ∂ ∂ 

 
∂ ∂ ∂ ∂ ∂ − + − + ∂ ∂ ∂ ∂ ∂ 

 

 
 
N.B. 
 
Multivector field is a mathematical expression, which corresponds to physical structure 
including ∃  mass, tunnel and type of mass-tunnel connection ref. Fig1, which are reflected in 
gauge/gravity duality. 
Geometric representation of mass dynamics is mathematically described by the divergence part 
and geometrical representation of tunnel dynamics is mathematically described by the bivector 
part. 
 
Maxwell eq (two divergence- type and two curl- type) mathematically describes the 
electromagnetic gauge field.  This eq. is geometrically represented by mass and tunnel 
dynamics.  Mathematical-geometrical correspondence is the proof of postulated structure of 
‘inference topology’. 
 

:note  
( ),k k η ζ≡ 0=  < ’unbroken’ state.  
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2. On the subject of quantum statistics note . 
 
The following eqs. outline the dependence of ‘gauge bosons of interaction’ statistics and  
fermions statistics upon gravitational-dark component (ref. renormalization group, Appendix 4, 
paragraph 3). 
 
a) Bosons, transfer of interaction: 
 
Spin ( GBS )   1 
 
b) Fermions: 
 
Spin ( FS )      1 2     
 
Bosons, transfer of mass: 
 
Graviton (G)   
Dark (D)               
 
Spin ( GS )       2 
Spin ( DS )       0 
 
a) Equality between ‘gauge bosons of interaction’ and gravitational-dark component: 
 

DS
GB GS S=                                                                                                                            (C 2.1) 

 
The formula above indicates involvement of dark boson. 
This eq. mathematically represents the statement, that rescaling the system 
‘gauge bosons of interaction’ ↔  gravitational-dark by factor GS  is equivalent to rescaling 
gauge field by a factor DS

GS  . 
 
b) Equality between fermions and gravitational-dark component: 
 

GBS
F GS S −=                                                                                                                          (C 2.2) 

 
The formula above indicates involvement of interaction by dint of (C 2.1).  
This eq. mathematically represents the statement, that rescaling the system 
fermion ↔  gravitational-dark by factor GS  is equivalent to rescaling 
fermion field by a factor GBS

GS − . 
 

:note  
Ref. n − vector model ( 4n = ) (H.E. Stanley, 1968). 
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Under the present consideration, the reflection between a) and b) cases is defined by means of 
the rescaling factor GS . 
Thus, the following is obtained: 
 

GS : G

D

S
S

 
 
 

a G

D

S
S
− 

 
 

                                                                                                         (C 2.3)   

 
vectors parity ( )1p = − . 
 
Appearance of the negative sign before GS   leads to Pauli expulsion principle, i.e. 
denotes the fact that fermionic system is described by antisymmetric wavefunction. 
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3. On the subject of AdS/CFT correspondence note . 
 

3.1. Derivation of gauge/gravity duality can be explained within the framework of the outlined 
approach and follows from it.  Utilizing results obtained in paragraph 2 (v.s. Appendix C) it is 
possible to apply Dirac sea (not Higgs ocean) specification of vacuum to the consideration of 
cross relation between superconductivity and the presented approach. 
 
The following consideration of different states ref. eq. (C 0.1.4.1 a) is presented below in 
application to type-II superconductivity. 
 
a)  ‘unbroken’ state 
 
 
 
 
 
 
 
 
                                        
                                                          Fig. 13.1 No vortices ( ∃  superconductivity). 
 
In this case, surface is unbroken, so ¬∃  , iη φ  ⇒  0Φ =  (ref. G-type, paragraph 2). 
 
b)  ‘vacuum’ state →  ‘mixed’ state 
 
 
 
 
 
 
 
 
 
                                                          Fig. 13.2 Vortices breaking surface ( ∃  superconductivity). 
 
In this case surface is breaking, i.e., spontaneous global symmetry breaking has occurred. This  
corresponds to the case noted as Before symmetry breaking (ref. ‘Lagrangian for non-
interaction’). Thus, the following is obtained: 
 
 ¬∃  iφ  , η∃ → Ξ  , ζ  → Ξ  ⇒ 0iφ∃ =  , hη∃ →  , ζ ξ→  νΦ =M   
 
this results in appearance of false vacuum for scalar field Φ  cf. eq. (1.1 b) initiated by the 
effect of BE condensate vortices  (ref. Appendix A5, paragraph 1) penetrating surface.  
Goldstone theorem is applicable in this case.  This is the case of massive dark boson creation 
ref. eq. (1.3 a), which results in transfer from false to true vacuum.  

surface of Dirac sea  is 
not affected 

surface of Dirac sea is 
breaking 
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Under this scenario, the interaction of gravitational part of η -field with electromagnetic field 
‘locked’ within Dirac sea boundary results in appearance of photon mass ref. eq. (A 3.2). 
The dark field, mathematically represented by bivector field ref. NB (Appendix C - Chapter 1, 
paragraph 1.3), is expelled from the inner side of sea boundary due to Meissner effect, which 
results in localizing it on the outer side of surface structure.   
 
c) ‘pure’ state 
 
 
 
 
 
 
 
 
 
 
 
                                                  Fig. 13.3 Vortices have broken surface ( ¬∃  superconductivity). 
 
In this case, the surface is broken, i.e., explicit local symmetry breaking has occurred. 
This corresponds to the case noted as After symmetry breaking (ref. ‘Lagrangian for 
interaction’). Thus, the following is obtained: 
 

0iφ∃ ≠  , ,hη →  ζ ξ→  M  ( . .)s t∋  iφ ∅Ξ   
 
this results in appearance of true vacuum for scalar field Φ  cf. eq. (1.1 b) initiated by the effect 
of BE condensate vortices  (ref. Appendix A5, paragraph 1) which have penetrated surface.  
This is the case of massive gravitational field creation ref. eq. (1.5). 
 
f  Dark component at stage b) is attached to bounded (by the Dirac sea boundary due to 
unbroken geometry) surface structure, and gravitational component at stage c) which 
represents internal (unbounded by the Dirac sea boundary due to broken geometry) volume 
structure.  These components reflect surface-volume connection according to mathematical 
duality cf. postulate P2. 
 
In application to elementary particles (ref. Appendix A5, paragraph 2.2) this results in 
AdS/CFT ■ 
 
3.2. In the outlined framework, black hole can be considered as type-I superconductor. 
In this case, surface is inevitably broken and the tunneling to a true vacuum for scalar field Φ  
cf. eq. (1.1 b) is due to instanton effects (ref. Appendix A5, paragraph 2.1). 

:note  
The stages of surface breaking of Dirac sea correspond to stages of penetration of 
electromagnetic field in vacuum, which results in gradual distraction of original 
superconducting state of vacuum. 

surface of Dirac sea  is 
broken 
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4. Mass scale structure. 
 
4.1. The following diagram depicts mass scales (in order of magnitude) in the framework of the 
specified mechanism 
 
 

 
 
                                                               
        

c) 

 
                              

 
 b) 

 
 

 
 

                             
 

       a) 
 

 
 

 
 

                               Fig. 14 Mass scales and corresponding symmetries. 
                                                                
 
 

Mathematical definitions below are used to describe the following expressions: 
 
a) the ‘mixed’ →  ‘pure’ state transition is defined by 
 
 

0 0pure mixedn FP n FP nP L P P L P≥ + ∆                                                                                 (C 4.1) 
 
 
b) the ‘vacuum’ →  ‘mixed’ state transition is defined by 
 

0 0 00 0
mixed vacuumFP FPP L P L≥ + ∆                                                                                   (C 4.2) 

 
 

Massless η  -field 
(‘unbroken’ state) 

CP invariance 

CP violation

 CPT violation 

 Massless h  - field 
and massive Ξ  -field 
  (‘vacuum’ state →   
   ‘mixed’ state) 

CPT invariance 

Dark boson mass 
scale 

Graviton mass scale 
(‘pure’ state) 

∃  superconductivity 

¬  ∃  superconductivity 
 

0∆

Vacuum state 
0   

Mixed state  
0P   

Pure state 
nP   

n∆   
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c)  the ‘vacuum’ state ( )0 0 νΦ ≡ Φ =   and ‘unbroken’ state   ( )0 0 0Φ ≡ Φ =                                                        
define G-type spinor in eq. (2.7). 
 
 
In these equations, 

pureFPL , 
mixedFPL , 

vacuumFPL  are denoted correspondently by eq. (C 0.1.4.1 a) in 
‘pure’, ‘mixed’ and ‘vacuum’ states with substitution of (Appendix C, paragraph 1, item 1.3, 
sub-item 4.1 b). 

iP  is denoted by (Appendix B, eq.(4.1)); 0 iP P= M 0iH H→ .  
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