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We use computer simulations to study the thermodynamic properties of a glass former in which
a fraction c of the particles has been permanently frozen. By thermodynamic integration, we
determine the Kauzmann, or ideal glass transition, temperature TK(c) at which the configurational
entropy vanishes. This is done without resorting to any kind of extrapolation, i.e., TK(c) is indeed
an equilibrium property of the system. We also measure the distribution function of the overlap,
i.e., the order parameter that signals the glass state. We find that the transition line obtained from
the overlap coincides with that obtained from the thermodynamic integration, thus showing that
the two approaches give the same transition line. Finally we determine the geometrical properties of
the potential energy landscape, notably the T−and c−dependence of the saddle index and use these
properties to obtain the dynamic transition temperature Td(c). The two temperatures TK(c) and
Td(c) cross at a finite value of c and indicate the point at which the glass transition line ends. These
findings are qualitatively consistent with the scenario proposed by the random first order transition
theory.

PACS numbers:

Upon cooling, glass-forming liquids show a dramatic
increase of their viscosities and relaxation times before
they eventually fall out of equilibrium at low tempera-
tures [1, 2]. This laboratory glass transition is a purely
kinetic effect since it occurs at the temperature at which
the relaxation time of the system crosses the time scale
imposed by the experiment, e.g., via the cooling rate.
Despite the intensive theoretical, numerical, and exper-
imental studies of the last five decades, the mechanism
responsible for the slowing down and thus for the (ki-
netic) glass transition is still under debate and hence a
topic of intense research. From a fundamental point of
view the ultimate goal of these studies is to find an an-
swer to the big question in the field: Does there exist a
finite temperature at which the dynamics truly freezes
and, if it does, whether this ideal glass transition is asso-
ciated with a thermodynamic singularity or whether it is
of kinetic origin [3–6].

Support for the existence of a kinetic transition comes
from certain lattice gas models with a “facilitated dy-
namics” [6]. In these models, the dynamics is due to
the presence of “defects” and hence for such systems the
freezing is not related to any thermodynamic singular-
ity. However, the first evidence that there does indeed
exist a thermodynamic singularity goes already back to
Kauzmann who found that the residual entropy (the dif-
ference of the entropy of the liquid state from that of
the crystalline state) vanishes at a finite temperature TK

if it is extrapolated to temperatures below the labora-
tory glass transition [7]. Subsequently many theoretical
scenarios that invoke the presence of a thermodynamic
transition have been proposed [8–10]. One of these is the
so-called “random first order transition” (RFOT) theory
which, inspired by the exact solution of a mean-field spin
glass, predicts that at TK the glass-former does indeed
undergo a thermodynamic transition at which the resid-
ual, or configurational entropy Sc (the logarithm of the
number of the states which are available to the system)
vanishes and concomitantly breaks the replica symme-
try [10, 11]. A further appealing feature of RFOT is that
it seems to reconcile in a natural way the (free) energy-
landscape scenario and mode-coupling theory (MCT), a
highly successful theory that describes the relaxation dy-
namics at intermediate temperatures [12].

Despite all these advances, the arguments put forward
in the various papers must be considered as phenomeno-
logical since compelling and undisputed experimental or
numerical evidence to prove or disprove any of these the-
ories and scenarios is still lacking. The only exception
are hard spheres in infinite dimensions, for which mean-
field theory should become exact [13], but even in this
case some unexpected problems are present, see Ref. [14].
This lack of understanding is mainly due to the steep in-
crease of the relaxation times which hampeirs the access
to the transition point of thermally equilibrated systems
and hence most of the efforts to identifying the transition
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point, if it exists, resort on unreliable extrapolation.

I. RANDOMLY PINNED SYSTEMS

Recently a novel idea to bypass this difficulty has been
proposed [15–18]. By freezing, or pinning, a fraction of
the degrees of freedom of the system, the ideal glass tran-
sition temperature has been predicted to rise to a point
at which experiments and simulations in equilibrium are
feasible thus allowing to probe the nature of this tran-
sition. In Ref. [15] the authors have studied the effect
of pinning for the case of a mean-field spin glass model
which is known to exhibit a dynamical MCT-transition
at a temperature Td and a thermodynamic transition at a
lower temperature TK . It was demonstrated that, by pin-
ning a fraction c of the degree of freedoms of the spins
(selected at random) in the equilibrated system, both
TK(c) and Td(c) increase with c. Thus by equilibrating
the non-pinned system at an intermediate temperature
and subsequently increasing c, one can access and probe
the ideal glass state in thermal equilibrium (Note that
changing c does not perturb this equilibrium [19]). It
was found that at sufficiently large c the two lines TK(c)
and Td(c) merge and terminate at a critical point with a
universality class of the random-field Ising model [15, 20].
Very recently, it has been tested whether this approach

to detect TK in mean field models can also be used in
realistic glass formers in finite dimensions [21]. It was
found that pinned systems do indeed show a behavior
that agrees qualitatively with the theoretical predictions,
thus giving encouraging evidence that the nature of the
ideal glass transition can be studied in equilibrium. In
these numerical studies, the overlap q and its distribution
[P (q)] have been used to identify the amorphous-fluid
phase diagram in the T -c plane for pinned systems [21].
Despite these results, it is not clear if the so obtained

amorphous state is the bona fide ideal glass, for which
the configurational entropy Sc vanishes and, in view of
the conceptual importance of Sc, this is a very disturbing
situation. We recall that Sc is related to the number of
available states of the system [10, 11] and is also a key
quantity that controls the slow dynamics in the activation
regime in which the relaxation time τα is related to Sc via
the Adam-Gibbs relation, ln τα ∝ 1/TSc [10, 22]. Finally,
Sc is intimately related to the Landau-like free energy
associated to the overlap of two coupled replicas [23].
Although from the simulations reported in Ref. [21],

the existence of TK has been inferred from the behavior
of the overlap distribution [P (q)] (discussed in more de-
tail below), such an analysis of the overlap q alone may
not be conclusive to demonstrate the existence of the
arrested phase, since one can not exclude the possibil-
ity that other scenarios, such as the purely kinetic one,
can also explain the observed features of [P (q)]. Thus,
evaluating Sc directly and identifying the temperature
at which it vanishes is crucial to disentangle conflicting
theoretical scenarios.

In the present work, we use computer simulation to de-
termine for a canonical glass-former with pinned particles
the ideal glass transition temperature TK(c) as a point
at which Sc vanishes. For the first time this is done with-
out invoking any kind of extrapolation. We also calculate
the overlap distribution [P (q)] and find that TK obtained
from Sc(TK) = 0 and from [P (q)] agree very well up to
a finite value of c. Furthermore, we analyze the geomet-
rical properties of the potential energy landscape (PEL)
and use it to evaluate the dynamic transition tempera-
ture Td(c) as a point at which the saddles of the energy
landscape vanish. We find that Td(c) merges with TK(c)
exactly at the point at which the two mentioned TK(c)
depart from each other, strongly indicating the existence
of a critical point which is predicted by the mean-field
analysis [15–17].

II. RESULTS

We study a standard glass-forming model: A three di-
mensional binary Lennard-Jones mixture [24]. The num-
ber of particles is N = 150 and 300, but most of the
results are for N = 300 (see Materials and Methods for
details). Throughout the present study, the system has
been prepared at each temperature by randomly choosing
a fraction c of particles from the thermally equilibrated
samples and quenching their positions (see Materials and

Methods for details).

A. Entropy and configurational entropy

To obtain the entropy of the pinned system, S, we used
thermodynamic integration to determine the entropy of a
given configuration of pinned particles and subsequently
calculated S by averaging over the realizations of pinned
particles (see Materials and Methods for details).
Figure 1(a) shows the entropy per (unpinned) particle

s ≡ S/N(1 − c) as a function of the fraction of pinned
particles at several temperatures T and we recognize that
with increasing c the entropy decreases rapidly. For all
temperatures this decrease is linear at small c but then
the curves bend at intermediate c and follow a weaker
c-dependence. For T . 0.5 this bent becomes sharp,
strongly indicating that a thermodynamic glass transi-
tion takes place.
This becomes more evident by evaluating the config-

urational entropy obtained by subtracting from S the
vibrational entropy Svib. In order to estimate Svib, we
have determined the inherent structures [25] and calcu-
lated the eigenfrequencies ωa. Using the harmonic ap-
proximation, one can then approximate Svib =

∑

a{1 −
log(β~ωa)}. svib ≡ Svib/N(1 − c) is shown in Fig. 1(a)
as well (solid lines) and we see that it shows basically a
linear decrease with c, a trend which is due to the sup-
pression of the low frequency modes in the density of
states.
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FIG. 1: (a): Entropy of the system, s, as evaluated from the
thermodynamic integration, as a function of c (symbols). The
entropies of the disordered solid states svib, obtained using
the harmonic approximation, are drawn as solid lines. The
dashed lines are a linear extrapolation from the low c sides.
(b): The configurational entropy sc = s−svib. The error bars
have been estimated from the sample to sample fluctuations.

We can now estimate the configurational entropy Sc

as the difference Sc = S − Svib [26] and in Fig. 1(b) we
show the c-dependence of sc = Sc/N(1 − c) for various
temperatures. This figure shows that, for T . 0.5, sc
quickly decreases with increasing c and becomes basically
zero at a finite value of c, indicating that the system
has entered the ideal glass state in which the entropy is
basically due to harmonic vibrations [27]. For T & 0.55,
the approach of sc to zero is milder and the bent is less
sharp, indicating that the transition becomes a crossover.

We define the ideal glass transition point cK(T ), or
TK(c), as the point at which sc becomes zero. As the
temperature is lowered, cK(T ) decreases and in Fig. 4
we show the resulting phase diagram the details of which
will be discussed below. Finally we mention that the
presented results are for N = 300. However, we have
also simulated systems with N = 150 and found that
the results do not depend significantly on N (see SI for
details).

B. Overlap approach

An alternative method to locate and characterize the
thermodynamic transition is to study the overlap qαβ be-
tween two configurations α and β: qαβ = N−1

∑

i,j θ(a−

|rαi − r
β
j |), where θ is the Heaviside function, rαi is the

position of particle i in configuration α, and the length-
scale a is 0.3 [21]. RFOT predicts that at the glass tran-
sition the average value [〈q〉] will increase quickly from a
small value in the fluid phase to a large value in the glass
phase [16]. Here 〈· · · 〉 and [· · · ] stand for the thermal and
disorder averages, respectively. We have computed the
overlap distribution P (q) using replica exchange molecu-
lar dynamics [21] (see SI) and in Fig. 2 we present [P (q)]
for T =0.7 and 0.45. For T = 0.7, [P (q)] remains single-
peaked for all c, and the peak position shifts continu-
ously towards larger q as c increases, see Fig. 2(a). A
qualitatively different behavior is observed at T = 0.45
(Fig. 2(b)): [P (q)] is single-peaked at low and high c,
but has a double peak structure at intermediate c, thus
signalling the coexistence of the fluid and glass phase,
which indicates that the transition from the fluid phase
to the glass phase is first-order-like [21].

The c-dependence of the average overlap [〈q〉] is shown
in Fig. 2(c). For high temperatures T & 0.6, [〈q〉]
smoothly increases with c, reflecting the continuous shift
of the single peak of [P (q)] as shown in Fig. 2(a). For
T . 0.5, [〈q〉] shows a quick increase at intermediate val-
ues of c, in agreement with the presence of the double
peak structure seen in [P (q)] at these T . It suggests that
a first-order-like transition, rounded by finite size effect,
takes place, in qualitative agreement with the result for
a system of harmonic spheres [21]. Note that, within
the accuracy of our data, we see that the amplitude of
the (smeared out) jump in [〈q〉] seems to vanish around
0.55 . T . 0.6, thus indicating that at around that tem-
perature the line of first order transition ends in a critical
point that is second-order-like.

From this approach with the overlap, we can define the

ideal glass transition temperature T
(q)
K (c) as the temper-

ature at which the skewness of [P (q)] vanishes (see SI),

and in Fig. 4 we have included the resulting T
(q)
K (c) as

well. For small and intermediate c, we find a very good

agreement between TK(c) and T
(q)
K , thus showing that

the two very different approaches do give the same ideal
glass transition temperature. This is thus very strong
evidence that at this temperature the system does in-
deed undergo a thermodynamic phase transition from
the fluid to an ideal glass state. For temperatures above
the second-order-like critical point the curves TK(c) and

T
(q)
K (c) differ. We will rationalize this in the Discus-

sion below. Finally we mention that the curves TK(c)

and T
(q)
K (c) seem to extrapolate in a smooth manner to

the Kauzmann temperature of the bulk which has been
estimated from extrapolation [26]. This shows that the
present measurement of the bulk TK is compatible with
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the one from previous estimates.
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FIG. 2: Distribution of the overlap [P (q)] for T = 0.7 (a)
and T = 0.45 (b). (c): The average overlap [〈q〉] obtained
from [P (q)] as a function of c for several temperatures. The
error bars have been calculated using the jackknife method.

C. Potential energy landscape and mode coupling

temperature

In the past, it has been found that the slow dynamics
of glass-forming systems is closely related to the features
of the potential energy landscape (PEL) [29] and in the
following we will use these relations to characterize the
relaxation dynamics of the pinned system.
Figure 3(a) shows the T−dependence of the average

inherent structure energy [〈eIS〉]. For the bulk system,
c = 0, [〈eIS〉] is basically constant at high temperatures
but then steeply decreases below a crossover tempera-
ture T ≈ 1, a temperature which signals that the re-
laxation dynamics becomes strongly influenced by the
PEL [30, 31]. As c increases, the value of [〈eIS〉] at high
T moves steadily upward, which is reasonable since the
energy of the system is literally pinned at the higher en-
ergy levels due to the presence of the pinned particles.
Concomitantly the crossover temperature increases with
c and the crossover becomes smeared out, completely

disappearing at the highest c. The vanishing of this
crossover with growing c indicates thus that the pinning
affects qualitatively the nature of the PEL and of the re-
laxation dynamics. For instance it is found that with in-
creasing c the fragility of the system decreases and shows
at high c an Arrhenius dependence [21, 32].
In the inset of Figure 3(a), the low temperature behav-

ior of [〈eIS〉] is shown. It clearly demonstrates that [〈eIS〉]
is inversely proportional to T for all c. According to the
energy landscape scenario, this is an indicator that the
distribution of eIS is Gaussian [33].
Another important quantity that connects the glassy

dynamics of a system with its PEL is the saddle index
K, i.e., the number of negative eigenvalues of the Hes-
sian matrix at a stationary point of the PEL. For bulk
systems it has been found that K shows a linear depen-
dence on eSP, the bare energy of a saddle point [34, 35].
Since the value of eSP at which K goes to zero (this value
is often denoted as “threshold energy” eth) corresponds
to the average energy of the inherent structures 〈eIS〉 at
the critical temperature of mode-coupling theory, one can
extract from the geometrical properties of the PEL the
value of Td without having to do any fit to dynamical
data [34, 35].
We use a standard method to determine numerically

the energy and index of saddles for the pinned system
(see SI for details), and in Fig. 3(b) we plot the average
normalized saddle index k = K/3N(1− c) as a function
of its corresponding eSP. In agreement with previous
studies of the PEL, we find that k decreases linearly as
a function of eSP and hence we can obtain eth(c) from a
linear fit (included in the figure as well). We see immedi-
ately that eth increases with c and together with the data
of Fig. 3(a) and eth(c) = [〈eIS〉](Td(c)), we can conclude
that Td(c) increases with c. The resulting c−dependence
of Td is included in Fig. 4 as well and will be discussed
in the next section.
We have also evaluated Td by calculating the relax-

ation time τα from the time dependent density correla-
tion function (see Material and Methods) and by fitting

τα with the MCT power-law τα ≃ |T −T
(fit)
d |−γ . We find

that the so obtained values of T
(fit)
d agree well with those

obtained from the PEL (see SI for details). Note that

one needs several fit parameters to obtain T
(fit)
d from the

dynamic data, whereas basically no fit parameter are re-
quired for Td from the PEL. In Fig. 4, the iso-τα lines are
also plotted. The graph shows that τα quickly increases
with c and that the lines asymptotically approach the TK

line from the high T -side.

III. DISCUSSION

In Fig. 4 we summarize the results of the previous
sections in the form of a phase diagram in the c-T
plane. The ideal glass transition lines TK(c) determined

from Sc = 0 and T
(q)
K (c) obtained from P (q) are plot-
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FIG. 3: (a): T dependence of the averaged inherent struc-
ture [〈eIS〉] for several values of c. Inset: Same quantity as a
function of 1/T . (b): The average normalize saddle index, k,
as a function of its energy, eSP, for several values of c. The
threshold energy, eth, is defined by a linear extrapolation from
the high energy side.

ted as filled circles and diamonds, respectively. At low
T and c the two temperatures basically coincide but
around (Tc, cc) ≈ (0.55, 0.16), they start to depart from

each other in that T
(q)
K (c) increases continuously whereas

TK(c) bends and its c-dependence becomes weaker. Note
that this separation occurs at the same point at which
[P (q)] changes from the bimodal to the single-peaked
shape (see Fig. 2), thus indicating that in this region
of parameter space the system has a second order like
critical point.
The theoretical calculations for a mean-field spin glass

model show that TK(c) should terminate at a finite c
and that this end point is a critical point of the univer-
sality class of the random field Ising model [15–17, 20].
Furthermore the theory predicts that at this end point
the coexistence line TK(c) and the dynamical line Td(c)
merge. Figure 4 shows that this prediction is indeed com-
patible with our data in that the two lines do cross near
(Tc, cc).
From the figure we also recognize that, beyond the

endpoint, TK(c) obtained from Sc = 0 almost matches
with Td(c). This result is reasonable since in this range
of T and c the particles are strongly confined by the
labyrinthine structure imposed by the pinned particles,
i.e., the system resides mainly at the bottom of a free
energy minimum where both the configurational entropy
and the number of the saddles vanish simultaneously. In

contrast to TK(c), T
(q)
K (c) raises continuously even be-

yond the endpoint. This can be understood by recalling
that this line is defined by the points at which the skew-
ness becomes zero, i.e., the point at which [P (q)] changes
from being left-skewed to right-skewed. Since this change
of sign in the skewness occurs also in the region of the

phase diagram beyond the critical point, the line T
(q)
K

will extend into that region, similar to the Widom line
present in a standard liquid-gas transition [36, 37].
As it is evident from Fig. 1(a), TK defined as the point

at which Sc = S−Svib = 0 becomes somewhat ill-defined
beyond the endpoint (T & 0.55 in Fig. 1(a)), since the
crossover from the fluid to the glass phase becomes broad.
In order to estimate the effect of this ambiguity, we have
included in Fig. 4 also T ′

K defined by the linear extrapo-
lation Sc of Fig. 1(b) from the low c side (open circles).
We see that below the end point T . 0.5, T ′

K is indistin-
guishable from TK whereas beyond the end point T & 0.6

they bifurcate and T ′

K becomes comparable with T
(q)
K .
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0.3

0.4

0.5
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 TK from entropy

 T (q )
K from overlap
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T
c

=107

=106

=105

FIG. 4: The phase diagram of the randomly pinned system.
The filled circles show the ideal glass line TK at which the

configurational entropy vanishes. The diamonds show T
(q)
K (c)

determined from the skewness of [P (q)]. The squares are dy-
namic transition points Td(c). The open circles show the ideal
glass line T ′

K determined by the linear extrapolation of Sc(c)
to vanish from Fig. 1(b). The iso-relaxation-times are drawn
by +, ×, and ∗. The star denoted at c = 0 is a putative
ideal glass transition point TK ≈ 0.3 for the bulk reported in
Ref. [26].

To the best of our knowledge, the present study is the
first report of a system in finite dimensions that shows the
existence of an ideal glass state in equilibrium, i.e., a state
in which the configurational entropy is zero at a finite
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T . The Kauzmann temperatures reported in the past
have all relied on somewhat questionable extrapolation
procedures, leaving thus room for debate over the very
existence of a thermodynamic transition [6, 8, 38].

Our findings are inconsistent with recent simulation
studies in which the T−and c−dependence of the relax-
ation dynamics has been studied [39]. In Ref. [39], the
structural relaxation time τα was fitted with the Vogel-
Fulcher relation τα ∼ exp[A/(T − T0)], with T0 as fit pa-
rameter. This relation can be directly derived from the
Adam-Gibbs as well as the RFOT theory, both of which
assert that ln τα ∝ 1/TSc, and thus the Vogel-Fulcher
temperature T0 is predicted to be identical to TK . Fur-
thermore the authors of Ref. [39] fitted their data also
with the MCT power-law τα ≃ |T −Td|

−γ in order to de-
termine the c−dependence of Td. It was found that while
Td increases moderately with c, T0 remains constant. We
have plotted the relaxation time τα as a function of Sc

for finite c and found that the Adam-Gibbs relation is
violated (see SI for details). Thus we conclude that in
the case of pinned systems one cannot deduce the Vogel-
Fulcher law from the Adam-Gibbs relation.

Since the results presented here are all obtained in
thermodynamic equilibrium without referring to any kind
of extrapolation, we are confident that the phase dia-
gram presented in Fig. 4 does indeed reflect the prop-
erties of the system and is not an artifact of the anal-
ysis. A further evidence that the simulated system is
really in equilibrium is the observation that the entropy
obtained by thermodynamic integration from the high
temperature limit matches with that obtained from the
low temperature side (via harmonic approximation) in
the glass phase. It is also reassuring that all three meth-
ods, the thermodynamic integration (vanishing entropy),
the overlap distribution (the discontinuous jump of q),
and the geometric change of the PEL, consistently point
to the same end point, thus giving strong evidence that
this point really exists. Also suggestive is that each com-
bination of pairs amongst three methods are compatible
beyond the end point, which is reminiscent of the Widom
line in the standard gas-liquid phase transition.

At this stage we can conclude that the phase diagram
as predicted by the RFOT theory is confirmed at least
qualitatively. What remains to be done is to probe the
relaxation dynamics in the vicinity of the critical end
point since one can expect that this dynamics is rather
unusual [40] and to establish its universality class [20, 41].
Furthermore, it will also be important to see whether
the predicted phase diagram can also be observed in real
experiments. Although this will be not easy, for certain
systems such as colloids or granular media it should be
possible.

IV. MATERIALS AND METHODS

A. Model

The system we use is a binary mixture of Lennard-
Jones particles [24]. Both species A and B have the same
mass and the composition ratio is NA : NB = 80 : 20.
The interaction potential between two particles is given
by vαβ(r) = 4ǫαβ{(r/σαβ)

12 − (r/σαβ)
6}, where α, β ∈

{A,B}. We set ǫAA = 1.0, ǫAB = 1.5, ǫBB = 0.5, σAA =
1.0, σAB = 0.8 and σBB = 0.88. vαβ(r) is truncated and
shifted at r = 2.5σαβ. We show energy in units of ǫAA,
with the Boltzmann constant kB = 1, and length in units
of σAA. Time units are defined by Monte Carlo sweeps
(see below). Simulations are performed at constant den-
sity ρ ≈ 1.2. The number of particles is N = 150 and
300, and most of the results in the present study are for
N = 300.

B. Making pinned configurations

The configuration of the pinned particles is generated
by making first a replica exchange run for the bulk sys-
tem, i.e., c = 0, using 8 replicas [42]. This allows us to
generate relatively quickly many equilibrium configura-
tions that are completely independent, i.e., between con-
secutive configurations the mean squared displacement
of a tagged particle is more than 100. Next we use a
“template” to identify the cN particles that will be per-
manently pinned. Details on how to create the template
can be found in Ref. [21]. This approach has the ad-
vantage that the pinned particles cover the space in a
relatively uniform manner, thus avoiding the creation of
dense regions or large empty regions and hence suppress-
ing strong sample-to-sample fluctuations of the thermo-
dynamic properties of the system.

C. Simulation methods

- Thermodynamics: In order to sample thermody-
namic properties efficiently at low T and large c region,
we use the replica exchange method [42]. The maximum
number of replicas is 24. More detail is presented in the
supplemental information and in Ref. [21]. The total
CPU time to obtain the presented results is about 580
years of single core time.
- Dynamics: We use the Monte Carlo (MC) dynamics
simulation to calculate dynamical observables [43]. The
rule of the MC dynamics is the following: In an elemen-
tary move, one of the (1− c)N unpinned particle is cho-
sen at random. Then the particle is displaced at random
within a cubic box of linear size δ = 0.15 and the stan-
dard Metropolis rule is used to decide whether or not the
move is accepted. One MC step consists of (1−c)N such
attempts and we set this as a unit of time scale. The
relaxation time τα is determined by FA(k, τα) = e−1,
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where FA
s (k, t) is the self part of the intermediate scat-

tering function of the free particles of species A for the
wave-vector k at the peak of the corresponding structure
factor. We have averaged over 30 different realizations of
pinned particles to calculate FA(k, t).

D. Entropy

In order to calculate the entropy S(c, T ) of the pinned
system, we have first determined the entropy of the sys-
tem for a given configuration of pinned particles, and
then taken the average over the realization of the config-
uration of pinned particles. For this we have calculated
the potential energy at temperatures ranging from the
target temperature up to the ideal gas limit at T = ∞,
while keeping the pinning configuration fixed. We have
evaluated the entropy of the system with that pinning
configuration using thermodynamic integration. For this
integration, we have used a grid in the inverse tempera-
ture β = 1/T of width ∆β that ranged between 0.01 to
0.1, depending on the temperature, and integrated the
potential energy as a function of β. Special care was
taken in the very high temperature regime, in order to
accurately and rapidly achieve the convergence to high
temperature ideal gas limit. The high temperature ex-
pansion of the potential energy of Lennard-Jones fluid
can be written as U = Aβ−1/4 + Bβ−2/4 + Cβ−3/4 [44].
We have used simulations at very high temperatures to
determine the coefficients A, B, and C, and carried out
then the thermodynamic integration analytically.

E. Analysis of the saddles

To locate the saddles of the potential energy land-
scape of the system, we have made a minimization of the
squared gradient potential W = 1

2 |∇U |2[34, 35]. Mini-
mization of W is performed by the BFGS method [45].
Similar to the minimization of U used to calculate the in-
herent structures, W includes the position of the pinned
as well as unpinned particles, but only the position of the
latter are optimized. After having located a saddle with
energy eSP, the Hessian matrix was diagonalized and we
counted the fraction of negative eigenvalues k(eSP). The
raw data is shown in the SI and in Fig. 3 (b) we present
the average index as a function of eSP. The threshold
energy eth is defined by k(eth) = 0.
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Supplementary Information

I. REPLICA EXCHANGE METHOD

Here we describe the details of the replica exchange
method which we have employed in this study, which is
basically the repetition of the description in Ref. [1] and
in its supplemental information. We have used the par-
allel tempering algorithm [2, 3] using up to 24 replicas.
In this approach, one simulates simultaneously several
copies of the system i.e., the same Hamiltonian but each
replica is at a different temperature. Using a Boltzmann
criterion and the detailed balance condition, we period-
ically attempt to interchange the configurations of two
replicas at different temperatures. Hence each replica
makes a random walk in the temperature space. Due to
the fast relaxation at high T , this will lead to an efficient
relaxation of the system also at low T . The smallest
difference in temperature between the two neighboring
replicas was ∆T = 0.009, which guarantees a good over-
lap of the two potential energy distributions. Attempts
to switch the two neighboring replicas have been made
every 50000 time steps. We have checked that each par-
allel tempering run has indeed reached equilibrium by
following any given replica and making sure that all tem-

http://arxiv.org/abs/1404.2701
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peratures have been sampled sufficiently. A typical path
of a replica in temperature space is shown in Fig. SI-
5(a). The parallel tempering algorithm indeed allows for
the system to be equilibrated down to T = 0.44 even
when the concentration of pinned particles, c, is large.
This can be recognized from Fig. SI-5(b), where we show
the mean squared displacement (MSD) of the particles
(distinguishing the type A and B particles) as a function
of time. The figure shows that at sufficiently long times
the MSD becomes very large, indicating that the parti-
cles do indeed move through the box also at high values
of c, even if their relative arrangement does not change
much, i.e., one is in the glass state. To calculate physical
quantities, we have followed a given replica in the tem-
perature space and considered only the time intervals at
which this replica was at the target temperature.

FIG. 5: (a): Time dependence of the trajectory of a typical
replica in temperature space for T = 0.44, c = 0.1. (b): The
mean squared displacement of A and B particles for T = 0.44,
c = 0.1.

II. ENTROPY OF THE PINNED SYSTEMS

For our numerical calculation of the entropy, we em-
ployed the thermodynamic integration technique. Al-
though this technique is well-known and has long been
applied to bulk systems [4–6], its extension to pinned

systems is not trivial. In this section, we summarize the
ideas and present the details of our calculation. We fol-
low the notations introduced in the Method and Materi-
als section.

A. Definitions

Our starting system is a binary mixture of type A and
B particles. Since we consider a random pinning of this
system, our system is now composed of four different
types of particles: cNA pinned particles of type A, cNB

pinned particles of type B, MA = (1 − c)NA unpinned
particles of type A, and MB = (1− c)NB unpinned par-
ticles of type B. The total pinned and unpinned particle
numbers are cN = cNA + cNB and M = MA + MB,
respectively. We denote the coordinate of pinned par-
ticles by S = (s1, · · · , scN ) and unpinned particles by
R = (r1, · · · , rM ).
First we consider the thermodynamics of the system

with a given configuration of pinned particles S. In this
situation, the partition function is defined as

Z̃(S, β) =
1

Λ3MMA!MB!

∫

dR exp[−βU ]. (1)

and the thermal average of any variable is

〈A〉S,β ≡
1

Z̃(S, β)Λ3MMA!MB!

∫

dR A exp[−βU ], (2)

where Λ is the thermal de Broglie wavelength, U the
potential energy, and β = 1/kBT characterizes the tem-
perature of the system. The free energy and the entropy
are now written as

F̃ (S, β) = −
1

β
log Z̃(S, β), (3)

S̃(S, β) = β〈H〉S,β − βF̃ (S, β), (4)

where H is the Hamiltonian of the unpinned particles.
In this work, we generate pinned particles configura-

tions by fixing a fraction c particles in the equilibrium
configurations, and study the thermodynamics after the
disorder average over the realizations of pinned particles.
When the pinned particles are generated at a tempera-
ture β′, their distribution function is given by

Ppin(S, β
′) =

1

Z(β′)Λ3NNA!NB!

∫

dR exp[−β′U ], (5)

where Z(β′) is the partition function of the bulk system
at the temperature β′. Accordingly the thermodynamic
quantities to be calculated are given by

[〈A〉S,β ]β′ ≡

∫

dS Ppin(S, β′)〈A〉S,β . (6)
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The subscript β of the thermal average 〈. . .〉 indicates
that the thermal average for unpinned particles are taken
at β, while the subscript β′ of the disorder average [. . . ]
indicates that the pinned particles configurations are ob-
tained from the equilibrium configurations at the temper-
ature β′. Because we are interested mainly in the case
β = β′, the free energy and the entropy of the system is
now written as

F (c, β) = [F̃ (S, β)]β , S(c, β) = [S̃(S, β)]β . (7)

Note that when β = β′, the thermodynamic average of a
mechanical variable A becomes exactly

[〈A〉S,β]β =
1

Z(β)Λ3NNA!NB!

∫

dSdR A exp[−βU ],(8)

which is nothing but the thermodynamic average for the
bulk system at the temperature β. This equivalence is
the well-known fact for this type of the pinned system [7].

B. The thermodynamic integration

Formulation

To calculate the entropy S(c, β) from simulations, we
employ the thermodynamic integration (TI) method.
The TI method that is most frequently applied to
Lennard-Jones particles is to connect the ideal gas state
and the state of interest by a combination of a compres-
sion path (increasing density) and a cooling path (de-
creasing temperature) [4, 5]. However for pinned fluids,
it is not clear how compression should be defined. There-
fore we use only the cooling path from the ideal gas limit
T = ∞ to the target temperature without changing the
density. This version of the TI has been used for bulk
Lennard-Jones particles [6], and here we apply it to the
pinned system.
We first apply the TI to the entropy of a given pinned

particles configuration, and then take the disorder aver-
age over realizations. The entropy of the system with the
pinned particles S at the target temperature β∗ can be
expressed as

S̃(S, β∗) = S̃(S, 0) + β∗〈U〉S,β∗
−

∫ β∗

0

dβ 〈U〉S,β. (9)

S̃(S, 0) is the entropy of M unpinned particles at β =
0. Since the interactions between the particles including
pinned and unpinned particles become irrelevant if β = 0,
this term is nothing else than the ideal gas entropy of bulk
M particles. The thermal average of the potential energy
can be decomposed as

〈U〉S,β = 〈Uup〉S,β + Up(S) + 〈Uint〉S,β, (10)

where Uup, Up, and Uint are the potential energies of un-
pinned particles, pinned particles and the interaction be-
tween pinned and unpinned particles, respectively. Here
we use the fact that Up is solely dependent on the con-
figuration of pinned particles and free from the thermal
average of unpinned particles. Plugging these into Eq. (9)
and taking the disorder average over realizations, we get
the final expression

S(c, β∗) = M

(

1− log
M

V

)

−MA log
MA

M

−MB log
MB

M
− 3M log Λ +

3M

2
+ β∗[〈Uup〉S,β∗

+ 〈Uint〉S,β∗
]β∗

−

∫ β∗

0

dβ [〈Uup〉S,β + 〈Uint〉S,β]β∗ .

(11)

In the integral, the temperature for the thermal average
runs from β = 0 to β = β∗, while the temperature for the
disorder average over realizations of the pinned particles
is fixed to be the target temperature β∗. Thus we cannot
use the relation Eq. (8) to evaluate the integrands. In-
stead we need to directly calculate the potential energy
at β ∈ [0, β∗] under a given pinned particles configuration
S and take the disorder average over realizations.

Implementation

The integral in Eq. (11) is decomposed into three tem-
perature regimes and each of them is evaluated sepa-
rately. (1) For low temperature regime, we calculate the
potential energy from the configurations generated by the
parallel tempering calculations outlined in Sec. I. From
each trajectory, we obtain the thermal average of the po-
tential energies Uup and Uint at different temperatures
with a given pinned particles configuration. We employ
the Simpson’s rule to evaluate the integral and take the
disorder average over realizations. (2) Above the highest
temperature in the parallel tempering calculations, we
use standard Monte Carlo method to calculate the po-
tential energy. We slice the temperature into the grids
with the width ∆β = 0.001−0.01 depending on the tem-
perature range and calculate the thermal average of Uup

and Uint at each temperature for a given pinning config-
uration. We employ the Simpson’s rule to evaluate the
integral and take the disorder average over realizations.
(3) We take a special care about the integration at very
high temperature β < 0.001, since the potential energies
Uup and Uint diverge in the high temperature limit. To
accurately calculate the integral, we first fit the potential
energy data to a polynomial function then analytically
integrate the function. Considerations on the high tem-
perature expansion shows that the potential energy of the
Lennard-Jones particles at high temperature behaves as

〈U〉 = Aβ−1/4 +Bβ−1/2 + Cβ−3/4 +O(1), (12)



11

where A, B and C are constants [6]. We thus fit the data
of 〈Uup〉S,β + 〈Uint〉S,β with expression (12) to obtain

these constants and integrate it analytically. In Fig. SI-
6, we show the raw data of β3/4(〈Uup〉S,β+〈Uint〉S,β)/M

and the fitting function Eq. (12) as a function of β1/4,
confirming that Eq. (12) holds well.

0.00 0.05 0.10 0.15 0.20 0.25
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
c=0    
c=0.1  
c=0.2

3/4 (< U up> S, + < U int> S, )/M T=0.45

FIG. 6: β3/4(〈Uup〉S,β
+ 〈Uint〉S,β

)/M as a function of β1/4

for very high T (> 250). The raw data (symbols) are fitted
well by the fitting curves (red solid lines). The vertical dashed
line indicates the temperature above which we use the ana-
lytical integration. Note that we show here only the data for
one realization of the pinned particles since the curves will
depend on the realization.

C. Vibrational entropy

We next summarize the method to calculate the har-
monic vibrational entropy of the pinned system. We con-
sider the system that weakly vibrates around an inherent
structure (IS). If we denote by δri the displacement of the
i-th particle from its position in the inherent structure,
the potential energy can be approximated well as

U ≈ UIS(S) +
1

2

M
∑

i,j

∂2U

∂ri∂rj
δriδrj . (13)

It is important to realize that only the derivative of the
potential energy respect to the coordinates of unpinned
particles should be taken into account, not including the
ones of pinned particles (But of course U will depend on
the positions of the pinned and unpinned particles). Thus
the size of the Hessian matrix is (3M×3M). Introducing
the eigenvalues λ1, · · · , λ3M of the Hessian, the harmonic
vibrational entropy of the given inherent structure with
a given pinned particle configuration can be written as

S̃IS,vib(S, β) =

3M
∑

a=1

{

1− log(β~
√

λa/m)
}

. (14)

Note that the eigenvalues λa depends on the choice of
the inherent structure and the pinned particle configura-
tion. Taking the average of S̃IS,vib(S, β) over realizations
of pinned particle configurations and the inherent struc-
tures, we finally obtain the harmonic vibrational entropy
of pinned system Svib(c, β).
In practice, we have sampled the inherent structure by

minimizing the potential energy of instantaneous config-
urations obtained in the simulations. For this calculation
we used the conjugate-gradient method. Note that the
pinned particles were frozen during the minimization pro-
cess and only the coordinates of the unpinned particles
are optimized.

D. Finite size effect

In Fig. SI-7, we show Sc for N = 150 and 300 for
several state points. We find that finite size effects are
small, at least for these two system sizes.

0.00 0.05 0.10 0.15 0.20 0.25
-0.1

0.0

0.1
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c
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 N=150, T=0.466
 N=300, T=0.55
 N=300, T=0.5
 N=300, T=0.466

sc

FIG. 7: Finite size effect of the configurational entropy for
N = 150 and N = 300.

III. OBTAINING THE KAUZMANN

TEMPERATURE FROM THE OVERLAP

We have determined the averaged distribution function
[P (q)] of the overlap q as explained in the main text.
Subsequently we have calculated the skewness γ(c, T ) as

γ =

∫ 1

0
dq[P (q)](q − [〈q〉])3

(

∫ 1

0 dq[P (q)](q − [〈q〉])2
)3/2

. (15)

The T−and c−dependence of γ is shown in Fig. SI-
8. The point at which γ is zero is used to define the

Kauzmann temperature T
(q)
K shown in Fig. 4 of the main

text.
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FIG. 8: The skewness γ of the distribution function [P (q)].
The horizontal dashed line is the zero-axis and used to define
T

(q)
K . The error bars have been calculated using the jackknife

method.

IV. SADDLE POINTS AND DYNAMIC

TRANSITION POINT

In Fig. SI-9(a), we show the original data of Fig. 3(b)
of the main text. This scatter plot shows the normalized
saddles index k as a function of the energy at the sad-
dle, eSP, obtained from the minimization of the square
gradient potential W = 1

2 |∇U |2 [8, 9]. Fig. 3(b) in the
main text has been obtained by averaging over this scat-
ter data for a given eSP. The threshold energy eth is
extracted from Fig. 3(b) of the main text as a point at
which the averaged k vanishes. Mapping of eth(c) to
the dynamic transition temperature Td(c) can be done
by plotting the temperature dependence of the inherent
structures [〈eIS〉]. The reason why we use the inherent
structures [〈eIS〉] instead of [〈eSP〉] is that in practice one
can evaluate the T−dependence of [〈eIS〉] with higher
precision than that of [〈eSP〉]. Note that using [〈eSP〉]
would in fact give the same result since it is expected to
be very close to [〈eIS〉] in the low temperature regime.
In Fig. SI-9(b) we show the T -dependence of [〈eIS〉] for
several c’s. The inherent structures are found to be a
monotonic function of T for all c’s and therefore eth can
be uniquely mapped to Td.

V. DYNAMIC TRANSITION TEMPERATURES

The dynamic transition temperatures Td can be eval-
uated by two methods: the dynamic route and the static
one [8–10]. In the dynamic route, Td is obtained directly
by fitting the relaxation time τα from the time-dependent
correlation functions, such as the scattering function

FA
s (k, t), to the MCT power-law τα ∝ |T − T

(fit)
d |−γ .

Thus in this case one has T
(fit)
d , γ, and the prefactor

are fit parameters, all of which will depend on c. In
the present paper, we have adopted the alternative static
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FIG. 9: (a): The scatter plot of k vs eSP. (b): The [〈eIS〉] as
a function of T . The horizontal and vertical arrows indicate
the location of eth(c) and Td(c), respectively. This plot is
used to map eth(c) to Td(c).

route to obtain Td defined as a point at which the sad-
dles of the potential energy landscape vanish. For bulk

systems, c = 0, it has been found that T
(fit)
d from fitting

(dynamic) agrees very well with Td as determined from
the saddles (static) [8, 9].

We follow exactly the same method to obtain T
(fit)
d for

the pinned systems, i.e. c 6= 0. In Fig. SI-6(a), we plot

τα obtained from FA
s (k, t) as a function of T − T

(fit)
d for

several values of c. Both T
(fit)
d and γ are used as fitting

parameters to obtain the good fit with the power-law. As
it is well known for bulk systems, special care has to be
taken to chose an optimized temperature windows over
which τα can be fitted by a power-law and we have thus
put the emphasis to get a good fit in the low temperature
part of the data.

In Fig. SI-6(b) we plot the so obtained T
(fit)
d in the

phase diagram presented in the main text. It is clear
that the agreement of the two dynamic transition tem-
peratures obtained from different routes is very good.

However, we also recognize that the c-dependence of T
(fit)
d

is noisier. This is most likely due to the subtleties of the
fitting procedures since three free fit parameters have to

be used for T
(fit)
d (T

(fit)
d , γ, and prefactor), whereas no
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fitting parameter is required to evaluate Td from the sad-
dles. This is the reason why in the present study we put
more emphasis on the static method.

VI. VIOLATION OF THE ADAM-GIBBS

RELATION

In this section we will show that for the pinned fluid the
Adam-Gibbs relation ln τα ∝ 1/Tsc [11, 12] is violated.
In Fig. SI-7, we plot the relaxation time τα against 1/Tsc
for different values of c. For c = 0, one observes that ln τα
is indeed a linear function of 1/Tsc and that therefore the
AG relation holds, as it has been already documented in
Refs.[13, 14]. However, as c increases, log τα systemati-
cally deviates from the linear dependence and becomes a
convex function of 1/Tsc. Thus this result clearly demon-
strates the violation of the AG relation for pinned fluids.
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FIG. 10: (a): Test of the validity of the MCT power-law

fit to τα where T
(fit)
d is a fitting parameter. The solid lines

indicate the MCT power-law. (b): Phase diagram including

the T
(fit)
d (c) line.
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