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Soient F une extension finie non ramifiée de Qp et ρ une représentation modulo p irréductible de dimension 2 du groupe de Galois absolu de F . L'objet de ce travail est la détermination de la variété de Kisin qui paramètre les modules de Breuil-Kisin associés à certaines familles de déformations potentiellement Barsotti-Tate de ρ. Nous démontrons que cette variété est une réunion finie de produits de P 1 qui s'identifie à une sous-variété explicite connexe de (P 1 ) [F :Qp] . Nous définissons une stratification de la variété de Kisin en sous-schémas localement fermés et expliquons enfin comment la variété de Kisin ainsi stratifiée peut aider à déterminer l'anneau des déformations potentiellement Barsotti-Tate de ρ.

Introduction

Soient p un nombre premier et F une extension finie de Q p dont le groupe de Galois absolu est noté G F . Nous savons depuis Mazur [Ma] que l'ensemble des déformations de déterminant fixé d'une représentation absolument irréductible ρ de G F à coefficients dans un corps fini de caractéristique p est muni d'une structure géométrique. Étant donnés une extension finie E de Q p de corps résiduel k E et d'anneau des entiers O E et un caractère ψ de G F dans O × E , Mazur a construit dans loc. cit. une O E -algèbre R ψ (ρ) dont l'ensemble des points à valeurs dans une O E -algèbre locale complète noetherienne R de corps résiduel k E s'identifie fonctoriellement à l'ensemble des R-représentations de G F de déterminant ψ qui se réduisent sur ρ modulo l'idéal maximal de R.

Récemment, Kisin [START_REF] Kisin | Moduli of finite flat group schemes and modularity[END_REF][START_REF] Kisin | Potentially semi-stable deformation rings[END_REF] a démontré que certaines conditions issues de la théorie de Hodge p-adique définissent des sous-schémas fermés de Spec R ψ (ρ). Plus précisément, étant donnés un type de Hodge v et un type galoisien t, le résultat de Kisin établit l'existence d'un unique quotient R ψ (v, t, ρ) de R ψ (ρ) qui est réduit, sans p-torsion et vérifie la condition suivante : pour toute extension finie E de E d'anneaux des entiers O E , un morphisme de R ψ (ρ) dans O E se factorise par R ψ (v, t, ρ) si et seulement si la représentation qui lui est associée est potentiellement cristalline de poids de Hodge-Tate v et la représentation de Weil-Deligne qui lui est associée par Fontaine (cf [START_REF] Fontaine | Représentations -adiques potentiellement semi-stables[END_REF]) est isomorphe à t. Pour démontrer ce théorème, Kisin construit un schéma muni d'un morphisme vers Spec R ψ (ρ) dont l'adhérence schématique de l'image se trouve être le spectre de l'anneau R ψ (v, t, ρ) (1) . Ce schéma, que nous notons ici GR ψ (v, t, ρ), est obtenu comme espace de modules de réseaux de Breuil-Kisin. Le cas initialement étudié par Kisin dans [START_REF] Kisin | Moduli of finite flat group schemes and modularity[END_REF] est le cas Barsotti-Tate pour lequel le type de Hodge ne fait intervenir que les entiers 0 et 1 et le type galoisien est trivial. Les représentations correspondantes sont alors associées aux groupes de Barsotti-Tate (éventuellement tronqués). Sous ces hypothèses, Kisin s'intéresse aux fibres

GR ψ (v, t, ρ) = Spec k E × Spec R ψ (ρ) GR ψ (v, t, ρ)
qui sont définies purement en caractéristique p et correspondent à un problème de modules plus facile à appréhender.

Dans leur article [PR], Pappas et Rapoport ont donné le nom de variétés de Kisin aux variétés GR ψ (v, t, ρ). Depuis, plusieurs auteurs se sont intéressés aux propriétés géométriques des variétés de Kisin. En lien avec la connexité, Hellmann a notamment démontré dans [START_REF] Hellmann | Connectedness of Kisin's varieties for GL 2[END_REF] que les variétés de Kisin correspondant aux déformations Barsotti-Tate d'une représentation irréductible de dimension 2 sont connexes, ce qui implique la connexité de la fibre générique de l'espace de déformations associé. Les dimensions de certaines variétés de Kisin ont également été étudiées par Hellmann [START_REF] Hellmann | On the structure of some moduli spaces of finite flat group schemes[END_REF],

Imai [Im] et Caruso [START_REF] Caruso | Estimation des dimensions de certaines variétés de Kisin[END_REF].

Pour la première fois dans [CDM] est apparue une variété de Kisin associée à un type galoisien non trivial. Cet article faisait suite à [BM] et se plaçait dans la situation particulière suivante : l'extension F est non ramifiée de degré f sur Q p avec p 5, le type de Hodge v est égal à (0, 1) en toutes les places, le type galoisien t est la somme directe de deux caractères modérément ramifiés de niveau f de G F et la représentation galoisienne ρ est absolument irréductible de dimension 2. Les résultats obtenus dans [CDM] -qui concernent essentiellement le cas où F est de degré 2 sur Q p -suggèrent un lien encore plus étroit que celui exprimé par Kisin entre la variété de Kisin GR ψ (v, t, ρ) et (la fibre générique de) l'espace de déformations Spec R ψ (v, t, ρ).

Afin d'étudier ce lien hypothétique, la première étape est de calculer les variétés de Kisin. C'est l'objet du présent article. Nous nous plaçons dans le cadre de [CDM] (pour tout degré f ) et, sous ces hypothèses, nous donnons une description complète des variétés GR ψ (v, t, ρ). Nous montrons le théorème suivant, où ε désigne le caractère cyclotomique p-adique de G F dans Z × p (nous renvoyons le lecteur au théorème 2.2.1 dans le corps du texte pour un énoncé détaillé).

Théorème 1 (Théorème 2.2.1). -Nous supposons que -le corps F est une extension non ramifiée de degré f de Q p avec p 5, -le type de Hodge v vaut (0, 1) en chaque place, -le type galoisien t = η ⊕ η est la somme directe de deux caractères modérément ramifiés de niveau f du sous-groupe d'inertie de G F à valeurs dans O × E , -la représentation ρ : G F → GL 2 (k E ) est absolument irréductible, -le caractère ψ restreint au sous-groupe d'inertie coïncide avec le produit ηη ε. Alors la variété de Kisin GR ψ (v, t, ρ) apparaît comme un sous-schéma fermé réduit de (P 1 k E ) [F :Qp] défini par une famille d'équations explicites.

Comme conséquence du théorème 1, nous déduisons diverses propriétés géométriques des variétés de Kisin et des espaces de déformations, notamment :

Corollaire 2 (Corollaire 4.3.3). -Sous les hypothèses du théorème 1, la variété de Kisin GR ψ (v, t, ρ) est connexe.

Nous donnons également des conditions nécessaires et suffisantes sur le couple (ρ, t) pour que la variété GR ψ (v, t, ρ) soit non vide (cf corollaire 4.1.3). Notons que ceci se produit si et seulement si l'anneau R ψ (v, t, ρ) est non nul.

Nous déduisons de notre étude qu'il est trop optimiste de penser que la variété de Kisin GR ψ (v, t, ρ) à elle seule détermine Spec R ψ (v, t, ρ) ou même seulement sa fibre générique. Toutefois, nous proposons une version raffinée plausible de cette idée. Pour ce faire, reprenant les techniques de [BM, CDM], nous définissons une stratification de GR ψ (v, t, ρ) par des sous-schémas localement fermés et formulons la conjecture suivante.

Conjecture 3 (Conjecture 5.1.5). -Si le type galoisien t est non dégénéré (2) , la variété de Kisin GR ψ (v, t, ρ) munie de sa stratification détermine l'anneau

R ψ (v, t, ρ)[1/p].
2. C'est une hypothèse faible de généricité précisée dans la définition 1.1.1.

Cette conjecture est vraie si f = 2 (hormis peut-être pour quelques cas très particuliers) par les travaux de [CDM]. Elle l'est également lorsque la variété de Kisin est réduite à un point, ce qui se produit pour une représentation générique. Nous concluons cet article en proposant un candidat pour (la variété rigide ayant pour anneau) R ψ (v, t, ρ)[1/p] qui, conformément à la conjecture 3, est construit uniquement à partir de la variété de Kisin stratifiée.

Pour démontrer le théorème 1, notre méthode consiste d'abord à associer à ρ et t, une donnée combinatoire que nous appelons le gène de (ρ, t) et que nous notons X. Concrètement, il s'agit d'une suite de 2•[F : Q p ] symboles de l'ensemble {A, B, AB, O} qu'il est commode de représenter sur un ruban de Moebius. Ensuite, nous démontrons que les équations de la variété de Kisin se lisent sur X à l'aide de manipulations combinatoires élémentaires. En d'autres termes, le gène X est une donnée épurée et extrêmement simple qui capture intégralement la géométrie de la variété de Kisin GR ψ (v, t, ρ)qui, elle, peut être compliquée. À partir de là, le corollaire 2 découle d'une étude combinatoire portant sur les gènes X. La stratification sur GR ψ (v, t, ρ) s'obtient, elle aussi, aisément, à partir du gène, de même que le candidat que nous proposons pour R ψ (v, t, ρ)[1/p].

Le plan de l'article est le suivant. Dans le §1, nous rappelons toutes les notions utiles à la définition rigoureuse des variétés de Kisin GR ψ (v, t, ρ) dans le cadre qui nous intéresse. Le §2 est consacré à la définition des gènes X et à l'énoncé précis du théorème 1. Pour familiariser le lecteur avec les gènes, nous détaillons en outre quelques exemples que nous pensons représentatifs. La démonstration du théorème 1 est reportée au §3 et les conséquences géométriques, et en particulier le corollaire 2, sont discutées au §4. Enfin, dans le §5, nous définissons la stratification par le genre sur les variétés de Kisin et expliquons en quoi nous pensons qu'elle est liée à la géométrie des espaces de déformations potentiellement Barsotti-Tate.

Les auteurs remercient Bernard Le Stum et Alberto Vezzani pour leurs explications et leurs réponses toujours pertinentes sur les questions de géométrie p-adique.

Les recherches menant aux présents résultats ont bénéficié d'un soutien financier du septième programme-cadre de l'Union européenne (7ePC/2007-2013) en vertu de la convention de subvention numéro 266638.

Variétés de Kisin avec donnée de descente

Toutes les extensions de Q p considérées sont supposées contenues une clôture algébrique Q p fixée de Q p . Pour K une telle extension, nous notons G K = Gal(Q p /K), O K son anneau d'entiers, π K une uniformisante et k K le corps résiduel de O K .

1.1. Les données : représentation et type galoisiens. -Soient E une extension finie de Q p et F une extension finie non ramifiée de Q p de degré f 2. Posons q = p f et e = p f -1. Soit F l'unique extension quadratique non ramifiée de F dans Q p . Nous supposons F ⊂ E. Nous fixons un plongement τ 0 de F dans E et pour 0 i f -1, nous notons τ i le plongement τ 0 • ϕ -i où ϕ désigne l'endomorphisme de Frobenius sur F . Nous notons F nr la plus grande extension de F non ramifiée dans Q p et G ab F le plus grand quotient abélien de G F .

Soit L le corps obtenu en adjoignant à F une racine e-ième de -p, notée e √ -p. Il s'agit d'une extension totalement ramifiée de E et la projection à gauche sur Gal(L/F ) et à droite sur les représentants multiplicatifs [F × q ] ∼ = F × q (en envoyant p Z (1 + pO F ) sur 1) induit l'isomorphisme

ω f : Gal(L/F ) ∼ -→ (O F /p) × = k × F g -→ g( e √ -p) e √ -p (1) par lequel nous voyons tout caractère de k × F comme un caractère de Gal(L/F ) et réciproquement. Notons ω f : G F → k × E le caractère fondamental de niveau f induit sur G F par (1) et le plongement τ 0 . De façon analogue, nous notons ω 2f : G F → k × E le caractère fondamental de niveau 2f de F (après avoir choisi un plongement τ 0 : F → E qui prolonge τ 0 à F ). Soit ε : G F -→ Z × p le caractère cyclotomique p-adique et ω sa réduction modulo p. Pour θ dans k × E , nous notons enfin nr (θ) : G F → k × E l'unique caractère non ramifié qui envoie le Frobenius arithmétique de G F sur θ. Soit ρ : G F -→ GL 2 (k E ) la représentation galoisienne (continue) irréductible ρ Ind G F G F ω h 2f • nr (θ) , avec h entre 0 et p 2f -2 et θ dans k × E .
Comme ρ est supposée irréductible, l'entier h n'est pas un multiple de q + 1. Par conséquent, il existe des entiers h i (0 i f -1) dans l'intervalle 0, p -1 uniquement déterminés tels que :

(2)

h ≡ 1 + f -1 i=0 h i p f -1-i (mod q + 1).
Fixons deux caractères modérés de niveau f distincts η, η :

I F → O × E qui s'étendent à G F . Le type galoisien t = η ⊕η est une représentation de noyau ouvert I F → GL 2 (E). Notons η (resp. η ) la réduction modulo p de η (resp. η ). Il existe donc c ∈ 0, p f -2 tel que η • (η ) -1 = τ c 0 et pour 0 i < f nous notons c i ∈ 0, p -1 les entiers définis par l'égalité c = f -1 i=0 c i p i .
Nous introduisons une notion de dégénérescence pour les représentations et les types galoisiens.

Définition 1.1.1. -La représentation ρ est dite non dégénérée s'il existe un entier i 0 ∈ 0, f -1 tel que h i 0 ∈ {0, p -1}.
Le type galoisien t est dit non dégénéré s'il existe un entier

j 0 ∈ 0, f -1 tel que c j 0 ∈ {0, 1, p -2, p -1}.
Pour l'instant, nous ne supposons aucune propriété de non dégénérescence ni sur ρ, ni sur t. Nous explicitons ces hypothèses dans les énoncés lorsqu'elles sont nécessaires. Remarquons que, lorsque p est fixé et f tend vers l'infini, la proportion de représentations dégénérées (resp. de types galoisiens dégénérés) tend vers 0. Ceci contraste avec la notion de représentations génériques qui avait été considérée dans [Br] puisque, lorsque p est fixé et f tend vers l'infini, la proportion de représentations non génériques tend, elle, vers 1.

Nous fixons le type de Hodge v = (0, 1) f ainsi qu'un caractère continu ψ :

G F → O × E tel que ψ |I F = ε det t.
Une représentation continue de G F sur un E-espace vectoriel de dimension 2 est dite potentiellement Barsotti-Tate de type (v, t) si elle est potentiellement cristalline avec poids de Hodge-Tate v et si la représentation de Weil-Deligne qui lui est attachée par [START_REF] Fontaine | Représentations -adiques potentiellement semi-stables[END_REF] est isomorphe à t en restriction à I F . Une condition nécessaire d'existence d'un relèvement potentiellement Barsotti-Tate de type (v, t) de ρ est donc

det ρ |I F = (η η ω) |I F . (3)
Nous supposons désormais satisfaite cette hypothèse sur le type galoisien t.

1.2. Les ϕ-modules étales. -Par commodité pour le lecteur, nous rappelons ici les notions de théorie de Hodge p-adique indispensables pour définir les modules de Breuil-Kisin qui paramètrent les déformations géométriques de ρ. Pour une version plus détaillée, nous renvoyons à [START_REF] Fontaine | Représentations p-adiques des corps locaux I[END_REF], [START_REF] Kisin | The structure of potentially semi-stable deformation rings[END_REF], [START_REF] Caruso | Représentations galoisiennes p-adiques et (ϕ, τ )-modules[END_REF]. Posons W = O F et notons ϕ l'endomorphisme de Frobenius agissant sur W et F . Fixons également un système compatible (π s ) s∈N de racines p s -ièmes de (-p) dans Q p et, pour tout entier s, posons

F s = F (π s ) et L s = L(π s ). Définissons également F ∞ = s F s et L ∞ = s L s . Les groupes de Galois correspondants sont notés G F∞ et G L∞ . Le quotient G L∞ /G F∞ = Gal(L ∞ /F ∞ ) s'identifie naturellement à Gal(L/F ). Introduisons enfin les anneaux S = W [[u]] et O E = i∈Z a i u i a i ∈ W, lim i→-∞ a i = 0 le complété p-adique de S[1/u].
Ils sont, tous deux, munis d'un endomorphisme de Frobenius ϕ défini par ϕ i a i u i = i ϕ(a i )u pi . Ils sont également munis d'une action de Gal(L/F ) définie par la formule g

• i a i u i = i [ω f (g)] i u i où [•] désigne le représentant de Teichmüller. Définition 1.2.1. -Soit R une Z p -algèbre locale complète noetherienne. Un ϕ- module sur R ⊗Zp O E est un (R ⊗Zp O E )-module M libre de rang fini muni d'une ap- plication ϕ : M → M qui est ϕ-semi-linéaire par rapport à O E et linéaire par rapport à R. Le ϕ-module M est dit étale si l'image de ϕ engendre M comme (R ⊗Zp O E )-module.
Soit R une Z p -algèbre locale noethérienne. Par la théorie de Fontaine et Wintenberger [START_REF] Fontaine | Représentations p-adiques des corps locaux I[END_REF][START_REF] Kisin | The structure of potentially semi-stable deformation rings[END_REF], nous savons associer à toute R-représentation V de

G F∞ un ϕ-module étale sur (R ⊗Zp O E ) défini par la formule M(V ) = (V (-1) ⊗Zp O E nr ) G L∞ . Il est muni d'une action de Gal(L ∞ /F ∞ )
Gal(L/F ), qui est semi-linéaire par rapport à l'action de Gal(L/F ) sur O E . Supposons à présent que R soit une W -algèbre. Nous avons une décomposition canonique de l'anneau R ⊗Zp W :

R ⊗Zp W f -1 i∈0 R x ⊗ y → (x • ϕ -i (y)) 0 i<f .
En tensorisant par O E sur W , nous en déduisons un isomorphisme canonique :

(4) R ⊗Zp O E f -1 i∈0 R ⊗W,ι•ϕ -i O E , où ι désigne le morphisme structurel faisant de R une W -algèbre. Concrètement, le i-ième facteur R ⊗W,ι•ϕ -i O E admet la description explicite suivante : (5) R ⊗W,ι•ϕ -i O E j∈Z a j u j a j ∈ R, lim j→-∞ a j = 0 ,
l'identification faisant correspondre le tenseur pur λ ⊗ ( a j u j ) avec la série λ ϕ -i (a j ) u j . Avec ce choix, l'isomorphisme (5) est compatible à la fois à la multiplication par les éléments de W agissant sur le facteur O E et à la multiplication par les éléments de R agissant sur le facteur R.

En notant e i l'idempotent de R ⊗Zp O E correspondant au i-ième facteur de la décomposition (4), nous voyons que tout module M sur R ⊗Zp O E se décompose canoniquement comme une somme directe :

(6) M = M (0) ⊕ M (1) ⊕ • • • ⊕ M (f -1) où M (i) = e i M peut être considéré comme un module sur l'anneau R ⊗W,ι•ϕ -i O E .
Nous pouvons décrire explicitement le ϕ-module correspondant à la représentation

ρ = Ind G F G F ω h 2f • nr (θ) : pour tout i dans Z/f Z, il existe des bases (ε (i) 0 , ε (i) 
1 ) du k E ((u))-espace vectoriel M(ρ) (i) qui sont fixées par Gal(L/F ) et dans lesquelles, en posant v = u e , les matrices du Frobenius ϕ : M(ρ) (i) -→ M(ρ) (i+1) sont : (i) M est projectif de rang 2 sur R ⊗Zp S ;

Id pour 0 i f -2, 0 θ -1 v h 1 0 • v e p-1 -h-k pour i = f -1. 1.3.
(ii) M engendre M(ρ) comme (R ⊗Zp O E )-module ;

(iii) M est stable par les actions de ϕ et Gal(L/F ) ;

(iv) l'idéal déterminant de ϕ : M → M est l'idéal principal engendré par u e + p ;

(v) l'action de Gal(L/F ) sur le quotient M/uM est donnée par t.

De plus, si un tel M existe, il est unique.

D'après le théorème 1.3.1, lorsque R est l'anneau des entiers d'une extension finie de E, l'étude des R-points de R ψ (v, t, ρ) se ramène à un problème de classification d'algèbre semi-linéaire qui paraît plus abordable. Afin de rendre cette idée plus précise, fixons momentanément une O E -algèbre locale artinienne R de corps résiduel k E ainsi qu'une déformation ρ R : G F → GL 2 (R) de ρ de déterminant ψ. Pour définir le schéma formel qui nous intéresse (8), nous introduisons la définition suivante.

Définition 1.3.2. -Soit S une R-algèbre. Un réseau de Breuil-Kisin de type (v, t) de S ⊗ R M(ρ R ) est la donnée d'un sous-(S ⊗ Zp S)-module M de S ⊗ R M(ρ R ) tel que (i) le module M est projectif de rang 2 ; (ii) M engendre S ⊗ R M(ρ R ) comme (S ⊗ Zp O E )-module ; (iii) M est stable par ϕ et Gal(L/F ) ; (iv) l'idéal déterminant de ϕ : M → M est l'idéal principal engendré par u e + p ; (v) pour tout g ∈ Gal(L/F ) : tr(g | M/uM) = η(g) + η (g) ⊗ 1 ∈ S ⊗ Zp W det(g | M/uM) = η(g)η (g) ⊗ 1 ∈ S ⊗ Zp W.
Remarque 1.3.3. -Dans la définition 1.3.2, le produit tensoriel S ⊗ Zp S n'est pas complété. Il s'agit donc d'une variante algébrique -par opposition à formelle -des plus traditionnels modules de Breuil-Kisin définis lorsque S est une Z p -algèbre locale noethérienne complète.

Remarque 1.3.4. -Lorsque R est une W -algèbre, tout réseau de Breuil-Kisin M de type (v, t) de S ⊗ R M(ρ R ) admet une décomposition similaire à (6) qui s'écrit :

(7) M = M (0) ⊕ M (1) ⊕ • • • ⊕ M (f -1) .
Pour tout indice i dans Z/f Z, le facteur M (i) est un module projectif de rang 2 sur

S ⊗ W,ι•ϕ -i S et ϕ envoie M (i) dans M (i+1) .
Nous pouvons à présent considérer le foncteur L ρ R qui, à une R-algèbre S associe l'ensemble des réseaux de type (v, t) dans S ⊗ R M(ρ R ). Nous avons alors un résultat de représentabilité.

Proposition 1.3.5. -(1) Le foncteur L ρ R est représentable par un R-schéma pro- jectif L ρ R .
(2) Si R est une R-algèbre locale artinienne de corps résiduel

k E et ρ R est une R -représentation qui étend ρ R alors il existe un isomorphisme canonique de Spec R × Spec R L ρ R dans L ρ R .
(3) Le schéma L ρ R est muni, fonctoriellement en R, d'un fibré en droite très ample canonique.

Démonstration. -Il s'agit de l'analogue dans notre contexte de la proposition 1.3 de [START_REF] Kisin | Potentially semi-stable deformation rings[END_REF]. La démonstration est similaire, l'unique différence étant que nous devons justifier en outre que les conditions (iv) et (v) qui apparaissent dans la définition 1.3.2 sont fermées. La condition (iv) est équivalente à la conjonction des deux conditions suivantes :

(iv-a) le conoyau de det(id ⊗ ϕ) : S ⊗ ϕ 2 M → 2 M est annulé par u e + p ;

(iv-b) u e + p appartient à l'idéal déterminant de ϕ : M → M. La condition (iv-a) est fermée d'après [START_REF] Kisin | Potentially semi-stable deformation rings[END_REF]. Les conditions (iv-b) et (v) sont clairement fermées.

Nous faisons maintenant varier R (et ρ R ) et appliquons la proposition 1.3.5 aux algèbres artiniennes R n = R ψ (v, t, ρ)/m n où m désigne l'idéal maximal de R ψ (v, t, ρ). La représentation ρ Rn que nous considérons est le pullback de la déformation universelle ρ univ : G F → GL 2 (R ψ (ρ)) par le morphisme naturel R ψ (ρ) → R n . La proposition 1.3.5 fournit, pour tout entier n, un schéma projectif L ρ Rn sur Spec R n qui représente le foncteur L ρ Rn . Il découle des énoncés de la proposition 1.3.5 que ces schémas se recollent en un schéma formel :

(8) GR ψ (v, t, ρ) -→ Spf R ψ (v, t, ρ).
Il résulte de GAGA formel (voir corollaire 1.5.1 de [START_REF] Kisin | Potentially semi-stable deformation rings[END_REF]) que GR ψ (v, t, ρ) est algébrisable dans le sens où il s'identifie au complété formel d'un schéma GR ψ (v, t, ρ) sur Spec R ψ (v, t, ρ) le long de sa fibre au-dessus de Spec k E . Par ailleurs, si R est l'anneau des entiers d'une extension finie de E, il résulte du théorème 1.3.1 que la donnée d'un R-point de GR ψ (v, t, ρ) est équivalente à celle d'une déformation de ρ à R qui est potentiellement Barsotti-Tate de type (v, t). En copiant la démonstration de la proposition 1.6.4 de [START_REF] Kisin | Potentially semi-stable deformation rings[END_REF], nous déduisons le théorème suivant. 

Théorème 1.3.6. -Le morphisme structurel GR ψ (v, t, ρ) → Spec R ψ (v,
GR ψ (v, t, ρ) = Spec k E × Spf R ψ (v,t,ρ) GR ψ (v, t, ρ) = Spec k E × Spec R ψ (v,t,ρ) GR ψ (v, t, ρ).
Il s'agit d'une variété projective sur Spec k E qui s'identifie canoniquement à L ρ .

Gènes et équations de la variété de Kisin

L'objectif de cette partie est d'énoncer une version précise du théorème 1 de l'introduction qui fournit une description complète et explicite des variétés de Kisin GR ψ (v, t, ρ). Pour ce faire, nous commençons par introduire une donnée combinatoire associée au couple (t, ρ) que nous appelons le gène.

Le paragraphe §2.1 est consacré à la définition des gènes. Il inclut également plusieurs résultats combinatoires que nous serons amenés à utiliser fréquemment dans la suite. L'énoncé du théorème 2.2.1 apparaît au §2.2. Il est suivi de plusieurs exemples qui donnent un aperçu complet des différentes situations qui peuvent se produire. La démonstration du théorème 2.2.1, quant à elle, est reportée au §3 alors que ses applications font l'objet du §4.

2.1. Gènes. -Posons :

ν = e p -1 -1 = p + p 2 + • • • + p f -1 . Rappelons que ρ Ind G F G F ω h 2f
•nr (θ) pour un certain entier h défini modulo p 2f -1 = q 2 -1 et qu'il existe des entiers h i (0 i f -1) dans l'intervalle 0, p -1 uniquement déterminés tels que

(9) h ≡ 1 + f -1 i=0 h i p f -1-i (mod q + 1).
Nous étendons la suite des h i , dans un premier temps, à f, 2f -1 en posant h i = p -1 -h i-f pour tout entier i dans cet intervalle puis, dans un second temps, à N tout entier par (2f )-périodicité.

La réduction modulo π E du type galoisien t = η ⊕ η est, quant à elle, encodée par deux éléments γ, γ ∈ Z/eZ définis par η = τ γ 0 et η = τ γ 0 où nous rappelons que τ 0 désigne le plongement de k F dans k E que nous avons fixé.

Définition 2.1.1. -Avec les notations précédentes, pour tout entier i 0, nous définissons :

1) l'entier α i comme l'unique élément de 0, e -1 vérifiant la congruence :

α i ≡ p i h q + 1 -p i γ (mod e),
2) le symbole X i ∈ {A, B, AB, O} par :

X i = A si α i ∈ 0, 1 p ν + ε i+f = AB si α i ∈ 1 p ν + ε i+f , p-1 p ν -ε i = B si α i ∈ p-1 p ν -ε i , ν = O si α i ∈ ν, e où ε i = 1 si h i = p -1, 0 sinon.
La suite (X i ) i∈N est appelée le gène du triplet (h, γ, γ ).

Lorsqu'une confusion est possible, nous précisons la dépendance des α i et des X i vis-à-vis des paramètres h, γ et γ en notant

α i (h, γ, γ ) et X i (h, γ, γ ). Remarque 2.1.2. -Le type galoisien t = η ⊕ η satisfait det ρ |I F = (η η ω) |I F . Ainsi η|I F détermine η |I F .
Ceci justifie la dissymétrie apparente dans les rôles de η et η dans les notations introduites dans ce paragraphe. Nous renvoyons au lemme 2.1.7 pour de plus amples précisions.

Le gène (X i ) i∈N est une suite (2f )-périodique. Dans la suite, nous le représentons systématiquement sur un ruban de Moebius comme le montre la figure 1. Ce faisant, les termes X i qui composent le gène restent écrits dans l'ordre les uns à la suite des autres et, de plus, la coordonnée X i tombe en face de X i+f pour tout i. De même, lorsque nous considérons le couple, dit couple d'allèles, (X i , X i+f ), nous le notons X i X i+f . Cette écriture a un intérêt pour notre propos car elle nous permet d'avoir une lecture immédiate des équations de la variété de Kisin à partir du gène correspondant (voir théorème 2.2.1).

X 0 X 1 X 2 • • • X f -2 X f -1 X f X f +1 X f +2 • • • X 2f -2 X 2f -1
Les suites (α i ) i∈N et (X i ) i∈N sont (2f )-périodiques. Pour des raisons de commodité, nous les prolongeons à Z par (2f )-périodicité. Elles sont soumises à des propriétés combinatoires qui contraignent leur structure. Les lemmes suivants en sont des exemples. Le lemme 2.1.3 résulte d'un calcul direct.

Lemme 2.1.3. -Avec les notations précédentes, nous avons :

p i h q + 1 ≡ i-1 j=0 h i-j-1 p j (mod e) si i ∈ 0, f -1 ≡ p i-f -1 + f -1 j=i-f h i-j-1 p j (mod e) si i ∈ f, 2f -1 .
De plus, α i+1 ≡ pα i +h i (mod e) pour tout entier i et cette congruence est une égalité si et seulement X i ∈ {A, AB}. Enfin, dans le cas où X i = B, nous avons α i+1 = pα i +h i -e.

Lemme 2.1.4. -En conservant les notations ci-dessus, le gène X vérifie les propriétés suivantes : 

i) Pour tout entier i, l'égalité X i = AB implique X i+1 = O. ii) Pour tout entier i, l'égalité X i+1 = O implique X i ∈ {O, AB}. Démonstration. -Supposons X i = AB. Par définition, nous obtenons 1 p ν + ε i+f α i p -1 p ν -ε i . où ε i vaut 1 si h i = p -1 et 0 sinon. Du lemme 2.1.3, nous déduisons ν + pε i+f + h i α i+1 (p -1)ν -pε i + h i et donc ν < α i+1 e -1.
α i = 1 p 2f -1 2f -1 j=0 p 2f -1-j (e1 B (X i+j ) -h i+j ).
En regroupant les termes en j et j + f et en utilisant h i+j+f = p -1 -h i+j , il vient :

α i = 1 p f + 1 -1 + f -1 j=0 p f -1-j (p f 1 B (X i+j ) + 1 B (X i+j+f ) -h i+j ) = f -1 j=0 p f -1-j 1 B (X i+j ) - 1 p f + 1 1 + f -1 j=0 p f -1-j (1 B (X i+j ) -1 B (X i+j+f ) + h i+j ) A i . Comme -1 1 B (X i+j ) -1 B (X i+j+f ) + h i+j p, nous avons -(p f + 1) < 1 - p f -1 p -1 A i 1 - p p -1 (p f -1) < 2(p f + 1) et, par conséquent, A i ∈ {0, p f + 1}. Si A i 0 = p f + 1, alors p f -p f -1 h i 0 = f -1 j=0 p f -1-j 1 B (X i 0 +j ) -1 B (X i 0 +j+f ) + f -1 j=1 p f -1-j h i 0 +j , d'où on déduit que |p -h i 0 | 1 p f -1 p f -1 p-1 + p f -1 -1 < 2 et h i 0 = p -1, ce qui est exclu.
De la même manière, si A i 0 = 0, nous trouvons :

p f -1 h i 0 = -1 - f -1 j=0 p f -1-j 1 B (X i 0 +j+f ) -1 B (X i 0 +j ) - f -1 j=1 p f -1-j h i 0 +j , puis, en utilisant que h i 0 < p -1, |h i 0 | 1 p f -1 p f -1 p-1 + p f -1 -p f -1 < 1 et h i 0 = 0.
Dans tous les cas, nous aboutissons alors à une contradiction. Le gène X contient donc au moins une occurrence du symbole O. 

Lemme 2.1.6. -Le cas où {X i , X i+f } = {A, B} pour tout i ∈ 0, f -1 est exclu. Démonstration. -De {X i , X i+f } = {A, B} pour tout i, nous déduisons que : |α i + α f +i -ν| < ν/p + 1 pour tout i. De plus, nous avons α i+1 + α i+f +1 -ν = p(α i + α i+f -ν) d'
|α i + α i+f -ν| < 1 p n • (ν/p + 1) pour tout i et tout n ∈ N . Donc α i+f + α i = ν. Un calcul élémentaire utilisant det ρ |I F = (η η ω) |I F nous amène alors à l'égalité α i (h, γ, γ ) = α i (h, γ , γ) valable pour tout i. Il en résulte que γ = γ , et enfin η = η , ce que nous avons exclu.
Transformations du gène par isomorphisme. -La défintion du gène ne dépend pas uniquement du couple (ρ, t) mais du triplet d'entiers (h, γ, γ ). Or la donnée de (h, γ, γ ) n'est pas équivalente à celle de (ρ, t). En effet, le premier détermine le second mais la réciproque n'est pas valable. Précisément, changer h en qh ou échanger γ et γ sont deux modifications (involutives) qui laissent inchangés ρ et t. Le lemme 2.1.7 précise comment se comporte le gène suite à ces modifications.

Lemme 2.1.7. -Soit τ la transposition de l'ensemble {A, B, AB, O} qui échange A et B. Alors, nous avons : i) X i (h, γ, γ ) = X i+f (qh, γ, γ ) ii) X i (h, γ , γ) = τ X i+f (h, γ, γ )
pour tout entier i.

Démonstration. -i) s'obtient en remarquant que qh ≡ -h ≡ p f - f -1 i=0 h i p f -1-i ≡ 1 + f -1 i=0 (p -1 -h i )p f -1-i (mod q + 1). L'hypothèse sur le type galoisien det ρ |I F = ω h f = (η η ω) |I F impose la congruence α i (h, γ, γ ) + α i+f (h, γ , γ) ≡ ν (mod e). De là découle ii).
Un autre choix que nous avons fait est celui du plongement τ 0 . Si nous en choisissons un autre, disons σ 0 , il existe un entier n tel que σ 0 = τ 0 • ϕ -n où ϕ est le Frobenius arithmétique. Un calcul simple montre alors que, si (h, γ, γ ) encode le couple (ρ, t) par rapport au plongement τ 0 , alors ce même couple est encodé par (p n h, p n γ, p n γ ) relativement au plongement σ 0 . Nous en déduisons que le gène relatif à σ 0 s'obtient à partir du gène relatif à τ 0 simplement en décalant les indices de n.

En conclusion, nous pouvons dire que le gène lui-même ne dépend pas uniquement du couple (ρ, t) mais également de quelques choix supplémentaires. Toutefois, cette dépendance est facile à cerner et n'influence aucunement les équations de la variété de Kisin que nous obtenons (voir théorème 2.2.1).

Décoration des gènes. -À partir d'un gène, nous définissons des données supplémentaires, que nous appelons décorations, qui sont utiles pour lire les équations de la variété de Kisin.

Définition 2.1.8. -Soit X un gène pour lequel il existe i 0 ∈ 0, f -1 avec X i 0 X i 0 +f ∈ O O , O AB , AB O , AB AB , A B , B A . Pour i prenant successivement les valeurs i 0 , i 0 -1 . . . , 0, f -1, . . . , i 0 + 1 : • si X i X i+f ∈ A AB , AB A , A A , A O , O A , nous disons que A est dominant en i dans X, • si X i X i+f ∈ B AB , AB B , B B , B O , O B , nous disons que B est dominant en i dans X,
• sinon, si A (resp. B) est dominant dans (i + 1) dans X, nous disons que A (resp. B) est dominant en i dans X.

Quand l'hypothèse de la définition 2.1.8 est vérifiée, nous disons que X a un caractère dominant. Il se peut que le gène associé à un couple (ρ, t) n'ait pas de caractère dominant ; toutefois, en vertu des lemmes 2.1.4 et 2.1.6, ces cas sont très circonscrits. Plus précisément, le gène X(h, γ, γ ) n'a pas de caractère dominant uniquement dans les deux cas suivants :

• soit, il contient un couple d'allèles O O

• soit, quitte à échanger les rôles de η et η , il est de la forme : 

AB O AB • • • O AB O AB O • • • AB O (et
i ∈ 0, f -1 tel que Y ∈ {A, B} soit dominant dans X i X i+f et X i+1 X i+f +1 : • nous relions X i et X i+1+f si X i = Y , et • nous relions X i+f et X i+1 si X i+f = Y .
La décoration de X est l'ensemble des liens ci-dessus.

Exemple 2.1.10. -Nous considèrons f = 11 (i.e. F = Q p 11 ) et les paramètres

ρ = Ind G F G F (ω h 22 ) avec h = p-1 2 + (p -1)p 3 + (p -1)p 5 + p 8 + p 9 + p 10 η = τ γ 0 avec γ = -p+3 2 -p 2 -2p 3 -p 5 η = τ γ 0 avec γ = -p 5 -p 7
Pour ces données, les valeurs prises par les α i ainsi que les allèles X i correspondants sont représentés dans le tableau de la figure 2. En revenant aux définitions, nous en déduisons le gène associé ainsi que sa décoration. Voici comment il se représente sur un ruban de Moebius :

B A B A B A B B B A A B AB A O A A A AB A O A
Dans la représentation ci-dessus, les colonnes dans lesquelles A (resp. B) est dominant ont été dessinées en bleu (resp. en vert). Conformément à la définition, les liens s'obtiennent en faisant partir des segments en diagonale vers la droite à partir des A bleus et des B verts, pourvu que la colonne située à droite soit de la même couleur. Nous insistons en particulier sur le fait qu'en aucun cas, un lien ne peut relier deux colonnes de couleurs différentes.

i α i X i i α i X i 0 p 5 + p 7 A 11 p-3 2 + (p -1)p 3 + p 6 + p 7 + p 8 + p 9 + p 10 B 1 1 + p 6 + p 8 A 12 (p -1) + p-3 2 p + (p -1)p 4 + p 7 + p 8 + p 9 + p 10 B 2 1 + p + p 7 + p 9 A 13 (p 2 -1) + p-3 2 p 2 + (p -1)p 5 + p 8 + p 9 + p 10 B 3 1 + p + p 2 + p 8 + p 10 B 14 (p 3 -1) + p-3 2 p 3 + (p -1)p 6 + p 9 + p 10 B 4 1 + p + p 2 + p 3 + p 9 A 15 p-1 2 p 4 + (p -1)p 7 + p 10 B 5 p + p 2 + p 3 + p 4 + p 10 B 16 p + p-1 2 p 5 + (p -1)p 8 A 6 p + p 2 + p 3 + p 4 + p 5 A 17 p 2 + p-1 2 p 6 + (p -1)p 9 AB 7 p 2 + p 3 + p 4 + p 5 + p 6 A 18 (p -1) + p 3 + p-1 2 p 7 + (p -1)p 10 O 8 (p -1) + p 3 + p 4 + p 5 + p 6 + p 7 A 19 (p 2 -1) + p 4 + p-1 2 p 8 A 9 (p -1)p + p 4 + p 5 + p 6 + p 7 + p 8 A 20 (p 3 -1) + p 5 + p-1 2 p 9 AB 10 (p -1)p 2 + p 5 + p 6 + p 7 + p 8 + p 9 A 21 (p 4 -1) + p 6 + p-1 2 p 10 O Figure 2.
Valeurs des α i et des X i dans le cas de l'exemple 2.1.10 2.2. Détermination de la variété de Kisin. -Nous énonçons les résultats de détermination de la variété de Kisin GR ψ (v, t, ρ) en termes du gène décoré X. Les preuves font l'objet de la partie suivante ( §3).

Théorème 2.2.1. -La variété de Kisin GR ψ (v, t, ρ) est isomorphe à une sousvariété fermée K(t, ρ) de f -1 i=0 P 1 k E . Soit X un gène associé au couple (ρ, t). En notant [x i : x i+f ] les coordonnées homogènes sur le i-ième facteur (0 i < f ) et en convenant que x i = x i mod 2f pour i entier, la variété K(t, ρ) est définie par les équations suivantes :

(A) x i = 0 pour tout i ∈ 0, 2f -1 tel que X i = O (B1) x i x i+f +1 = x i+1 x i+f (i.e. [x i : x i+f ] = [x i+1 : x i+f +1 ]) chaque fois que nous observons, dans X, le motif X i X i+1 X i+f X i+f +1 (B2) x i x i+f +1 = 0 chaque fois que nous observons, dans X, le motif X i X i+1 X i+f X i+f +1 (B3) x i+1 x i+f = 0 chaque fois que nous observons, dans X, le motif X i X i+1 X i+f X i+f +1
Remarque 2.2.2. -L'écriture dans le jeu d'équations (B2) (resp. le jeu d'équations (B3)) sous-entend qu'il n'y a pas de lien entre

X i+1 et X i+f (resp. entre X i et X i+f +1 ).
Ainsi, pour un i donné, les cas (B1), (B2) et (B3) s'excluent mutuellement. Nous remarquons de plus que les jeux d'équations (B2) et (B3) sont équivalents et se déduisent l'un de l'autre par la transformation i → i + f . Nous avons toutefois préféré mentionner explicitement cette répétition pour plus de clarté.

En particulier, nous remarquons que la variété de Nous avons fait l'exercice pour f = 2 et f = 3 et avons reporté les résultats obtenus respectivement dans les tableaux de la figure 3 (page 17) et de la figure 4 (page 40). Pour f = 2, nous avons indiqué en outre un ou plusieurs couples (t, ρ) qui conduisent à chaque gène présenté. Les résultats auxquels nous aboutissons sont en accord avec ceux de [CDM] qui avaient été obtenus par des méthodes différentes qui ne s'étendent a priori pas à f > 2. Signalons enfin que, dans le cas f = 3, nous avons fait apparaître la stratification par le genre sur les variétés de Kisin ; celle-ci est définie et étudiée au §5.

2.3.2. Chaînes de P 1 . -Considérons le système d'équations donné par le fragment de diagramme de longueur + 1 (avec f -1) représenté ci-dessous.

x i x i+1 x i+2 • • • x i+ -1 x i+ x i+f x i+f +1 x i+f +2 • • • x i+ +f -1 x i+ +f
3. Nous renvoyons au §3.2.5 pour sa construction.

ρ = Ind G F G F (ω 1+r0 4 nr (θ)) Type t = η ⊕ η Gène Variété de Kisin r 0 = 0 ω r0 2 ⊕ ω -p 2 B B B A [1 : 0] × [1 : 0] 1 r 0 p -2 ω r0 2 ⊕ ω -p 2 O B O AB [1 : 0] × [1 : 0] 1 r 0 p -2 ω r0-p 4 ⊕ 1 AB A O A [0 : 1] × [1 : 0] 0 r 0 p -3 ω 1+r0-p 2 ⊕ ω -1 2 AB A O B P 1 k E × [1 : 0] Figure 3. Variété de Kisin de la représentation ρ = Ind G F G F (ω 1+r0 4 • nr (θ)).
Les équations correspondantes sont :

(10)

x i+j+1 x i+j+f = 0 pour j ∈ 0,
Ainsi si, pour un certain j 0 , la coordonnée x i+j 0 ne s'annule pas, nous déduisons que

x i+f +j 0 -1 = 0 et par suite que le point projectif [x i+j 0 -1 : x i+f +j 0 -1 ] est égal à [1 : 0].
De proche en proche, nous obtenons alors [x i+j :

x i+j+f ] = [1 : 0] pour tout j ∈ 0, j 0 -1 . De manière similaire, si la coordonnée x i+j 0 +f est non nulle, alors nous avons [x i+j :

x i+j+f ] = [0 : 1] pour tout j ∈ j 0 + 1, . Il résulte de ceci que les solutions du système (10) sont les -uplets ([x i+j : x i+j+f ]) 1 j de points projectifs de la forme :

[1 : 0], . . . , [1 : 0], [x i+j 0 : x i+j 0 +f ], [0 : 1], . . . , [0 : 1].
Géométriquement cela correspond à une chaîne de P 1 k E de longueur + 1.

2.3.3. Un cas non équidimensionnel. -L'exemple précédent montre que les variétés de Kisin ne sont pas irréductibles en général. Elles peuvent même ne pas être équidimensionnelles. L'exemple le plus simple de ce phénomène est donné par le diagramme suivant (f = 4) : x 11

x 0 x 1 x 2 x 3 x 4 x 5 x 7 0 La variété de Kisin correspondante est l'union de {[0 : 1]} × P 1 k E × {[0 : 1]} × {[1 : 0]} et P 1 k E × {[1 : 0]} × P 1 k E × {[1 : 0]}, c'est-à-dire d'une copie de P 1 k E et d'une copie de P 1 k E × P 1 k E s'intersectant
x 0

x 12

x 1

x 13

x 2

x 14

x 3

x 15

x 4

x 16

x 5

x 17

x 6 0 x 7

x 19

x 8

x 20

x 9 0

x 10 À ce niveau, plusieurs simplifications élémentaires peuvent être faites. Par exemple, le lien qui relie x 6 à 0 est inutile car le produit de ces deux valeurs est toujours nul. De même, comme [x 7 : 0] désigne un point de l'espace projectif, nous pouvons, sans perte de généralité, supposer que x 7 vaut 1. Le lien entre x 7 et x 19 implique alors que x 19 s'annule nécessairement et, par suite, comme précédemment, que x 8 peut être supposé égal à 1. Les décorations nous apprennent également que les points projectifs [x 8 :

x 19 ] = [1 : 0] et [x 9 :
x 20 ] doivent coïncider ; ainsi, nous avons x 20 = 0 et nous pouvons supposer que x 9 = 1. Enfin, la coordonnée x 10 peut être, elle aussi, supposée être égale à 1 car elle est face à un 0. Après ces simplifications, nous obtenons :

x 11 x 0 x 12 x 1 x 13 x 2 x 14 x 3 x 15 x 4 x 16 x 5 x 17 x 6 0 1 0 1 0 1 0 1
En nous appuyant sur les deux exemples traités précédemment, nous pouvons affirmer que la variété de Kisin qui nous intéresse est isomorphe à un produit

V 1 × V 2 où V 1 est une chaîne de P 1 k E de longueur 4 et V 2 est l'union d'une copie de P 1 k E et d'une copie de P 1 k E × P 1 k E qui s'intersectent transversalement en un point. 2.3.5. Le cas d'une représentation générique. -Rappelons ρ Ind G F G F ω h 2f • nr (θ) avec h ≡ 1 + f -1 i=0 h i p f -1-i mod (q + 1) (voir (9)). Définition 2.3.1. -La représentation ρ est dite générique si pour tout i ∈ 0, f -1 , 1 h i p -2.
Corollaire 2.3.2. -Si ρ est générique, la variété de Kisin GR ψ (v, t, ρ) est soit vide, soit réduite à un point.

Démonstration. -Soit i ∈ 0, f -1 . Un calcul direct à partir des formules du lemme 2.1.3 aboutit à :

α i+f -α i ≡ f -1 j=0 h i+j p f -1-j (mod e).
Or l'hypothèse de généricité implique que 1 

h j p -2 pour tout j ∈ Z et,
i ) i∈Z , (X i ) i∈Z (voir §2.1) et M(ρ) = (M(ρ) (i) ) 0 i f -1 de base (ε (i) 0 , ε (i) 1 ) 0 i f -1 (voir §1.2) associées à ρ Ind G F G F ω h 2f • nr (θ) . Effectuons les chan- gements de base e (i) 0 = u -p i h q+1 ε (i) 0 , e (i) 1 = u -p i+f h q+1 -e p i h q+1 ε (i) 1 , 0 i f -1.
Dans les bases (e

(i) 0 , e (i) 1 ) 0 i f -1 , les matrices de ϕ : M(ρ) (i) → M(ρ) (i+1) sont (11) u h i 0 0 u h i+f pour 0 i f -2, 0 θ -1 u h 2f -1 u h f -1 0 pour i = f -1.
De plus, ω f étant d'ordre e, la donnée de descente agit par g ∈ Gal(L/F ),

[g] • (e

(i) 0 ) = (τ i • ω f )(g) -p i h q+1 e (i) 0 (12) [g] • (e (i) 1 ) = (τ i • ω f )(g) -p i+f h q+1 e (i) 1 . (13) Notons M(ρ) le sous k F [[u]]-module de M(ρ) engendré par les e (i) 0 , e (i) 1 , 0 i f -1. Comme M(ρ) est stable sous l'action de k E , c'est un k E ⊗ Fp k F [[u]] -module.
La proposition suivante est un analogue de la Proposition 3.6.7 de [CL].

Proposition 3.1.1. -Soit R une k E -algèbre. Le R ⊗ Fp k F [[u]] -module R ⊗ k E M(ρ) est maximal pour l'inclusion parmi les R ⊗ Fp k F [[u]] -réseaux de R ⊗ Fp M(ρ) qui sont stables par ϕ. Démonstration. -Il suffit de montrer que si x est un élément de R ⊗ Fp M(ρ) qui n'appartient pas à R ⊗ k E M(ρ), alors le R ⊗ Fp k F [[u]] -module engendré par les ϕ n (x)
pour n 0 n'est pas de type fini. Or, un calcul direct montre que si v > 0, alors :

ϕ 2f (u -v e (i) 0 ) = α 0 u -w 0 e (i) 0 et ϕ 2f (u -v e (i) 1 ) = α 1 u -w 1 e (i) 1
où α 0 et α 1 sont des éléments non nuls de k E et w 0 et w 1 sont des entiers strictement inférieurs à v. La propriété annoncée et, par suite, la proposition en résultent. 

M = M (0) ⊕ • • • ⊕ M (f -1) et M(ρ) = M(ρ) (0) ⊕ • • • ⊕ M(ρ) (f -1) où les M (i) (resp. M(ρ) (i) ) sont des modules sur S (i) S = S ⊗ k F ,τ i k F [[u]] (resp. sur S ⊗ k F ,τ i k F [[u]]). L'inclusion M ⊂ S ⊗ k E M(ρ)
se lit alors facteur par facteur : elle implique que, pour tout i, nous avons

M (i) ⊂ S ⊗ k E M(ρ) (i) .
Dans ce paragraphe §3.2, nous supposons de surcroît que M est libre (de rang 2) comme module sur S S . Ceci est équivalent à demander la liberté des

M (i) sur S ⊗ k E k E [[u]]. 3.2.1. Action de la donnée de descente. -De l'inclusion M (i) ⊂ S ⊗ k E M(ρ) (i) , nous déduisons que, pour tout i entre 0 et f -1, toute S (i)
S -base de M (i) a des coordonnées dans la base (e

(i) 0 , e (i) 1 ) qui appartiennent à S (i) S . Soit i un indice entre 0 et f -1. Comme M est de type (v 0 , t), il existe une S (i) S -base (e (i) η , e (i) η ) de M (i) sur laquelle l'action de g ∈ Gal(L/K) est donnée par g • e (i) η = η(g)e (i) η et g • e (i) η = η (g)e (i)
η . Fixons une telle base (e

(i)
η , e (i) η ) et notons P (i) la matrice de passage de (e

(i)
η , e Lemme 3.2.1. -La matrice P (i) est de la forme :

P (i) = u α i a i u α i b i u α i+f b i u α i+f a i , avec a i , a i , b i et b i dans S ⊗ k E k E [[u e ]
] et (α i ) i 0 la suite d'éléments de 0, e -1 définis par les congruences

(14) α i + α i+f ≡ ν (mod e).
Démonstration. -Les équations ( 12) et ( 13) assurent que g ∈ Gal(L/K) agit sur

u α i e (i) 0 et sur u α i+f e (i)
1 par multiplication par η(g). Ainsi, étant donnés s 0 , s 1 ∈ S (i)

S , le groupe de Galois Gal(L/K) agit sur s 0 e

(i) 0 + s 1 e (i) 1 via le caractère η si, et seulement s'il fixe u α i s 0 et u α i+f s 1 , c'est-à-dire si, et seulement si ces deux éléments appartiennent à S ⊗ k E k E [[u e ]].
Nous en déduisons la forme annoncée pour la première colonne de la matrice P (i) . Pour la deuxième colonne, il suffit de remarquer que la condition det ρ |I F = ω h f = (η η ω) |I F implique :

α i ≡ p i h q + 1 -p i γ (mod e)
c'est-à-dire que α i est construit de la même manière que α i après avoir échangé les roles de η et η .

Remarque 3.2.2. -D'après la démonstration ci-dessus, les entiers α i sont égaux aux α i (h, γ , γ) (voir lemme 2.1.7). Ceci justifie la notation que nous avons utilisée et éclaire sur la complémentarité des rôles joués par α i (associé à η ) et α i (associé à η).

3.2.2. La condition sur le déterminant. -Pour tout i dans Z/f Z , la matrice de l'application ϕ : M (i) → M (i+1) dans les bases respectives (e

(i)
η , e

η ) et (e

(i+1) η , e (i+1) η 
) s'écrit : ( 15)

H (i) = (P (i+1) ) -1 G (i) ϕ(P (i) )
où G (i) est la matrice donnée par la formule (11).

Lemme 3.2.3. -Pour tout i dans 0, f -1 , nous avons

det P (i) ≡ a i u ν (mod u ν+1 S S )
où a i est un élément inversible de S et où nous rappelons que ν = p f -1 p-1 -1.

Démonstration.

-Soit i ∈ Z/f Z. Le fait que M (i) et M(ρ) (i) engendrent le même S (i) S [1/u]-module implique que la matrice P (i) est inversible dans M 2 (S (i) 
S [1/u]). Ainsi son déterminant vérifie det P (i) ≡ a i u ν i (mod u ν i +1 S S ) pour un certain entier positif ou nul ν i et un certain élément a i qui est inversible dans S. En outre, vue la forme de 1 sont dans l'image de P (i) , c'est-à-dire dans M (i) . Ceci est en particulier vrai pour d = e et implique que nous pouvons, sans perte de généralité, choisir P (i) de la forme

G (i) , l'égalité (15) entraîne l'égalité numérique e = pν i -ν i+1 + p -1. Comme ν f et ν 0 coïncident,
P (i) = u α i a i u α i b i u α i+f b i u α i+f a i , avec a i , b i , a i et b i dans S.
En vertu du lemme 3.2.3, nous obtenons :

(16)

α i + α i+f = ν ou α i+f + α i = ν.
3.2.3. Une forme normale pour les P (i) . -Soit i ∈ 0, f -1 un entier fixé. Supposons, dans un premier temps, que α i +α i+f = ν < α i+f +α i . Alors α i+f +α i est nécessairement supérieur ou égal à ν + e, étant donné qu'il doit être congru à ν modulo e. Comme α i+f < e et α i < e, nous en déduisons que α i ν < α i et α i+f ν < α i+f . Ainsi, quitte à modifier la base de M (i) -ce qui revient à faire des opérations sur les colonnes de P (i) -nous pouvons supposer que P (i) prend la forme : ( 17)

P (i) = u α i 0 0 u ν-α i .
De la même manière, si α i + α i+f = ν < α i+f + α i , nous pouvons supposer que : ( 18)

P (i) = 0 u ν-α i+f u α i+f 0 .
Il reste à examiner le cas où

α i + α i+f = α i+f + α i = ν. Posons δ = ν -(α i + α i+f ).
De même que dans la démonstration du lemme 2.1.6, nous voyons que la condition η = η implique δ = 0. Par ailleurs, la matrice P (i) s'écrit :

P (i) = u α i a i u α i +δ b i u α i+f b i u α i+f +δ a i .
Ainsi, dans le cas où δ > 0, l'image de P (i) ne dépend pas des valeurs de a i et b i dès lors que celles-ci vérifie la condition : 

(19) a i a i -b i b i ∈ S × où S × désigne
H (i) = (P (i+1) ) -1 G (i) ϕ(P (i) ) = (det(P (i+1) )) -1 K (i) = (det(P (i+1) )) -1 A i B i B i A i
où les coefficients de la matrice K (i) sont donnés par les formules suivantes :

• A i = a i a i+1 u α i+1+f +pα i +h i -b i b i+1 u α i+1 +pα i+f +h i+f , • B i = b i a i+1 u α i+1+f +pα i +h i -a i b i+1 u α i+1 +pα i+f +h i+f , • B i = -a i b i+1 u α i+1+f +pα i +h i + b i a i+1 u α i+1 +pα i+f +h i+f , • A i = -b i b i+1 u α i+1+f +pα i +h i + a i a i+1 u α i+1
+pα i+f +h i+f , lorsque i est entre 0 et f -2 et par une formule analogue qui tient compte de la forme antidiagonale de G (f -1) (cf Eq. ( 11)) lorsque i = f -1. Comme le déterminant de P (i+1) est de valuation ν, la matrice H (i) est à coefficients dans S (i+1) S si, et seulement si tous les coefficients de K (i) de degré strictement inférieur à ν s'annulent. Ceci fournit des conditions algébriques qui déterminent les équations de la variété de Kisin, comme nous allons le préciser dans la partie §3.2.5 suivante.

La variété

K(t, ρ). -Considérons l'espace K = f -1 i=0 P 1 k E et notons [x i :
x i+f ] les coordonnées homogènes sur la i-ième copie de P 1 k E en convenant, de même que dans l'énoncé du théorème 2.2.1, que x i = x i mod 2f pour i ∈ N. Soit K(t, ρ) la sous-variété de K définie par les familles d'équations suivantes :

(A) x i = 0 lorsque α i + α i+f > ν, (A') x i+f = 0 lorsque α i+f + α i > ν,
(B) l'annulation des coefficients de degré strictement inférieur à ν dans A i , A i , B i et B i après avoir posé lorsque α i + α i+f = α i+f + α i = ν :

x i = a i et x i+f = b i si α i + α i+f < ν, x i = a i et x i+f = b i si α i + α i+f > ν.
Nous allons construire un morphisme K(t, ρ) → GR ψ (v, t, ρ) à l'aide du foncteur des points. Fixons une k E -algèbre T et considérons un point (L 0 , . . . , L f -1 ) ∈ K(T ). Chaque L i est donc un sous-T -module projectif de rang 1 de T 2 tel que le quotient T 2 /L i soit aussi projectif. À cette donnée, nous associons un nouveau f -uplet (Λ (0) , . . . ,

Λ (f -1) ) où Λ (i) est le S (i)
T -réseau de M(ρ) (i) défini ainsi :

(A) si α i + α i+f > ν, Λ (i) = u α i e (i) 0 + u ν-α i e (i) 1 ; (A') si α i + α i+f > ν, Λ (i) = u ν-α i+f e (i) 0 + u α i+f e (i) 1 ; (B) si α i + α i+f = α i + α i+f = ν et α i + α i+f < ν : Λ (i) = ι L i ⊗ T S (i) T + u ν-α i -α i+f (S (i) T ) 2 où ι : (S (i) T ) 2 → M(ρ) (i) , (s 0 , s 1 ) → u α i s 0 e (i) 0 + u α i+f s 1 e (i) 1 ; (B') si α i + α i+f = α i + α i+f = ν et α i + α i+f > ν : Λ (i) = ι L i ⊗ T S (i) T + u ν-α i -α i+f (S (i) T ) 2 où ι : (S (i) T ) 2 → M(ρ) (i) , (s 0 , s 1 ) → u α i s 0 e (i) 0 + u α i+f s 1 e (i)
1 . Cette association définit un morphisme K dans la grassmanienne affine adéquate qui induit, par restriction et corestriction, un morphisme entre variétés algébriques 

K(t, ρ) → GR ψ (v,
) α i + α i+f > ν si et seulement si X i = O ii) α i + α i+f > ν si et seulement si X i+f = O Démonstration. -Par définition, si X i = O alors α i > ν et donc a fortiori nous avons α i + α i+f > ν. Réciproquement, supposons α i + α i+f > ν.
Alors, de la congruence ( 14) appliquée à i+f , nous déduisons que α i +α i+f ν+e et, par suite, α i ν+e-α i+f > ν car α i+f < e. Ainsi X i = O. La démonstration du ii) est similaire.

Il résulte du lemme 3.3.1 que les jeux d'équations (A) et (A') apparaissant dans la définition de K(t, ρ) ( §3.2.5) correspondent aux équations (A) du théorème 2.2.1. Il ne reste donc plus qu'à démontrer que le jeu (B) fournit les mêmes équations que les jeux (B1), (B2) et (B3) du théorème 2.2.1. D'après la discussion qui suit la définition 2.1.8, si X n'a pas de caractère dominant, le résultat est clair. Nous supposons donc, à partir de maintenant, que X a un caractère dominant.

Lemme 3.3.2. -Soit i ∈ 0, f -1 tel que X i = O et X i+f = O. Alors : i) α i + α i+f = α i + α i+f = ν ii) A (resp. B) est dominant en i ssi α i + α i+f < ν (resp. α i + α i+f > ν). Démonstration. -L'énoncé i) est une conséquence directe du lemme 3.3.1. Supposons à présent que A soit dominant dans X i X i+f et démontrons que α i + α i+f < ν. S'il y a parmi X i et X i+f exactement un A et un B, le lemme 2.1.3 implique que ν -α i+1 -α i+f +1 = p • (ν -α i -α i+f )
et nous sommes ramenés à l'énoncé analogue où i est remplacé par i + 1. Ainsi, nous pouvons supposer que le couple d'allèles X i X i+f est A A , A AB ou AB A . Mais alors :

ν -α i -α i+f > p-2 p ν -ε i -ε i+f si X i X i+f = A A ν -α i -α i+f > 0 sinon.

Dans tous les cas, nous avons bien

ν -α i -α i+f > 0 puisque p-2 p ν -ε i -ε i+f = (p -2)(1 + • • • + p f -2 ) -2 > 0 pour p 5.
De la même manière, nous démontrons que si B est dominant dans X i X i+f , alors α i + α i+f > ν. Les équivalences de ii) en découlent.

Rappelons que le jeu d'équations (B) s'obtient en écrivant que les coefficients de degré strictement inférieur à ν dans les quatre expressions suivantes s'annulent :

• A i = a i a i+1 u α i+1+f +pα i +h i -b i b i+1 u α i+1 +pα i+f +h i+f , • B i = b i a i+1 u α i+1+f +pα i +h i -a i b i+1 u α i+1 +pα i+f +h i+f , • B i = -a i b i+1 u α i+1+f +pα i +h i + b i a i+1 u α i+1 +pα i+f +h i+f , • A i = -b i b i+1 u α i+1+f +pα i +h i + a i a i+1 u α i+1 +pα i+f +h i+f .
Nous remarquons que toutes les puissances de u qui apparaissent dans les coefficients diagonaux A i et A i sont (positives et) congrues à ν modulo e. Ces puissances sont donc supérieures ou égales à ν et les coefficients A i et A i n'apportent donc aucune contrainte. Pour B i et B i , nous aurons besoin du lemme suivant.

Lemme 3.3.3. -Pour i ∈ 0, f -1 , nous avons :

• α i+1+f + pα i + h i < ν ssi A est dominant en (i + 1) et X i ∈ {A, AB}. Lorsque c'est le cas, X i+f = O ou A est dominant en i. • α i+1 + pα i+f + h i+f < ν ssi A est dominant en (i + 1) et X i+f ∈ {A, AB}.
Lorsque c'est le cas,

X i = O ou A est dominant en i. • α i+1+f + pα i + h i < ν ssi B est dominant en (i + 1) et X i+f ∈ {B, O}.
Lorsque c'est le cas,

X i = O ou B est dominant en i. • α i+1 + pα i+f + h i+f < ν ssi B est dominant en (i + 1) et X i ∈ {B, O}.
Lorsque c'est le cas, X i+f = O ou B est dominant en i. De plus, dans chacun des quatre cas précédents, nous avons

X i+1 = O et X i+1+f = O. Démonstration. -Supposons α i+1+f + pα i + h i < ν. Alors pα i + h i < ν et, par suite, α i < ν/p < ν ρ,i . Ainsi X i ∈ {A, AB}. De plus α i+1 ≡ pα i + h i (mod e) et, donc, d'après le lemme 2.1.3, α i+1 = pα i + h i < ν. Ainsi α i+1 + α i+1+f = α i+1 + α i+1+f = ν et α i+1 -α i+1 = ν -α i+1+f -α i+1 > 0. Donc A
est dominant en (i + 1) d'après le lemme 3.3.2. Les autres résultats sont analogues, en constatant qu'un calcul similaire à celui du lemme 2.1.3 montre que les coefficients (α i ) i 0 , définis par la congruence ( 14) satisfont

pα i+f + h i = α i+1+f si et seulement si X i+f ∈ {O, B}.
Supposons à présent qu'il apparaisse dans B i un coefficient de degré strictement inférieur à ν. Alors, α i+1+f +pα i +h i < ν ou α i+1 +pα i+f +h i+f < ν et, par suite, d'après les deux premières assertions du lemme 3.3.3, A est dominant en (i + 1). Nous remarquons, de plus, que le coefficient devant u α i+1+f +pα i +h i (resp. devant u α i+1 +pα i+f +h i+f ) s'annule si X i+f = O (resp. X i = O). En utilisant à nouveau le lemme 3.3.3, nous déduisons que A est aussi dominant en i. Ces conclusions, combinées au lemme 2.1.4 et au fait que le couple d'allèles O O ne peut apparaître, restreignent les possibilités pour

X i
X i+f de la manière suivante :

X i X i+f ∈ A A , A B , B A , O A , A O .
Le tableau ci-dessous présente, pour chacune des valeurs possibles de X i X i+f , l'équation donnée par B i ainsi que la décoration entre les positions i et i + 1. (Remarquons que, si les deux puissances de u qui apparaissent dans B i sont strictement inférieures à ν, alors elles sont nécessairement égales car congrues modulo e.)

X i X i+f Équation Décoration A A a i b i+1 = a i+1 b i A O b i+1 = 0 A B a i b i+1 = 0 O A a i+1 = 0 B A a i+1 b i = 0
En gardant à l'esprit qu'étant donné que A est dominant en i et i+1, les variables a i , b i , a i+1 et b i+1 correspondent respectivement à x i , x i+f , x i+1 et x i+f +1 , nous constatons que les équations provenant de B i sont un sous-ensemble de celles des jeux (B1), (B2) et (B3).

Réciproquement, considérons une équation E donnée par l'un des trois jeux précédents correspondant à une décoration entre les positions i et (i + 1) où A est dominant. Si X i ∈ {A, AB}, la première équivalence du lemme 3.3.3 nous apprend que α i+1+f + pα i + h i < ν, d'où nous déduisons que l'équation E est bien une équation de la variété K(t, ρ). Nous concluons de la même manière si X i+f ∈ {A, AB} en utilisant la deuxième équivalence du lemme 3.3.3. Enfin, nous remarquons que ces deux cas regroupent toutes les possibilités puisque nous avons supposé que A est dominant en i. Nous avons ainsi démontré que les équations provenant de B i coïncident exactement avec les équations des jeux (B1), (B2) et (B3) qui correspondent à une décoration entre deux positions où A est dominant.

Exactement de la même manière, nous démontrons que les équations correspondant à une décoration entre deux positions où B est dominant coïncident avec celles provenant B i . Étant donné que, par définition, les décorations sur X n'existent qu'entre deux indices i et (i + 1) ayant même allèle dominant, le théorème 2.2.1 est démontré.

Géométrie de la variété de Kisin

Le théorème 2.2.1 présente les variétés de Kisin GR ψ (v, t, ρ) comme des sous-variétés de f -1 i=0 P 1 k E définies par des équations explicites. Le but de ce paragraphe ( §4) est d'expliquer comment appréhender la géométrie des variétés de Kisin qui n'est pas si simple en général. En effet, les variétés GR ψ (v, t, ρ) peuvent avoir de multiples composantes irréductibles de dimension variable.

Dans toute cette partie, la représentation ρ et le type galoisien t sont fixés, ainsi que des entiers h, γ et γ qui les représentent. Comme précédemment, nous notons (X i ) i∈Z le gène décoré associé à ces données.

4.1. Réduction des équations de la variété de Kisin. -Comme nous l'avons déjà vu sur l'exemple du §2.3.4, le système d'équations donné par le théorème 2.2.1 se simplifie par des considérations successives immédiates dont nous faisons maintenant la liste : i) si deux colonnes consécutives du gène sont reliées par deux liens (en forme de croix), les points projectifs correspondant sont égaux et nous pouvons fusionner les deux colonnes en question ;

ii) si la valeur de la variable x i est imposée égale à 0, nous pouvons supposer, sans perte de généralité, que x i+f vaut 1 ;

iii) nous pouvons supprimer tout lien partant ou arrivant sur une variable dont nous savons déjà qu'elle est contrainte égale à 0 ; iv) si un lien relie les variables x i et x j et que nous savons déjà que x i est contrainte égale à 1, nous pouvons en déduire que x j s'annule et donc ajouter l'équation x j = 0, ce qui permet par suite de supprimer le lien entre x i et x j .

La règle i) permet de supposer qu'il n'y a plus de lien en forme de croix. Cette étape ne conduit à aucune contradiction car deux symboles X i = X i+f +1 = O qui imposent les équations x i = x i+f +1 = 0 n'ont pas de lien entre eux. La règle ii) induit une contradiction si X i = X i+f = O, cas pour lequel la variété de Kisin est vide. Après la réduction iv), il peut être nécessaire d'itérer l'ensemble des réductions ii) à iv) jusqu'à ce que le procédé se stabilise. Par exemple, si nous plaçons un 0 en x i , celui-ci implique un 1 en x i+f (par l'étape ii)) qui, à son tour, implique x i+1 = 0 s'il y a un lien entre X i+f et X i+1 . 

Lorsque le gène ne contient pas de couple O

O , ce procédé de simplification ne conduit à aucune contradiction (une variable à la fois contrainte égale à 0 et égale à 1). En effet si, d'une part, le gène X ne contient pas de O, la réduction se limite à l'étape i) (de fusion des colonnes reliées par deux liens). D'autre part, si le gène contient un O, quitte à changer le plongement τ 0 , nous pouvons supposer que X

0 = O ou X f = O. Si X 0 = O, d'après le lemme 2.1.4, X 2f -1 ∈ {O, AB} et il n'y a pas de lien entre X 2f -1 et X f . Donc les modifications ne se propagent pas de X f -1 X 2f -1 à X 0 X f . Le cas X f = O est analogue.
Enfin le lemme 4.1.2 ci-dessous garantit que les modifications ii) à iv) se propagent toujours vers la droite.

Lemme 4.1.2. -Si X i = O pour un certain entier i, il n'y a pas de lien entre X i+f et X i-1 .

Démonstration. -Sous l'hypothèse X i = O, le lemme 2.1.4 assure que X i-1 ∈ {AB, O} d'où nous déduisons qu'aucun lien ne part de X i-1 .

Une fois que la série des réductions i) à iv) est achevée, il est facile d'établir la condition suffisante et nécessaire de non vacuité de la variété de Kisin.

Proposition 4.1.3. -La variété de Kisin GR ψ (v 0 , t, ρ) est non vide si et seulement si pour tout i,

X i X i+f = O O .

Il correspond aux paramètres

h = p-1 2 + (p -1)p 3 + (p -1)p 5 + p 8 + p 9 + p 10 , γ = -1 -p 4 -p 5 -p 7 et γ = -p+1 2 -p 2 -2p 3 .
Démonstration. -Notons X le gène obtenu à partir de X après stabilisation de l'ensemble des réductions i) à iv). Notons x i les variables correspondantes au gène X , elles forment un sous-ensemble des variables x i obtenu après l'étape i) en fusionnant les colonnes reliées par des croix. Pour obtenir un point de la variété de Kisin, il suffit de spécifier dans X les variables x i encore libres (en accord avec les équations liées aux liens restants et en évitant d'avoir simultanément x i = 0 et x i+f = 0) et, ensuite, de se souvenir de l'ensemble des réductions effectuées à l'étape i) (pour reconstruire un point compatible avec le gène X à partir d'un point compatible avec le gène réduit X ). Si X ne contient pas de O, alors pour tout i ∈ 0, f -1 , nous spécifions x i à la valeur 0 (resp. 1) et x i+f à la valeur 1 (resp. 0) si x 2f -1 et x f (resp. x f -1 et x 0 ) ne sont pas liés. Ceci définit un point de la variété de Kisin.

Si X contient un O, quitte à changer le plongement initial, nous pouvons supposer que X

0 = O ou X f -1 = O. Traitons le cas X 0 = O. Le cas X f -1 = O est analogue.
Pour la spécification des variables, nous partons de x 0 = 0 et tant que tant que la variable x i+f n'a pas une valeur contrainte à 0, nous spécifions les variables libres x i à la valeur 0 et les variables libres x i+f à la valeur 1. Si pour tout i ∈ 1, f -1 , x i+f = 0, nous spécifions ainsi toutes les variables libres du gène décoré X . Sinon pour l'indice i 0 ∈ 1, f -1 minimum tel que x i 0 +f = 0, nous posons x i 0 = 1. Puis nous procédons de même à partir de x i 0 +f = 0 en spécifiant la valeur des variables libres x i 0 +i+f à 0 (resp. x i 0 +i à 1) tant que x i 0 +i = 0. Nous recommençons ensuite le même processus à partir de x i 0 +i 1 = 0 où i 1 est l'indice minimum pour lequel x i 0 +i 1 = 0, et ainsi de suite. Nous parcourons ainsi tout le gène, en spécifiant successivement les valeurs des variables libres à 1 ou à 0.

L'élément ainsi construit est compatible avec les liens. En effet, d'une part, après réduction, les liens n'apparaissent plus qu'entre des couples de variables libres (car les règles ii) et iv) permettent de supprimer tous les liens dont la valeur d'une extrémité est spécifiée à 1 ou 0). D'autre part, si nous avons deux variables libres x i et x i+f +1 , alors les deux autres variables x i+f et x i+1 sont libres et l'affectation des valeurs x i = x i+1 = 0 (ou x i+f = x i+f +1 = 0) est compatible avec tout lien éventuel. 

Composantes irréductibles et dimension.

-Après avoir effectué la réduction du §4.1, nous pouvons découper le gène réduit X en morceaux de taille minimale (sans couper de lien !) ne comprenant qu'un couple de variables à valeurs spécifiées ( 01 ou 1 0 ) ou qu'une suite (dite séquence d'allèles) de couples de variables libres tels que deux couples successifs sont reliés par un lien.

La variété de Kisin GR

ψ (v 0 , t, ρ) s'écrit alors comme un produit de variétés, dites variétés facteur, correspondant aux séquences d'allèles obtenues à partir de la réduction du gène X décoré associé à ρ et τ .

Une séquence d'allèles de longueur est de la forme : Soit V une variété facteur correspondant à une séquence d'allèles fixée (sans boucle) de longueur . Notons j 1 , . . . , j n les indices (s'ils existent) de 2, -1 présentant une alternance de pente. S'il n'y a pas d'alternance de pente, nous posons n = 0 et j 1 = . Posons j 0 = 1 et j n+1 = et définissons les intervalles :

z 1 y 1 z 2 y 2 z 3 y 3 z 4 y 4 • • • • • • z -1 y -
I m = [j m , j m+1 ] pour m ∈ 0, n .
Nous convenons de plus que I n+1 = ∅. Une partie exprimable S = {r 1 , . . . , r s } ⊂ 1, définit une sous-variété V S de la variété facteur V isomorphe à (P 1 k E ) s de la façon suivante. Supposons que y 1 et z 2 sont liés. Alors, en convenant que [y 0 : z 0 ] = [0 : 1], la sous-variété V S est l'ensemble des ([y i : z i ]) 1 i avec, tout d'abord :

• [y i :

z i ] ∈ P 1 k E si i ∈ S, • [y i : z i ] = [0 : 1] si 1 i < r 1 ,
puis, pour u prenant successivement les valeurs 1, . . . , s -1 :

• si r u ∈ {j 1 , . . . , j n }, alors [y i :

z i ] = [y ru-1 : z ru-1 ] pour i ∈ r u + 1, r u+1 -1 • si r u ∈ {j 1 , . . . , j n }, alors pour i ∈ r u + 1, r u+1 -1 : [y i : z i ] = [0 : 1] si [y ru-1 : z ru-1 ] = [1 : 0] [1 : 0] si [y ru-1 : z ru-1 ] = [0 : 1] et, enfin : • si r s ∈ {j 1 , . . . , j n }, [y i : z i ] = [y ru-1 : z ru-1 ] pour i ∈ r s + 1, • si r s ∈ {j 1 , . . . , j n }, alors pour i ∈ r s + 1, : [y i : z i ] = [0 : 1] si [y rs-1 : z rs-1 ] = [1 : 0] [1 : 0] si [y rs-1 : z rs-1 ] = [0 : 1].
La construction de V S est analogue si z 1 et y 2 sont liés, en initialisant les valeurs par [y r : z r ] = [1 : 0] pour -1 r < r 1 .

Autrement dit, V S s'obtient comme la sous-variété de (P 1 k E ) produit de P 1 k E aux indices i ∈ S et des valeurs fixées à [0 : 1] ou [1 : 0] aux autres indices. L'alternance des valeurs fixées et le caractère exprimable de S garantissent l'inclusion V S ⊂ V. 

I n+1 =        {1, }
s'il y a une alternance de pente en 1 et , {1} ∪ [j n , ] s'il y a une alternance de pente en 1, mais pas en ,

{ } ∪ [1, j 1 ]
s'il y a une alternance de pente en , mais pas en 1, [1, j 1 ] ∪ [j n , ] s'il n'y a pas d'alternance de pente en 1, ni en .

La construction de la sous-variété V S associée à une partie exprimable S est analogue, avec une initialisation adaptée des valeurs des variables pour 0 r < r 1 .

Proposition 4.2.3. -Les composantes irréductibles de V sont en bijection avec les parties exprimables S maximales pour l'inclusion.

La dimension de V est égale au cardinal maximal d'une partie exprimable et est toujours inférieure ou égale à +1 2 . Démonstration. -Un examen des équations définissant V montre que V est égale à la réunion des V S pour S parcourant l'ensemble des parties exprimables maximales de 0, . Par ailleurs, les variétés V S sont toutes irréductibles car elles s'identifient à des produits de copies de P 1 k E . Il résulte de ceci que les composantes irréductibles de V sont à compter parmi les V S . Par ailleurs, aucune des variétés V S (pour S parcourant l'ensemble des parties exprimables maximales) n'est incluse dans une autre à cause de la condition de maximalité. Nous en déduisons la première assertion de la proposition.

Le fait que la dimension de V soit égale au cardinal maximal d'une partie exprimable de 1, est alors évident après avoir remarqué qu'une partie exprimable de cardinal maximal est a fortiori maximale pour l'inclusion. Enfin la majoration dim V +1 2 résulte du fait qu'une partie exprimable de 1, ne peut pas contenir deux entiers consécutifs.

Exemple 4.2.4. -Examinons le cas où l'ensemble de valeurs prises par les j m est 1, , c'est-à-dire, graphiquement, où les liens montent et descendent alternativement :

y 1 y 2 y 3 • • • y -1 y z 1 z 2 z 3 • • • z -1 z
Dans cette situation, une partie de 1, est exprimable si et seulement si elle ne contient pas deux entiers consécutifs. Une partie exprimable de cardinal maximal est donc obtenue en ne gardant que les entiers impairs de 1, ; elle compte +1 2 éléments. La dimension de la variété facteur V correspondante est donc, dans ce cas, égale à +1 2 . Nous constatons, par ailleurs, qu'au moins pour 3, il existe d'autres parties exprimables maximales ayant des cardinaux moindres. Un exemple est donné par la partie S ⊂ 1, qui regroupe les entiers congrus à 2 modulo 3. Cette partie a pour cardinal +1 3 ; la variété V possède donc au moins une composante irréductible de cette dimension.

Nous pouvons aisément être plus précis et dénombrer les composantes irréductibles de V . Pour ce faire, posons :

P (X) = dim V d=0 a ,d X d
où a ,d est la nombre de composantes irréductibles de V de dimension d. En remarquant qu'une partie exprimable maximale de 1, contient nécessairement soit 1, soit 2, nous obtenons la relation de récurrence suivante :

(21) P (X) = X • P -2 (X) + P -3 (X) .
Par ailleurs, les premiers termes de la suite des P (X) sont aisés à calculer : nous trouvons P 0 (X) = 1, P 1 (X) = X et P 2 (X) = 2X. Les P (X) suivants s'obtiennent alors en itérant (21). Par exemple, nous trouvons :

P 20 (X) = 11 • X 10 + 120 • X 9 + 126 • X 8 + 8 • X 7
et constatons que la géométrie des variétés V -et donc, par corollaire, celle des variétés de Kisin -peut être assez complexe. Remarquons, pour conclure, que la valeur P (1) donne le nombre de composantes irréductibles de V ; une étude simple permet de montrer qu'elle se comporte asymptotiquement comme c • α où c est une constante strictement positive et α > 1 est solution de α 3 = α + 1.

Pourvu que nous ayons gardé trace des réductions successives permettant de passer du gène décoré X associé à ρ et à t aux différentes séquences d'allèles qui composent le gène décoré X obtenu par réduction, nous déduisons immédiatement de la proposition 4.2.3 les composantes irréductibles (produit des composantes irréductibles des variétés facteur) et la dimension de la variété de Kisin GR ψ (v 0 , t, ρ).

4.3. Connexité des variétés de Kisin. -L'objectif de cette partie est de démontrer la connexité des variétés de Kisin GR ψ (v 0 , t, ρ). D'après la construction effectuée au paragraphe précédent, il suffit d'établir la connexité des variétés facteur V du §4.2 dont nous reprenons intégralement les notations. La proposition suivante est la clé de la démonstration.

Proposition 4.3.1. -Soient S (resp. T ) une partie exprimable maximale de 1, et V S (resp. V T ) la composante irréductible de V qui lui correspond. Alors V S ∩ V T est non vide si et seulement si pour tout m ∈ 0, n + 1 , a ∈ S ∩ I m et b ∈ T ∩ I m , nous avons (|a -b| 1) ou (|a -b| = -1 et m = n + 1).
Démonstration. -La proposition est claire si la séquence d'allèles définissant V ne contient pas d'alternance de pente (voir §2.3.2). Le résultat général s'obtient en travaillant successivement sur chaque fragment de diagrammes d'indice I m pour m ∈ 0, n + 1 .

Corollaire 4.3.2. -La variété V est connexe.

Démonstration. -Étant donné deux parties exprimables maximales S et T de 1, , il est facile de construire une suite S 0 , . . . , S d de parties exprimables maximales de 1, telles que S 0 = S, S d = T et le couple (S i , S i+1 ) vérifie la condition de la proposition 4.3.1 pour tout i. Le corollaire s'en déduit.

Corollaire 4.3.3. -La variété de Kisin GR ψ (v 0 , t, ρ) est connexe.

Démonstration. -C'est immédiat étant donné que GR ψ (v 0 , t, ρ) s'écrit comme un produit de variétés facteurs V de la forme précédente.

Notons que ce corollaire répond, dans notre cadre, à la conjecture 2.4.16 de [START_REF] Kisin | Moduli of finite flat group schemes and modularity[END_REF].

Stratification et espace de déformations

Le but de cette dernière partie est de donner des indications indiquant que l'anneau de déformations R ψ (v, t, ρ) et la variété de Kisin GR ψ (v, t, ρ) sont deux objets intimement liés.

5.1. Spécialisation et genre. -Soit D ψ (v, t, ρ) l'espace rigide qui a pour anneau des fonctions R ψ (v, t, ρ)[1/p]. Le théorème 1.3.6 nous autorise à penser à D ψ (v, t, ρ)
également comme à la fibre générique de GR ψ (v, t, ρ). Nous prendrons garde toutefois au fait que cette dernière assertion n'a a priori pas un sens précis étant donné que le schéma formel GR ψ (v, t, ρ) n'entre pas dans le cadre de la géométrie rigide classique car il n'est pas muni de la topologie p-adique (mais de la topologie m-adique où m est l'idéal maximal de R ψ (v, t, ρ)).

Malgré tout, nous pouvons construire une application de spécialisation sp : 

D ψ (v, t, ρ) → GR ψ (v,
G F → GL 2 (O E ) poten- tiellement Barsotti-Tate de type (v, t), de déterminant ψ et dont la réduction modulo π E est isomorphe à ρ, et • M est un réseau de type (v, t) à l'intérieur de M(E ⊗ O E ρ) (qui est uniquement déterminé)
. Le quotient M/π E M est alors un réseau de type (v, t) dans M(ρ). Il apparaît donc comme un k E -point de GR ψ (v, t, ρ) et en détermine ainsi un point fermé. Cette construction définit une application ensembliste sp :

D ψ (v, t, ρ) → GR ψ (v, t, ρ).
La théorie des genres introduite et développée dans [Br] puis reprise dans [CDM] permet de décrire l'image réciproque d'un point fermé de GR ψ (v, t, ρ) par l'application de spécialisation. Rappelons tout d'abord la définition du genre d'un module de Breuil-

Kisin. Soit R = O E ou R = k E . Soit M = M (0) ⊕ • • • ⊕ M (f -1)
un module de Breuil-Kisin qui est libre de rang 2 sur S R , de type de Hodge v et de type galoisien t. Pour tout i ∈ 0, f -1 , il existe une base (e

(i)
η , e

η ) dans laquelle Gal(L/K) agit par la matrice η 0 0 η . Notons G (i) la matrice de l'application ϕ :

M (i) → M (i+1)
dans les bases précédentes.

Définition 5.1.1. -Avec les notations ci-dessus, le genre (g i (M))

0 i f -1 de M est défini par • g i (M) = I η si le coefficient en haut à gauche de G (i) est inversible, • g i (M) = I η si le coefficient en bas à droite de G (i) est inversible, • g i (M) = II sinon.
Suivant la stratégie de la démonstration du lemme 3.1.7 de [CDM], nous constatons que le genre (g i (M)) 0 i f -1 ne dépend que de M -et notamment pas du choix des bases (e

(i) η , e (i) η ) 0 i f -1 .
En caractéristique p, le genre définit une stratification de la variété de Kisin. Plus précisément, considérons l'ensemble G = {I, II} et munissons G f de l'ordre partiel défini sur chaque composante par I II. Soit encore : {I η , I η , II} → G l'application qui envoie I η et I η sur I et II sur II. Avec ces notations, nous avons le théorème suivant dont la démonstration est reportée au §5.2.1.

Théorème 5.1.2. -La variété GR ψ (v, t, ρ) admet une stratification par des sousvariétés réduites et localement fermées GR

ψ g (v, t, ρ) (g = (g i ) 0 i<f ∈ G f ) caractérisées par : GR ψ g (v, t, ρ)(k) = réseaux M tels que (g i (M)) = g i , ∀i ⊂ GR ψ (v, t, ρ)(k)
pour toute extension finie k de k E .

De plus, l'adhérence d'une strate GR ψ g (v, t, ρ) est égale à l'union des strates GR g (v, t, ρ) prise sur tous les g g.

Remarque 5.1.3. -Dans [START_REF] Caruso | Estimation des dimensions de certaines variétés de Kisin[END_REF], dans un contexte différent, une stratification a également été définie sur certaines variétés de Kisin. Il semble toutefois difficile a priori de comparer ces deux constructions. Néanmoins, la question se pose de savoir s'il existe une méthode générale pour stratifier les variétés de Kisin qui conduirait, d'une part, à celle de cet article et, d'autre part à celle de [START_REF] Caruso | Estimation des dimensions de certaines variétés de Kisin[END_REF].

Dans la suite, étant donné un point x ∈ GR ψ (v, t, ρ), nous notons g(x) = (g 0 (x), . . . , g f -1 (x)) l'unique élément g ∈ G f pour lequel x ∈ GR ψ g (v, t, ρ). Les fonctions g i ainsi définies sont semi-continues inférieurement sur la variété de Kisin, l'ensemble d'arrivée G = {I, II} étant muni de la topologie discrète.

En caractéristique nulle, le genre joue également un rôle important. De la proposition 5.2 de [Br] et de la proposition 3.1.12 de [CDM], nous déduisons le résultat suivant.

Proposition 5.1.4. -Supposons t non dégénéré (voir définition 1.1.1). Soit M = M (0) ⊕ • • • ⊕ M (f -1) un module de Breuil-Kisin de rang 2 sur S O E de type de Hodge v et de type galoisien t = η ⊕ η .

Alors il existe des éléments α, α dans O × E ainsi que, pour tout i ∈ 0, f -1 , une base e

(i)
η , e (i) η de M (i) et des paramètres a i , a i (vivant dans un espace précisé ci-après) tels que :

(1) pour tout i, la donnée de descente agit sur e (2) en notant G (i) la matrice de ϕ M :

M (i) → M (i+1) , la matrice G(i) = G (i) pour 0 i f -2 (resp. G(i) = α -1 0 0 α -1 G (f -1) pour i = f -1) est de la forme : si g i (M) = I η : G(i) = u e + p 0 a i u γ i+1 1 avec a i ∈ O E , a i = 0, si g i (M) = I η : G(i) = 1 a i u e-γ i+1 0 u e + p avec a i = 0, a i ∈ O E , si g i (M) = II : G(i) = a i u e-γ i+1 u γ i+1 a i avec a i , a i ∈ m E , a i a i = -p. De plus (β, β , b 0 , b 0 , . . . , b f -1 , b f -1
) est une autre famille de paramètres vérifiant les conditions ci-dessus si et seulement s'il existe un élement λ ∈ O × E pour lequel les trois conditions suivantes soient vérifiées :

-

pour tout i ∈ 0, f -1 , b i = λ (-1) n i a i et b i = λ -(-1) n i a i , -si n f est pair, alors α = α et β = β , -si n f est impair, alors λ = α β = β α
où, n i désigne le nombre de II parmi g 0 (M), . . . , g i-1 (M).

Considérons à présent un point fermé x ∈ GR ψ (v, t, ρ). Il résulte de la proposition 5.1.4 ci-dessus que l'image inverse de x par l'application de spécialisation sp est en bijection avec Spm(

W O E (k E (x))⊗ O E R g(x) [1/p]) où W O E (k E (x)) = O E ⊗ W (k E ) W (k E (x)) et, pour g = (g 0 , . . . , g f -1 ) ∈ G f : (22) R g = R g 0 ⊗ R g 1 ⊗ • • • ⊗ R g f -1 avec R I = O E [[T i ]] (et donc correspondant à une boule ouverte) et R II = O E [[U i ,V i ]] U i V i +p [1/p] (et
donc correspondant à une couronne ouverte). Ainsi, géométriquement, l'espace de déformations D ψ (v, t, ρ) s'obtient comme une union de produits de boules et de couronnes, la manière dont cette union se réalise étant encodée par la variété de Kisin munie de sa stratification.

Convenons que deux variétés de Kisin stratifiées GR ψ (v, t 1 , ρ 1 ) et GR ψ (v, t 2 , ρ 2 ) sont isomorphes si elles partagent le même f et s'il existe une permutation σ de {0, . . . , f -1} ainsi qu'un isomorphisme GR ψ (v, t 1 , ρ 1 ) → GR ψ (v, t 2 , ρ 2 ) qui induit, pour tout g = (g 0 , . . . , g f -1 ) ∈ G f , un isomorphisme entre GR ψ g (v, t 1 , ρ 1 ) et GR ψ σ•g (v, t 2 , ρ 2 ) où, par définition, σ • g = (g σ(0) , . . . , g σ(f -1) ).

Conjecture 5.1.5. -Supposons que t est non dégénéré. L'espace de déformations D ψ (v, t, ρ) est entièrement déterminé par la classe d'isomorphisme de la variété de Kisin stratifiée GR ψ (v, t, ρ).

Au §5.4, nous donnons une recette conjecturale pour construire un candidat pour l'espace rigide D ψ (v, t, ρ) à partir de la variété de Kisin stratifiée. Nous insistons, par ailleurs, sur le fait que la donnée de la stratification est absolument nécessaire : la variété de Kisin GR ψ (v, t, ρ) 20)

H (i) = (det(P (i+1) )) -1 A i B i B i A i .
Par conséquent, le genre g i (M) se lit sur la valuation u-adique de A i où pour 0 i f -2 (et une formule analogue pour i = f -1) :

• A i = a i a i+1 u α i+1+f +pα i +h i -b i b i+1 u α i+1 +pα i+f +h i+f , et où P (i) = u α i a i u α i b i u α i+f b i u α i+f a i
est la matrice de passage de (e

(i)
η , e

η ) à (e

(i)
0 , e

(voir §3.2.1). Rappelons que d'après le lemme 3.2.3, le déterminant de P (i) est de valuation u-adique ν.

Lemme 5.2.1. -Soient k une extension finie de k E et ([x i : x i+f ]) 0 i f -1 un kpoint de la variété de Kisin GR ψ (v, t, ρ).

Notons M = (M (i) ) 0 i f -1 le k ⊗ k E S-réseau correspondant et X = (X i ) i∈Z le gène associé.
i) Si A est dominant en i et (i + 1), alors :

• g i (M) = I η s'il existe j ∈ {i, i + f }, tel que X j = B et x j+1 = 0, • g i (M) = I η s'il existe j ∈ {i, i + f }, tel que X j = A et x j = 0, • g i (M) = II sinon.
ii) Si A est dominant en i et B est dominant en (i + 1), alors :

• g i (M) = II dans l'un des trois cas suivants : a) 

X i = X i+f = A et [x i : x i+f ] = [x i+f +1 : x i+1 ] b) X i = A, X i+f = A et x i x i+1 = 0 c) X i = A, X i+f = A et x i+f x i+f +1 = 0 • g i (M) = I η sinon.
X i X i+f et X i+1 X i+1+f . Si X i X i+f = A B . D'après le lemme 2.1.3, nous avons α i+1 = pα i + h i et α i+1+f = pα i+f + h i+f -e.
De plus comme X j = O (d'après le lemme 2.1.4) pour j ∈ {i, i + f, i + 1, i + 1 + f } et que le couple d'allèles O O ne peut pas apparaître, nous déduisons : 

α i+1 + α i+f +1 = α i + α i+f = α i + α i+f = α i+1 + α i+1+f = ν. Ainsi A i = u ν (a i a i+1 -b i b i+1 u e ) et A i = u ν (-b i b i+1 + a i a i+1 u e ). Le lien entre X i et X i+1+f implique a i b i+1 = 0. Donc M (i) est de genre II si et seulement si a i = b i+1 = 0 et il est de genre I η (resp. I η ) si b i+1 = 0 (resp. a i = 0). Si X i X i+f = A A , nous obtenons de même A i = u ν (a i a i+1 -b i b i+1 ). Or [a i : b i ] = [a i+1 : b i+1 ] et a i+1 a i+1 -b i+1 b i+1 ∈ k * E . Donc M (i
X i à X i+1 si X i = A et d'un lien de X i+f à X i+f +1 si X i+f = A ; • si B est dominant en i et A est dominant en i + 1, la décoration horizontale est composée d'un lien de X i à X i+1 si X i = B et d'un lien de X i+f à X i+f +1 si X i+f = B.
E et ([x i : x i+f ]) 0 i f -1 un k-point de la variété de Kisin GR ψ (v, t, ρ) associée au gène X = (X i ). Notons M = (M (i) ) 0 i f -1 le S k -réseau correspondant. Soit i ∈ 0, f -1 . Si {X i , X i+f } = {AB, O}, alors g i (M) = II.
Dans le cas contraire, nous avons : i) si A est dominant en i et (i + 1), alors : -s'il n'y a pas de lien entre les deux couples d'allèles ou s'il n'y a qu'un lien entre

X i et X i+f +1 (resp. entre X i+f et X i+1 ) et x i = x i+f +1 = 0 (resp. x i+f = x i+1 = 0), alors g i (M) = II, -s'il n'y a qu'un lien entre X i et X i+f +1 (resp. entre X i+f et X i+1 ) et x i+1+f = 0 (resp. x i+1 = 0), alors g i (M) = I η , -sinon g i (M) = I η ,
ii) si A est dominant en i et B est dominant en (i + 1), alors :

-s'il y a deux liens entre les deux couples d'allèles en i et en i + 1 et si [x i :

x i+f ] = [x i+f +1 : x i+1 ], alors g i (M) = II, -s'il n'y a qu'un lien entre X i et X i+1 (resp. entre X i+f et X i+f +1 ) et x i x i+1 = 0 (resp. x i+f x i+f +1 = 0), alors g i (M) = II, -sinon g i (M) = I η .
Les résultats précédents sont encore vrais si nous échangeons simultanément A et B d'une part et I η et I η d'autre part. 5.2.3. Géométrie des variétés de Kisin stratifiées. -Considérons, comme jusqu'à présent, une variété de Kisin GR ψ (v, t, ρ) ⊂ f -1 i=0 P 1 k E munie de stratification et fixons X = (X i ) i un gène correspondant. Le but de du paragraphe §5.2.3 est de démontrer que GR ψ (v, t, ρ) peut s'écrire comme un produit de variétés facteur sur lesquelles la stratification descend et a une forme particulièrement simple.

Pour i ∈ 0, f -1 , notons pr i : f -1 i=0 P 1 k E → P 1 k E la projection sur la i-ième composante. Soit S l'ensemble des indices i ∈ 0, f -1 pour lequels l'application composée :

GR ψ (v, t, ρ) → f -1 i=0 P 1 k E pr i -→ P 1 k E
est constante (nécessairement égale à [0 : 1] ou à [1 : 0]). Nous supposons que S est non vide. D'après le lemme 2.1.5, ceci se produit dès que ρ n'est pas dégénérée. Quitte à modifier le plongement τ 0 , nous pouvons supposer en outre que 0 ∈ S. Notons 0 = i 1 < i 2 < • • • < i r les éléments de S triés par ordre croissant et convenons que i r+1 = f . Posons également S j = i j , i j+1 -1 pour tout j ∈ 0, r -1 . Au fragment de gène allant des positions i j à i j+1 -1, nous pouvons associer une variété facteur

V j incluse dans i∈S j P 1 k E , de manière à avoir GR ψ (v, t, ρ) = V 1 × • • • × V r , cette identification étant compatible avec le plongement dans f -1 i=0 P 1 k E (voir §4.2). Lemme 5.2.6. -Soit j ∈ 0, r -1 . Pour tout indice i ∈ S j le genre g(x) d'un point fermé x ∈ GR ψ (v, t , 
ρ) ne dépend que la composante de x sur V j .

Démonstration. -Le lemme est clair si i = i j+1 -1 car g i (x) ne dépend que des coordonnées de x aux indices i et i + 1. Pour i = i j+1 -1, il résulte du fait que la fonction pr i j+1 est constante sur GR ψ (v, t, ρ).

Le lemme 5.2.6 nous dit exactement que, pour i ∈ S j , les fonctions g i passent au quotient et définissent des fonctions, que nous notons encore g i , sur V j . Nous obtenons comme ceci une stratification sur les variétés V j et la décomposition GR 

ψ (v, t, ρ) = V 1 ×V 2 ו • •×V
ψ (v, t, ρ) = D 1 × D 2 × • • • × D r où D i dépend uniquement de la variété stratifiée V i .
Fixons à présent un indice j ∈ 1, r et étudions la variété stratifiée V j . Remarquons, pour commencer, que le lemme 5.2.1 nous apprend que, s'il y a une décoration en forme de croix entre les indices i et (i + 1), alors la fonction g i est constante égale à I sur la variété de Kisin. Notons V j la variété stratifiée associée à la portion de gène comprise entre les indices i j et i j+1 dans laquelle nous avons contracté les croix (comme au §4.1). Nous avons une identification canonique V j = V j et la stratification sur V j coïncide avec celle sur V j ; seuls les noms des strates sont modifiés par le fait que les I correspondant aux croix disparaissent. Ainsi, sans perte de généralité, nous pouvons supposer qu'il n'y a pas de croix dans les décorations du gène X, ce que nous faisons à partir de maintenant. De même, quitte à échanger η et η , nous pouvons supposer que la fonction pr i j est constante égale à [0 : 1] sur GR ψ (v, t, ρ).

Introduisons deux nouvelles notations. Premièrement, si k est une extension finie de Proposition 5.2.8. -Supposons i j+1 > i j + 1. Alors, pour i ∈ S j , nous avons :

k E et x = [u : v] ∈ P 1 (k), posons x -1 = [v : u] ∈ P 1 (k). Deuxièment,
g i (x) = δ(x i , x -1 i+1 ) pour tout k-point x de GR ψ (v, t, ρ)
où (x i ) 0 i<f désigne l'image de x dans f -1 i=0 P 1 k E (k) et, par convention, x f = x 0 . Démonstration. -C'est une conséquence simple de la proposition 5.2.5 et du lemme 5.2.9 ci-dessous.

Lemme 5.2.9. -Sous les hypothèses précédentes, pour i ∈ i j , i j+1 -1 , le gène et sa décoration prennent, aux positions i et i + 1, l'une des formes suivantes :

• si i j = i < i j+1 -1 : • • • • • • • • • • • • • si i j < i < i j+1 -1 : • • • • • • • • • • • • • si i j < i = i j+1 -1 : AB O • • AB O • • • • O AB • • O AB
Remarque 5.2.10. -Le lemme ne dit rien dans le cas où i j+1 = i j + 1.

Démonstration. -D'après la discussion qui suit la définition 2.1.8, les hypothèses que nous avons faites assurent que X a un caractère dominant. Supposons tout d'abord i j < i < i j+1 -1. Ainsi ni i, ni i + 1 n'est dans S. Par le théorème 2.2.1 et le lemme 2.1.4, ceci implique que X i et X i+f sont tous les deux différents de AB et de O. Autrement dit, X i , X i+f ∈ {A, B}. Ainsi, si Y ∈ {A, B} désigne l'allèle dominant en i, nous avons nécessairement X i = Y ou X i+f = Y . Autrement dit, au moins un lien part de X i ou de X i+f . En outre, nous avons supposé précédemment qu'il ne part pas deux liens en diagonale. Il ne reste donc plus qu'à exclure le cas où un seul lien horizontal partirait. Mais, si cela arrivait, nous aurions {X i , X i+f } = {A, B} et Y resterait dominant en (i + 1), ce qui est incompatible avec des liens horizontaux.

Considérons maintenant le cas où i = i j < i j+1 -1 et notons Y ∈ {A, B} l'allèle dominant en i. Comme précédemment, nous obtenons X i = AB et X i+f = AB, d'où nous déduisons que X i = Y ou X i+f = Y . Ainsi, au moins un lien part de X i ou de X i+f . Dans le cas où Y reste dominant en (i + 1), il ne peut y avoir deux liens par hypothèse. Il ne peut pas non plus y avoir un unique lien entre X i+f et X i+1 car, par le théorème 2.2.1 et l'hypothèse pr i ( 

V j ) = {[0 : 1]}, cela impliquerait que pr i+1 (V j ) = {[0 : 1]} et donc i + 1 ∈ S,
i = Y , X i+f = Y . Mais, de l'hypothèse pr i (V j ) = {[0 : 1]}, nous déduisons que X i+f = O. Ainsi, si X i+f = Y ,
nous devons avoir X i+f = Ȳ où Ȳ est l'allèle complémentaire de Y , c'est-à-dire l'unique élément de {A, B} qui n'est pas Y . Par conséquent, si nous supposons également X i = Y , nous obtenons {X i , X i+f } = {A, B}, ce qui contredit le fait que Y ne soit pas dominant en (i + 1).

Reste enfin à traiter le cas où i = i j+1 -1. D'après le lemme 4.1.2, nous avons nécessairement

X i+1 = O ou X i+1+f = O. Si X i+1 = O, nous avons X i ∈ {O, AB} par le lemme 2.1.4. Mais la possibilité X i = O est exclue car i ∈ S. Ainsi X i = AB. Comme la variété de Kisin est supposée non vide, ceci implique X i+f = AB. Nous avons aussi X i+f = O puisque i ∈ S. Ainsi X i+f ∈ {A, B} et Y = X i+f
est dominant en i. Nous en déduisons qu'un lien part de X i+f et, par suite, que nous sommes dans l'un des deux premiers cas du lemme. Le cas où X i = O se traite de la même manière, en échangeant les rôles de i et i + f . Comme nous l'avons démontré dans [CDM], l'anneau de déformations correspondant

R ψ (v, t, ρ) est, dans ce cas, isomorphe à O E [[T,U,V ]] U V +p 2
et sa fibre générique D ψ (v, t, ρ) s'écrit comme un produit B ×C où B est une boule ouverte et C est la couronne ouverte bordée par le cercle unité et celui de rayon p -2 . Cette couronne C s'écrit comme l'union de deux couronnes ouvertes -celle bordée par les cercles de rayon 1 et p -1 d'une part et celle bordée par les cercles de rayon p -1 et p -2 d'autre part -et du cercle de rayon p -1 qui s'écrit lui-même comme une union de boules ouvertes indexée par les points fermés de P 1 k E \{0, ∞}. Nous constatons que ces résultats sont en accord avec la stratification sur GR ψ (v, t, ρ) que nous avons décrite précédemment. Nous constatons que les variétés de Kisin stratifiées sont isomorphes pour les six premiers exemples de la colonne de gauche. Ainsi, d'après la conjecture 5.1.5, les espaces de déformations D ψ (v, t, ρ) devraient être isomorphes entre eux dans tous ces cas. En nous appuyant sur les résultats obtenus pour f = 2, nous pouvons aller plus loin et proposer un candidat explicite pour D ψ (v, t, ρ) qui est Spm O

E [[T 1 ,T 2 ,U,V ]] U V +p 2 [1/p] .
Il est plus aventureux d'exhiber un candidat pour l'anneau R ψ (v, t, ρ) lui-même. Par exemple, il existe des couples (t, ρ) qui tombent sous le coup de l'exemple de la cinquième ligne et pour lesquels il y a exactement 3 poids de Serre commun à t et ρ. Ainsi, d'après la conjecture de Breuil-Mézard raffinée [BM, EG] -qui a été démontrée, dans ce cas, par Emerton et Gee dans [EG] -la multiplicité d'Hilbert-Samuel de R ψ (v, t, ρ) est nécessairement 3. Ceci exclut donc la possibilité O E [[T 1 ,T 2 ,U,V ]] U V +p 2 pour R ψ (v, t, ρ).

La même discussion vaut pour l'exemple de la sixième ligne. En revanche, pour les quatre premiers exemples, cette possibilité n'est pas exclue par un argument de ce type et, de fait, nous conjecturons que R ψ (v, t, ρ) = O E [[T 1 ,T 2 ,U,V ]] U V +p 2 dans ces cas. 

O E [[T 1 , . . . , T , U, V ]] (U V + p +1 ) p -1
En effet, l'espace D ci-dessus est isomorphe au produit B × C où B est une boule ouverte et C est la couronne ouverte d' épaisseur ( + 1) comprise entre les cercles de rayon 1 et p --1 qui peut s'écrire (5) :

C = A 0 B 1 A 1 B 2 • • • A -1 B A
où A i est la couronne ouverte d' épaisseur 1 comprise entre les cercles de rayon p -i et p -i-1 et B i est le cercle de rayon p -i qui est lui-même recouvert par une union de boules ouvertes indexée par P 1 k E \{0, ∞}. Sur la variété de Kisin stratifiée, chaque A i correspond donc au point P i tandis que B i correspond au i-ième P 1 k E privé des points P i-1 et P i .

5.4. Des candidats pour les espaces de déformations. -Considérons une représentation ρ non dégénérée ainsi qu'un type t = η ⊕ η non dégénéré. La variété de Kisin GR ψ (v, t, ρ) munie de sa stratification s'écrit alors comme un produit de variétés stratifiées facteur, conformément aux résultats du §5.2.3 : Nous pouvons alors vérifier que le triplet (X d,x 0 , Zd,x 0 , α d,x 0 ) ainsi construit satisfait aux propriétés i) et ii) sus-mentionnées.

GR ψ (v, t, ρ) = V 1 × • • • × V r .
Un candidat pour D j . -Dans ce paragraphe, nous reprenons les notations pr i , S, i j , S j du §5.2.3. Sans restreindre la généralité, nous supposons également comme dans le §5.2.3 que le plongement τ 0 est choisi de sorte que 0 ∈ S.

Fixons un entier j ∈ 1, r . Si i j+1 = i j + 1, la variété facteur V j est réduite à un point. Le candidat que nous proposons pour D j est alors naturellement Spm R g i j (x) [1/p] où x est l'unique point de V j . Supposons donc, à présent, que i j+1 > i j + 1. Dans un premier temps, nous supposons également qu'il n'y a pas de croix dans les décorations du gène entre les positions i j et i j+1 . Par définition, les fonctions pr i j et pr i j+1 sont constantes sur la variété de Kisin GR ψ (v, t, ρ). Notons s (resp. t) la valeur prise par pr i j (resp. pr i j+1 ) ; elle vaut nécessairement [0 : 1] ou [1 : 0]. Posons = i j+1 -i j = Card S j et, pour simplifier les écritures, notons X = X ,s et α = α ,s . Définissons également β comme la composée : β : V j -→ i∈S j P 1 k E -→ (P 1 k E ) où la première flèche est l'inclusion déduite des pr i (i ∈ S j ) et où la deuxième flèche est le morphisme (x i j , x i j +1 , . . . , x i j+1 -1 ) → (x i j +1 , . . . , x i j+1 -1 , t). Du fait que la fonction pr i j est constante, nous déduisons que β est une immersion fermée et identifie ainsi V j à un sous-schéma fermé de (P 1 k E ) , ce dernier étant lui-même un sous-schéma fermé de X (la fibre spéciale de X ) via α. Ainsi, cela a du sens de considérer le tube ]V j [ X . En outre, il est facile de se convaincre en remontant les définitions et en utilisant la propriété ii) vérifiée par les variétés X d,x 0 que l'image inverse par le morphisme de spécialisation ]V j [ X → V j d'un point fermé x ∈ V j est isomorphe à Spm(W O E (k E (x)) ⊗ O E R g(x) [1/p]) où g(x) = (g i (x)) i∈S j . Autrement dit, ]V j [ X vérifie les propriétés attendues de D j et, de fait, c'est le candidat que nous proposons pour être D j .

Pour conclure, mentionnons rapidement comment la construction précédente s'étend au cas où les décorations du gène font apparaître des croix. Supposons donc qu'il y ait au moins une croix dans la portion de gène correspondant aux indices de S j . Nous utilisons les notations V j pour la variété stratifiée facteur associée à la portion de gène ci-dessus dans laquelle toutes les croix ont été contractées. Concrètement, la variété stratifiée V j n'est autre que V j mais le genre d'un point fermé x ∈ V j n'est pas g(x) mais le sous-uplet g (x) = (g i (x)) x∈S j où S j est le sous-ensemble de S j où nous avons retiré les indices i pour lesquels la décoration entre i et (i + 1) est une croix. Notons que ceci ne modifie pas la stratification car, d'après la proposition 5.2.5, les fonctions g i pour i ∈ S j \S j sont constantes, égales à I. Cette dernière remarque justifie également le fait que nous nous attendions à ce que l'espace rigide D j associé à V j soit D j × B c où D j est l'espace associé à V j , B est une boule ouverte et c = Card(S j \S j ) est le nombre de croix qui ont été contractées.
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 1 Figure 1. Représentation d'un gène sur un ruban de Moebius

  après le lemme 2.1.3. Par induction, nous obtenons alors :

  3.2. Détermination des réseaux. -Dans ce paragraphe §3.2, nous fixons une k E -algèbre S ainsi qu'un réseau de Breuil-Kisin M de type (v, t) (voir définition 1.3.2) sur S ⊗ Zp S inclus dans S ⊗ Fp M(ρ). Pour alléger les notations, nous posons à partir de maintenant S S = S ⊗ Zp S. De la proposition 3.1.1, nous déduisons que M est inclus dans S ⊗ k E M(ρ). Nous rappelons qu'étant donné que S est une k E -algèbre, les modules M et M(ρ) se décomposent de façon canonique comme suit :

  tous les ν i sont égaux au point fixe ν. Du lemme 3.2.3, il résulte que, pour tout entier d supérieur ou égal à ν, les vecteurs u d e

  Exemple 4.1.1. -Nous avons déjà expliqué au §2.3.4 comment appliquer les règles ci-dessus sur un exemple. Nous présentons ci-après un autre exemple qui montre que les simplifications peuvent se propager de façon importante. Voici son gène (4) apparaît entre la colonne 10 et la colonne 0 impose la valeur de [x 0 : x 11 ] à [1 : 0]. Mais, de proche en proche, cela entraîne que [x i , x i+11 ] = [1 : 0] pour i ∈ 0, 5 . Pour i ∈ {6, 7, 10}, la valeur de [x i , x i+11 ] est imposée, égale à [0 : 1] par la présence de l'allèle O. Enfin, les liens entre les colonnes 7 et 8 et les colonnes 8 et 9 conduisent à [x 8 : x 19 ] = [x 9 : x 20 ] = [0, 1]. Ainsi la valeur de tous les points projectifs [x i , x i+11 ] est uniquement déterminée (sans qu'il y ait de contradiction) : la variété de Kisin correspondante est donc réduite à un unique point {[0 : 1]} 6 × {[1 : 0]} 5 .

  Remarque 4.1.4. -Dans le cas où le gène initial X ne contient pas d'occurence O, il est possible que le gène réduit X (introduit dans la démonstration de la proposition 4.1.3) soit constituté d'une unique suite de couples de variables libres, chacun étant relié à son successeur par un ou plusieurs liens, de façon à ce que la séquence d'allèles correspondantes présente une boucle. Dans la suite ( §4.2), nous détaillons le cas général d'une séquence d'allèles sans boucle en indiquant comment adapter les constructions et les démonstrations au cas à boucle.

  Définition 4.2.1. -Une partie S ⊂ 1, est dite exprimable si pour tout m ∈ 0, n + 1 , l'intersection S ∩ I m est de cardinal au plus 1.

  Remarque 4.2.2. -Dans le cas d'une séquence d'allèles à boucle (voir remarque 4.1.4), il convient d'adapter la définition de partie exprimable S ⊂ 1, à la présence d'un lien supplémentaire, i.e. S ∩ I n+1 est de cardinal au plus 1 pour

  le caractère η (resp. η ) ;

  Les résultats précédents sont encore vrais si nous échangeons simultanément A et B d'une part et I η et I η d'autre part. Démonstration. -Supposons A dominant dans les couples d'allèles

  Exemple 5.2.4. -Le gène de l'exemple 2.1.10 (déjà repris dans le §2.3.4), muni de toutes ses décorations, se représente comme suit : étant indiquées en rouge. Le lemme 5.2.1 se traduit alors simplement en termes de décorations du gène X : Proposition 5.2.5. -Soient k une extension finie de k

  si a et b sont deux éléments d'un ensemble, convenons que δ(a, b) vaut II si a = b et I sinon.
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 3 Quelques exemples. -5.3.1. Pour f = 2. -D'après le tableau de la figure 3 (page 17), les deux seules variétés de Kisin qui peuvent apparaître pour f = 2 sont Spec k E et P 1 k E . En outre, dans le second cas, à isomorphisme près, la stratification prend la forme suivante :
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 4 Figure 4. Liste des gènes et de leurs variétés de Kisin pour f = 3

  5.3.3. Chaînes de P 1 . -Considérons une variété stratifiée facteur (voir §5.2.3) V portant sur ( +1) indices, qui est isomorphe à une chaîne de copies de P 1 k E représentée ci-dessous : §2.3.2). Nous supposons en outre que la stratification sur V est ainsi donnée : le genre du pointP i est I × • • • × I × II × I × • • • × I (leII étant à la i-ième position), tandis que le genre des autres points est I × • • • × I. Un candidat naturel pour le facteur D correspondant est alors l'espace rigide associé à l'anneau :

D

  'après la conjecture 5.2.7, à chaque facteur V j devrait être associé un espace rigide analytique D j , de façon à ce que D ψ (v, t, ρ) = D 1 × • • • × D r . Le but de ce paragraphe est d'esquisser la construction d'un candidat possible pour les espaces D j .5. Cette écriture est abusive car lesBi ne sont pas des espaces rigides. Une construction préliminaire. -Rappelons que si a et b sont deux éléments d'un ensemble, nous avons défini le symbole δ(a, b) par δ(a, b) = II si a = b et δ(a, b) = I sinon. Rappelons également que si k est un corps et six = [u : v] ∈ P 1 (k), nous notons x -1 = [v : u]. Étant donnés un entier d 0 et un élément x 0 ∈ P 1 (k E ), nous allons construire un schéma formel X d,x 0 , un sous-schéma fermé Zd,x 0 de la fibre spéciale Xd,x 0 de X d,x 0 ainsi qu'un morphisme α d,x 0 :X d,x 0 → (P 1 O E ) d vérifiant les deux propriétés suivantes : i) le morphisme α d,x 0 induit un isomorphisme Zd,x 0 → (P 1 k E ) d , ii) pour tout point fermé x ∈ Zd,x 0 , l'image inverse de x par le morphisme de spécialisation est isomorphe à Spm(W O E (k E (x)) ⊗ O E R g(x) [1/p]) où g(x) = δ(x 0 , x -1 1 ), δ(x 1 , x -1 2 ), . . . , δ(x d-1 , x -1 d ) ∈ G d avec α d,x 0 (x) = (x 1 , x 2 , . . . , x d ) ∈ (P 1 k E ) d et nous rappelons que R g(x)est défini par la formule (22), page 34.Nous procédons par récurrence sur d.Pour d = 0, nous posons X 0,x 0 = Spf O E , Z0,x 0 = X0,x 0 et α 0 = id. Supposons à présent que X d-1,x 0 , Zd-1,x 0 et α d-1,x 0 sont construits. Nous posons Y = X d-1,x 0 × O E P 1 O E et notons Ȳ sa fibre spéciale. Nous avons donc Ȳ = Xd-1,x 0 × k E P 1 k E . Soit D le diviseur de Ȳ défini comme l'image du morphisme : id × (inv • d-1 • α d-1 ) : Xd-1 → Ȳ où d-1 : (P 1 k E ) d-1 → P 1 k E estla projection sur la dernière composante et inv est le morphisme x → x -1 . Nous définissons X d,x 0 comme l'éclaté de Y par rapport au sous-schéma fermé D et Zd,x 0 comme le transformé strict de Zd-1,x 0 dans X d,x 0 . Enfin, le morphisme α d,x 0 est la composée X d,x 0 → Y → (P 1 O E ) d où la première flèche est le morphisme canonique et la seconde est α d-1,x 0 × id.

  Il en résulte que X i+1 = O. La démonstration de la propriété ii) est analogue. Nous conservons les notations ci-dessus et supposons en outre que ρ n'est pas dégénérée. Alors le gène X contient au moins une occurrence du symbole O.

	O. D'après le lemme 2.1.4, X ne contient que des symboles A et B. Ainsi, d'après le lemme 2.1.3, pour tout i ∈ 0, 2f -1 , nous avons α i+1 = pα i + h i -e1 B (X i ) où 1 B désigne la fonction indicatrice de B. En résolvant le système précédent, nous obtenons pour tout Lemme 2.1.5. -Démonstration. -Supposons que le gène X ne contienne pas d'occurrence du symbole i ∈ 0, f -1 ,

  donc, en particulier, il est de longueur impaire).

Pour démontrer cette alternative, supposons que X(h, γ, γ ) ne contienne pas de couple d'allèles O O . Alors, d'après le lemme 2.1.4, il ne contient pas non plus le couple d'allèles AB AB . Ainsi, quitte à translater, il contient le couple O AB . Mais, étant donné que AB est nécessairement suivi de O (lemme 2.1.4), cela impose que le couple d'allèles suivant est AB O . En répétant l'argument, nous aboutissons à la conclusion annoncée. Définition 2.1.9. -Soit X un gène ayant un caractère dominant. Pour un entier

  Kisin GR ψ (v, t, ρ) est vide dès lors qu'un gène associé à (t, ρ) contient le couple d'allèles O O . Nous verrons dans la suite (cf proposition 4.1.3) que la réciproque est également vraie. Notons que l'isomorphisme K(t, ρ) → GR

	O O et satisfai-sant aux conditions des lemmes 2.1.4 et 2.1.6 puis, pour chacun d'eux, de déterminer
	la variété de Kisin correspondante à l'aide du théorème 2.2.1.

ψ (v, t, ρ) est entièrement explicite

(3) 

; autrement dit, nous pouvons également lire sur le gène, la structure du réseau de Breuil-Kisin correspondant à chacun des points de la variété de Kisin. Le théorème 2.2.1 permet également d'établir des propriétés fines sur la géométrie de la variété de Kisin ; ces aspects sont discutés au §4.

2.3. Premiers exemples. -Dans ce paragraphe, nous presentons quelques exemples d'utilisation du théorème 2.2.1 de détermination de la variété de Kisin et en profitons pour illustrer différentes propriétés géométriques des variétés de

Kisin ( §2.3.2, §2.3.3, §2.3.4)

. Ensuite ( §2.3.5), sous l'hypothèse de généricité de la représentation ρ (au sens de

[BM]

), nous montrons que la variété de Kisin est toujours réduite à un point.

2.3.1. Petites valeurs de f . -Pour les petites valeurs de f , il est possible de lister tous les gènes possibles (à symétrie près) ne contenant pas le couple d'allèles

  le groupe des unités de S. De plus, remplacer le couple (a i , b i ) par (sa i , sb i ) avec s ∈ S × ne modifie pas non plus l'image de P(i) . Par ailleurs, l'existence des éléments a i et b i vérifiant la condition (19) entraîne que le sous-module de S 2 engendré par (a i , b i ) définit un point de l'espace projectif P 1 (S) (i.e. le quotient S 2 /(a i , b i )S est projectif). Dans la suite, nous utilisons la notation classique [a i : b i ] pour désigner ce point. En conclusion, le réseau M (i) est entièrement caractérisé par le S-point [a i : b i ] de la droite projective. De la même manière, si δ < 0, nous trouvons que M (i) est déterminé par le point projectif [a

i : b i ] ∈ P 1 (S).

3.2.4. Stabilité par ϕ. -Examinons à présent à quelle condition sur a i , b i , a i , b i le réseau M est stable par ϕ, c'est-à-dire à quelle condition les matrices H (i) définies par l'égalité (15) sont à coefficients dans S S . Un calcul immédiat montre que la matrice H (i) est de la forme :

(20) 

  1 z y où les variables y i et les z i correspondent à certains x i . Dans le cas où le gène initial X ne contient pas d'occurence O, il est possible qu'il y ait un lien supplémentaire (dit boucle) entre y 1 et y ou entre z 1 et z (voir remarque 4.1.4).

  vue comme variété algébrique abstraire ne permet pas, à elle seule, de reconstruire D ψ (v, t, ρ), comme nous le verrons au §5.3. Il n'est également pas vrai que la variété de Kisin stratifiée détermine l'anneau R ψ (v, t, ρ). Nous conjecturons toutefois la propriété plus faible suivante. Démonstration du théorème 5.1.2. -Nous rappelons que pour tout i dans Z/f Z , la matrice de ϕ de M (i) dans M (i+1) est, dans les bases (e

	Conjecture 5.1.6. -Supposons que t est non dégénéré. L'anneau de déformations
	R ψ (v, t, ρ) est entièrement déterminé par un gène (n'importe lequel) associé au couple
	(t, ρ).	
	5.2. Stratification par le genre. -Le but de ce paragraphe est de démontrer le
	théorème 5.1.2 puis de donner des équations explicites pour les strates GR	ψ g (v, t, ρ) et
	d'étudier la géométrie des variétés de Kisin stratifiées.	
	5.2.1. (i) η , e (i) η ) donnée par
	les formules (	

  ) est de genre I η . Les autres cas sont analogues.Remarque 5.2.2. -En particulier, l'énoncé du lemme 5.2.1 implique que si le couple d'allèles en i ∈ 0, f -1 du gène X satisfait X i X i+f ∈

		O AB , AB O	alors la composante
	M (i) est toujours de genre II.	
	Le théorème 5.1.2 découle à présent simplement du lemme 5.2.1.
	5.2.2. Traduction génétique. -Le but du paragraphe §5.2.2 est d'expliquer comment
	les équations des strates de GR	ψ (v, t, ρ) peuvent se lire sur le gène. À cette fin, nous
	introduisons une décoration supplémentaire, appelée décoration horizontale :
	Définition 5.2.3. -Pour i ∈ 0, f -1 ,
	• si A est dominant en i et B est dominant en i + 1, la décoration horizontale est
	composée d'un lien de	

  r est compatible aux stratifications. Forts de ce résultat, nous proposons une version raffinée de la conjecture 5.1.5.

	Conjecture 5.2.7. -Avec les notations précédentes, l'espace de déformations
	D ψ (v, t, ρ) s'écrit :
	D

  ce qui est exclu. Il ne reste donc plus, dans ce cas, que la possibilité d'un unique lien entre X i et X i+f +1 . Dans le cas contraire où Y n'est plus dominant en (i + 1), nous devons exclure la possibilité X