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AGING BRANCHING PROCESS AND QUEUING FOR AN

INFINITE BUS LINE

VINCENT BANSAYE & ALAIN CAMANES

Abstract. We study a multitype branching process in varying environment
which describes an aged structure population, when the maximal age of in-
dividuals may vary over generations and go to infinity. We prove a Kesten
Stigum type theorem, namely the a.s. convergence of the successive size of
the population normalized by its mean. The technic developed is inspired by
the spine approach for multitype branching processes and from geometric er-
godicity along the spine using a Doeblin condition. We also obtain the a.s.
convergence of the distribution of the ages among the population.
Adding an immigration, this process is connected to a queuing system for buses
which serve stations indexed by N. We can then determine the asymptotic be-
havior of a single bus and when two buses are going to merge with probability
one.

Key words. Multitype Branching processes, Queuing systems, Immigration, In-
homogeneity, Coupling
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1. Introduction

We are interested in a model of age structured population where the maximal
age of individuals increase with time. Thus the associated branching process is both
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time non-homogeneous and infinite dimensional if the age is unbounded. A vast
literature is dedicated to multitype branching processes (see e.g. [16, 4]) and their
applications to population dynamics (see e.g. [10, 5]) and queuing systems (see e.g
[22]). In particular, they give a convenient way to model population without inter-
actions and take into account a bounded age structure influencing the reproduction
law of the individuals. The associated mean matrix is then called Leslie matrix and
Perron Frobenius theory yields the asymptotic behavior of the process.
Much less is known about infinite number of types and varying environment since
the spectral approach and martingale techniques cannot be extended easily. The
pioneering works of Moy [17], Kesten [13] and Seneta provide some theoretical
extension of limit theorems and extinction criteria for a denumerable number of
types, while multitype branching processes with a finite number of types (MBP
in the sequel) have been well studied for stationary ergodic environment, see e.g.
[1, 2].

1.1. Model. In each generation n, each individual reproduces independently with
reproduction law R. His offsprings are newborns in generation n + 1. Moreover
each individual with age a in generation n becomes an individual aged a + 1 in
generation n+1 if a+1 ≤ an+1 and dies otherwise. Thus an gives the maximal age
which is allowed in generation n. We take also into account a potential immigration
and our process is defined as follows. For each n, a ∈ N, we denote by Zn(a) the
number of individuals in generation n whose age is equal to a. We denote by Zn

the total size of the population. Thus,

Zn :=

an∑

a=0

Zn(a);(1)

Zn(a) = Zn−1(a− 1)11≤a≤an
;(2)

Zn(0) =

Zn−1∑

j=1

Rj,n + In;(3)

where (Rj,n, j, n ∈ N) are i.i.d. distributed as R and (In, n ∈ N) are i.i.d. inde-
pendent of (Rj,n, j, n ∈ N).

The fact that an is the maximal age among the population in generation n makes
us assume that

∀n ∈ N, an+1 ≤ an + 1.

Remark that each individual born in generation n lives during ℓn generations, where
ℓn is defined by

ℓn := max{k : an+k + 1 ≥ k},
and it satisfies ℓn+1 ≥ ℓn − 1.
When an is constant, we recover the classical age structured branching process.
Let us also note that when an is stationary or periodic, the behavior of the process
can be again derived from branching processes with finite number of types. Our
motivations for aging and queuing given below make us focus on the case when the
maximal age is non-decreasing. Then either it is bounded and then it is stationary
and the study is derived from the finite dimensional case; or it goes to infinity and
we determine in this paper how the process behaves for large times.
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1.2. Main results and motivations. A first motivation is to describe population
dynamics when the life span of individuals is non decreasing, so that the maximal
age an is non decreasing. When an goes to infinity, the aging branching process is
supercritical and the size of the population grows geometrically. Our main result
deals with the asymptotic behavior of the number of individuals and the distribution
of age among the population. More precisely, we prove the a.s. convergence of
Zn/E(Zn) and Zn(a)/E(Zn) to non-degenerated random variable as n → ∞. We
also provide estimates of E(Zn) to illustrate our results. Such convergences are
well known in the homogeneous framework and finite dimension [4, 14]. In varying
envrionment and finite dimension, Coale Lopez theorem about product of matrices
can be used to describe the mean behavior of the process and prove such results via
weak ergodicity. We refer to [20] and the works of Harry Cohn for more details. Here
we have to deal both with varying environment and infinite dimension. Necessary
and sufficient conditions for a.s. and Lp convergence of martingales associated to
harmonic vectors have been obtained in [8] in the case of countable set of types.
But it seems rather delicate to apply such results in our framework and to capture
the behavior of the quantities we consider in this paper.

We develop a different technic relying on the control of the L2 moments of the
successive increments of the renormalized process using the spine approach initiated
by [15, 14] and Doeblin condition for geometric ergodicity of Markov chains which
enables us to achieve the computations. We believe this method is rather efficient
and could be interesting for itself and generalizable in several ways. In particular,
it can be extended to continuum set of types, Lyapounov functions may be invoked
in more general cases and the L2 bounds could be relaxed following [8].

The connection between branching processes and queuing systems is known from
a long time and can be found for example in [9] (chapter XIV). Basically the off-
spring of an individual is the number of customers arriving during the time when
this individual is served. Our original motivation, which is handled in the second
part of this article, is the study of some queuing systems where customers arrive
on the half line of integers (a bus line) and the traveling server (the bus) moves at
a constant speed to the right and serve each customer (the time required to enter
the bus). In our model, a customer is waiting at station i if and only if the distance
from this customer to the next bus is at most di when this customer arrives at the
station. The sequence di will both a way to model a discipline for the queues and
take into account the distance between two successive buses. As a first example, if
customers are waiting at a station wherever the buses are, then the first bus of the
line is associated with the (aging) sequence di = i, which actually amounts to take
di = ∞.
Many works have been dedicated to models with a finite number of queues and
in particular to customers arriving on a circle while the servers visit the queues
cyclically. We refer to polling models [23] and works of Sergey Foss and al.
In this work, we extend the a.s. convergence for the renormalized number of in-
dividuals of an aging branching process with maximal age given by the sequence
di by adding an immigration and proving some functional convergence result. We
derive then the speed of a single bus with discipline di travels and make appear two
regimes following ai goes fast enough to infinity or not. It also enables us to derive
qualitative results on the dynamics where several buses serve.
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The links between polling systems and multitype branching processes with immi-
gration is well known and finely used for a finite number of queues, see e.g. [18, 21].
Here the queues are indexed by N and one can see the set of buses as a particle
system on N. The more a bus is far from the previous one, the more customers are
waiting for him and the slower it travels. This is well known phenomenon which
make delay increase in traffic. As a consequence, the large distance between buses
tend to increase fast. Such a model then intrinsically differs from particles systems
such as the q-TASEP or Hammersley-Aldous-Diaconis process where the distance
between two particles tend to be reduced. If the distance between the two buses
increases fast, the bus behind, which advances very slowly should eventually be
reached by the previous one. This makes two buses merge. One question we deal
here is “do any two buses should eventually merge (or coalesce) ?”.

Let us finally mention that taking into account immigration and time non ho-
mogeneity is more general motivated by self excited process (like Hawkes process)
where the immigration is the excitation and the branching structure is the cascade
effect provoked by this excitation.

1.3. Organization of the paper and notations. In Section 2, we consider
branching processes with an aged structure and first deal with the case where there
is no immigration. We then derive asymptotic behavior of this branching process
with immigration by summing the descendants of each immigrant.
In Section 3, we introduce the queuing system for an infinite bus line. We then
link this model with aging branching process with immigration by proving that the
time at which a bus leaves some station is obtained by summing the number of new
born individuals of such a branching process. We can then study the progression
of the bus and determine when two successive buses will merge a.s.

The population can be described by a discrete tree T . Following notations of
Ulam-Harris-Neveu, the individuals are labeled by sequences of integers which give
their location in the tree and T is a random subset of ∪n≥0{1, 2, . . .}n. We denote
Z(u) the age of the individual u ∈ T and |u| its generation in the tree. The set of
individuals in generation n is denoted Gn and the set of the descendants of u in the
next generation (including himself if it survives) is denoted X(u). Finally, in each
generation n, the part of the population which survives is denoted by G+

n , while the
part of the population which dies is denoted G−

n . More precisely, denoting ≤ the
natural order on T ,

Gn := {u ∈ T s.t. |u| = n},(4)

X(u) := {v ∈ T : |v| = |u|+ 1, v ≥ u},(5)

G+
n := {u ∈ Gn s.t. Z(u) + 1 ≤ an+1},(6)

G−
n := {u ∈ Gn s.t. Z(u) + 1 > an+1}.(7)

Then, the population in generation n can be viewed as measure

Zn :=
∑

u∈Gn

δZ(u)

so that Zn = Zn(N) = #Gn and Zn(a) = Zn({a}) = #{u ∈ Gn : Z(u) = a}.
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2. Aging branching process

We assume in the whole section that

an ≤ an+1 ≤ an + 1, an → ∞
and

m = E(R) < ∞, E(R2) < ∞.

In the two first subsections, we will deal with the aging branching process without
immigration, i.e. the process (Zn : n ∈ N) defined by Z0 = 0 and

Zn :=

an∑

a=0

Zn(a);(8)

Zn(a) = Zn−1(a− 1)11≤a≤an
;(9)

Zn(0) =

Zn−1∑

j=1

Rj,n;(10)

where (Rj,n, j, n ∈ N) are i.i.d. distributed as R.

2.1. Preliminaries : moment estimates without immigration. In this sec-
tion, we use coupling with well chosen (multitype) branching processes to give some
first estimates on the two first moment of the aging Galton Watson process without
immigration, i.e. we assume here that for each n ∈ N,

In = 0 a.s.

To evaluate the mean behavior of the process, let us note for every 0 ≤ i ≤ n
and 0 ≤ a ≤ ai,

mi,n(a) = E[Zn|Zi = δa],

which gives the mean number of individuals at generation n which are descendants
of an individual aged a at generation i. For sake of simplicity, we will denote

mi,n = mi,n(0), mn = m0,n = m0,n(0) = E[Zn].

We are also using, for 1 ≤ i ≤ n, 0 ≤ a ≤ ai, 0 ≤ b ≤ an,

mi,n(a, b) = E[Zn(b)|Zi = δa]

the mean number of individuals of age b in generation n, which are descendant from
a single individual with age a in generation i.

Lemma 2.1 (Mean behavior). (i) We have (mn+1/mn) → m + 1 as n → ∞.
Hence, for any 0 ≤ k ≤ n, (mn−k/mn) goes to (m+ 1)−k.
(ii) For each ρ ∈ (1,m+1), there exists a positive constant α s.t. for n large enough,
mn ≥ αρn.
(iii) For all 0 ≤ i ≤ n− 1 and 0 ≤ a ≤ ai,

mmi+1,n ≤ mi,n(a) ≤ mi,n ≤ (m+ 1)mi+1,n.

Proof. (i) We first observe that from generation n to generation n + 1, only indi-
viduals aged an may die. Furthermore, each individual gives birth, on average, to
m children. Thus,

(m+ 1)mn −mn(0, an) ≤ mn+1 ≤ (m+ 1)mn.
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This yields the upper bound. For the lower bound, note that individuals aged k in
generation i were newborns of generation i− k, so mn(0, an) = mn−an

(0, 0). Using
the Markov and branching properties,

mn ≥ mn−an
(0, 0)mn−an,n.

Moreover mn−an,n = (m+1)an since starting from an individual of age 0 in gener-
ation n−an, each individual is replaced by R+1 individuals in the next generation
during the time interval [n− an, n]. Then,

mn(0, an)

mn
=

mn−an
(0, 0)

mn
≤ 1

mn−an,n

and the fact that the right hand side goes to 0 as n → ∞ yields the lower bound
for (i).

(ii) Let ρ(a) be the greatest eigenvalue of Leslie Matrix sized a + 1 (whose
definition is recalled in the Appendix) and ρ ∈ (1,m + 1). Since (an) goes to
infinity, (ρ(an)) goes to m+ 1, see Lemma A. Then there exists n0 s.t. ρ(an0

) > ρ.
Considering the new borns in generation n0 yields

mn ≥ mn0
(0, 0)Mn0,n,

where Mn0,n is the mean number of individuals in a MBP with an0
+1 types start-

ing in generation n0 and living till time n. Using Perron-Frobenius Theorem, there
exists a positive constant c s.t.Mn0,n ∼ cρ(an0

)n, which leads to the expected result.

(iii) The bound mi,n(a) ≤ mi,n comes simply from the fact that an individual
with age 0 lives longer that an individual with age a > 0. Using the distribution of
traits in generation i+ 1, we get by branching and Makov property

(11) mi,n(a) =
∑

0≤ℓ≤ai+1

mi,i+1(a, ℓ)mi+1,n(ℓ).

It yields the two last inequalities recalling that mi,i+1(a, 0) = m, mi,n(a) ≤ mi,n

and mi,i+1(a) ≤ m+ 1.
�

2.2. Aging branching process without immigration. We study the asymp-
totic behavior of the process without immigration and we recall that it means that
for each n ∈ N, In = 0 a.s. We will derive in the next Section 2.3 the counterpart
when the immigration I is non zero.
We first note that an → ∞ ensures that the event

Nonext := {∀n ≥ 0 : Zn > 0}
has positive probability. We refer to forthcoming Lemma 2.5 for details.

Theorem 1. (i) The sequence of random variable (Zn/mn)n converges a.s. and
in L2 to a non-negative r.v. W , which is positive a.s. on Nonext.
(ii) For each k ∈ N, (Zn(k)/Zn)n converges a.s. to m/(m + 1)k on the event
Nonext.

Let us recall from Section 2.1 that mn+1/mn → 1, so the theorem ensures that
ratio of consecutive size of the population Zn+1/Zn goes to m+ 1 on Nonext. But
the process may grow slower than (m+1)n. Two asymptotic regimes appear, which
we put in light in the following result. These two regimes will be relevant when
studying the queuing system in Section 3.
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Corollary 2. The process Mn = (m + 1)−nZn is a supermartingale which con-
verges a.s. to a finite non-negative r.v. M and

(i) If lim inf
i→∞

ai/ log i > 1/ log(m+ 1), then {M > 0} = Nonext.

(ii) If lim sup
i→∞

ai/ log i < 1/ log(m+ 1), then M = 0 a.s.

When an = n, each individual survives in each generation and we simply obtain
a GW process with mean m + 1, which grows geometrically with rate m + 1 as
n → ∞. The result above shows at which speed an has to go infinity so that such
a growth still holds. Let us proceed with the proof of the two last results.

2.2.1. Proof of Theorem 1 (i). The proof relies on the following lemma, which
focuses on the evolution of types on a spine of the process.

For every i ≤ n and a ∈ {0, . . . , ai}, we define

Pi,n(a, b) = mi,i+1(a, b)
mi+1,n(b)

mi,n(a)

and then by recursion we can set

Qi,n(a, b) :=
∑

0≤k≤ai+1

Pi,n(a, k)Qi+1,n(k, b).

Moreover (11) ensures that Pi,n is a Markov kernel. Then Qi,n(., .) is the semigroup
of an inhomogeneous Markov Chain between generations i and n. We are proving
in the next lemma that it satisfies the Doeblin’s condition and we are deriving
geometric estimates for the means mi,n via a many-to-one formula. Let us note
that this technic is inspired by probabilistic methods, while the result here is purely
analytical. Such an approach can be extended for more general product of (non-
negative) matrices in finite or infinite dimension.

Lemma 2.2. (i-Many-to-one formula). For all 0 ≤ i ≤ n and a ≥ 0,

mi,n(a, .) = mi,n(a)Qi,n(a, .).

(ii-Doeblin’s condition). For all 0 ≤ i ≤ n and 0 ≤ a ≤ ai,

Pi,n(a, .) ≥
m

m+ 1
δ0(.).

(iii-Geometrical Ergodicity). For any i ≤ n and probability measures µ and ν on
{0, . . . , ai},

dTV (Qi,n(µ, ·), Qi,n(ν, ·)) ≤ (1− c)n−idTV (µ, ν),

where c = m/(m + 1) and dTV (·, ·) is the total variation distance on the space of
probabilities on N defined by

dTV (µ, ν) =
1

2

∑

k∈N

|µk − νk|.

(iv) We set

E(a, i, n) :=
mi,n(a)

mn
− mi,n+1(a)

mn+1
.

There exists Cm > 0, which only depends on m such that for all i, n ∈ N,

|E(a, i, n)| ≤ Cm
(1 − c)n−i

mi
.
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Proof. We prove (i) by induction. Using (11) and mi,n(ℓ, k) = mi,n(ℓ)Qi+1,n(ℓ, k),
we get

mi,n(a, k)

mi,n(a)
=

∑

ℓ≥0

mi,i+1(a, ℓ)mi+1,n(a)

mi,n(ℓ)
Qi+1,n(ℓ, k)

=
∑

ℓ≥0

Pi,n(a, ℓ)Qi+1,n(ℓ, k),

which proves (i), since the right hand side is equal to Qi,n(a, k).

(ii) It is a consequence of Lemma 2.1 (iii) and mi,i+1(a, 0) = m.

(iii) Doeblin’s condition obtained above yields a contraction for the Total Variation
distance

dTV (Pi,n(µ, .), Pi,n(ν, .)) ≤ (1− c)dTV (µ, ν).

for any 0 ≤ i ≤ n and by a classical induction

dTV (Qi,n(µ, .), Qi,n(ν, .)) ≤ (1− c)n−idTV (µ, ν).

(iv) Using again the Markov and branching property but now in generation n and
recalling (i), we get

mi,n+1(a) =
∑

0≤k≤an

mi,n(a, k)mn,n+1(k)

= mi,n(a)
∑

0≤k≤an

Qi,n(a, k)mn,n+1(k).

In the same way,

mn+1 = m0,n+1(0) = mn

∑

0≤k≤an

Q0,n(0, k)mn,n+1(k).

Thus,

E(a, i, n) =
mi,n(a)

mn
·
∑

0≤k≤an
(Qi,n(a, k)−Q0,n(0, k))mn,n+1(k)∑
0≤k≤an

Q0,n(0, k)mn,n+1(k)
.

Recalling that mn,n+1(k) is equal to m if k ∈ G−
n and to m+ 1 if k ∈ G+

n , we get

|E(a, i, n)| ≤ (m+ 1)mi,n(a)

mmn
dTV (Qi,n(a, ·), Q0,n(0, ·)).

Now, from the triangular inequality,

dTV (Qi,n(a, ·), Q0,n(0, ·)) ≤ dTV (Qi,n(a, ·), Qi,n(0, ·))+
i∑

k=1

dTV (Qk,n(0, ·), Qk−1,n(0, ·)).

Then, thanks to previous points (ii) and (iii),

dTV (Qk,n(0, ·), Qk−1,n(0, ·)) = dTV (Qk,n(0, ·), Qk,n(Pk−1,n(0, ·), ·))
≤ (1− c)n−kdTV (δ0, Pk,n(0, ·))
≤ (1− c)n−k+1,
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and there exists a constant C′
m =

(
m+1
m

)2
> 0 s.t. and

|E(a, i, n)| ≤ C′
m(1− c)n−imi,n(a)

mn
≤ C′

m(1− c)n−imi,n

mn
≤ C′

m(1− c)n−i 1

m0,i(0, 0)
.

using again the new borns in generation i. Recalling that m0,i(0, 0) = mi−1m ≥
mim/(m+ 1), we obtain (iv). �

Proof of Theorem 1 (i). To show that (Zn/mn) converges a.s., we prove that

(12)
∑

n≥0

E

[(
Zn+1

mn+1
− Zn

mn

)2
]1/2

< ∞.

Thanks to Minkowski’s inequality and recalling that

(13) mn+1 = E(#G+
n )(m+ 1) +E(#G−

n )m,

we get, denoting ‖ · ‖2 the L2 norm on r.v.,
∥∥∥∥
Zn+1

mn+1
− Zn

mn

∥∥∥∥
2

=

∥∥∥∥

∑
u∈Gn

♯X(u)

mn+1
− Zn

mn

∥∥∥∥
2

≤
∥∥∥∥

∑
u∈G

+
n
[♯X(u)− (m+ 1)]

mn+1

∥∥∥∥
2

+

∥∥∥∥

∑
u∈G

−

n
[♯X(u)−m]

mn+1

∥∥∥∥
2

+

∥∥∥∥
(m+ 1)♯G+

n +m♯G−
n

mn+1
− Zn

mn

∥∥∥∥
2

First remark that, when u belongs to G+
n , then ♯X(u) is distributed as R + 1.

Thus, (♯X(u)− (m+ 1))u∈G
+
n
are independent, centered r.v. and

E






∑

u∈G
+
n

♯X(u)− (m+ 1)




2

 = E[(R+m)2]E[♯G+

n ].

Adding that the individuals in G+
n survive, E[♯G+

n ] ≤ mn+1 and
∥∥∥∥

∑
u∈G

+
n
[♯X(u)− (m+ 1)]

mn+1

∥∥∥∥
2

≤
√
E[(R −m)2]
√
mn+1

.

In the same manner, recalling that mn+1 ≥ mnm (Lemma 2.1 (iii))

∥∥∥∥

∑
u∈G

−

n
[♯X(u)−m]

mn+1

∥∥∥∥
2

≤
√
mnE[(R−m)2]

mn+1
≤
√

E[(R−m)2]

mmn
.

To study the last term, let

Fn(u) =
mn,n+1(Z(u))

mn+1
− 1

mn
.

For u ∈ Gn, either u belongs to G+
n and mn,n+1(Z(u)) = m + 1, or u ∈ G−

n and
mn,n+1(Z(u)) = m.
Using this notation,

∥∥∥∥
(m+ 1)♯G+

n +m♯G−
n

mn+1
− Zn

mn

∥∥∥∥
2

=

∥∥∥∥∥
∑

u∈Gn

Fn(u)

∥∥∥∥∥
2

.

The proof follows now standard arguments (see e.g. Lemma 3 in [6]). We use
the genealogy of the population to exploit the branching property in the lineages.
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Given two individuals u and v living in generation n, let us consider their youngest
common ancestor ω at generation i − 1. Then, individuals u and v arise from two
independent branching processes starting at time i from descendants of ω. Thus,
we denote pairs of siblings born at generation i :

Vi = {(ωa, ωb) ; a 6= b, |ωa| = |ωb| = i}.

Then,

E



(
∑

u∈Gn

Fn(u)

)2



= E



∑

(u,v)∈G2
n

Fn(u)Fn(v)




=

n−1∑

i=1

E



∑

(u,v)∈Vi

Fn(u)Fn(v)


 +E

[
∑

u∈Gn

Fn(u)
2

]

≤
∑

i≤n−1

∑

a≤ai

m0,i(a)
∑

a′,a′′

Vi,a,a′,a′′E(a′, i+ 1, n)E(a′′, i+ 1, n) + 2mn

[
(m+ 1)2

m2
n+1

+
1

m2
n

]
,

where

Vi,a,a′,a′′ := E (Zi+1(a
′)Zi+1(a

′′)|Zi = δa)

is bounded by E((R + 1)2) and

E(a, i, n) = E

(
∑

u∈Gn

Fn(u) | Zi = δa

)

= E

(∑
u∈G

+
n
(m+ 1) +

∑
u∈G

−

n
m

mn+1
− #Gn

mn
| Zi = δa

)

=
E(#Gn+1| Zi = δa)

mn+1
− E(#Gn| Zi = δa)

mn

=
mi,n+1(a)

mn+1
− mi,n(a)

mn
.

Using Lemma 2.2 (iv), we get

∥∥∥∥
#G+

n (m+ 1) + G−
n m

mn+1
− Zn

mn

∥∥∥∥
2

2

≤ E((R + 1)2).C2
m.

∑

i≤n−1

(1− c)2(n−i)

mi
+ 2

[
(m+ 1)2mn

m2
n+1

+
1

mn

]

Thus, there exists a constant CR which only depends on m = E(R) and E(R2)
such that

∥∥∥∥
#G+

n (m+ 1) + G−
n m

mn+1
− Zn

mn

∥∥∥∥
2

2

≤ CR




∑

n/2≤k≤n

1

mk
+ (1− c)n



 .
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Putting pieces together yields

(14)

∥∥∥∥
Zn+1

mn+1
− Zn

mn

∥∥∥∥
2

≤ C′
R

√√√√
∑

n/2≤k≤n

1

mk
+

(
1− m

m+ 1

)n

for some constant C′
R which only depends on m and E(R2). Adding that mk grows

geometrically, see Lemma 2.1 (ii), ensures that the right hand side is summable and
(12). We get the L2 convergence of Zn/mn and Cauchy Schwarz inequality also
ensures that

(15)
∑

n∈N

E(|Zn+1/mn+1 − Zn/mn|) < ∞.

Then Zn/mn converges a.s. and in L1 to a non negative finite r.v. W . As
E(Zn/mn) = 1, P(W > 0) > 0. Adding that on Nonext, Zn and then Zn(0) have
to go to infinity, standard branching argument ensures that {W > 0}=Nonext,
which ends up the proof. �

2.2.2. Proof of Theorem (ii). To prove the second part of the Theorem, we use the
following simple law of large numbers, in the vein of [3].

Lemma 2.3. Let (Xn)n be a sequence of integer valued r.v. We assume that for
each n ∈ N, (Xi,n : i ≥ 0) are identically distributed centered r.v., which are
independent of Xn. Moreover (Xi,n : i, n ≥ 0) are bounded in L2. Then,

1

Xn

Xn∑

i=1

Xi,n → 0 a.s on

{
lim inf
n→∞

1

n
log(Xn) > 0

}
.

Proof. Fix c ∈ (0,∞) and ǫ > 0 and denote by

E(c)
n =

{∣∣∣∣∣
1

Xn

Xn∑

i=1

Xi,n

∣∣∣∣∣ ≥ ǫ

}
∩ {Xn ≥ cn2}.

Using Bienaymé Tchebytchev inequality and conditioning by Xn, we get that

P(E(c)
n ) ≤ E

(
1

ε2Xn
1Xn≥cn2 sup

i,n
E(X2

i,n)

)
≤ 1

cε2n2
sup
i,n

E(X2
i,n),

where the last term is bounded by assumption. As a consequence,
∑

n≥0

P(E(c)
n ) < ∞

and P(E
(c)
n occurs i.o.) = 0 by Borel-Cantelli lemma. Then, a.s. on the event

{∀n ≥ 0 : Xn ≥ cn2}, ∣∣∣∣∣
1

Xn

Xn∑

i=1

Xi,n

∣∣∣∣∣
n→∞−→ 0.

Adding that
{
lim inf
n→∞

1

n
log(Xn) > 0

}
⊂ ∪c∈Q∩(0,1){∀n ≥ 0 : Xn ≥ cn2}

ends up the proof. �
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Proof of Theorem 1 (ii). First we prove that a.s on Nonext,

(16)
Zn+1(0)

Zn

n→∞−→ m

using the previous law of large numbers. Indeed, recall that

Zn+1(0) =

Zn∑

k=1

Rk,n,

where Rk,n are i.i.d. and distributed as R, whose variance is finite. Moreover,
Theorem 1 and the fact that mn ≥ C̺n for some ̺ > 1 ensures that, on Nonext,
lim infn→∞

1
n log(Zn) > 0. Then Lemma 2.3 ensures that

Zn+1(0)

Zn

n→∞−→ E(R)

a.s. on Nonext.
Now we just note that Zn(k) = Zn−k(0) to write

Zn(k)

Zn
=

Zn−k(0)

Zn−k

Zn−k

Zn
.

Adding that the first part of Theorem 1 yields

lim
n→∞

Zn−k

Zn
= lim

n→∞

mn−k

mn
= (m+ 1)k

a.s. on Nonext ends up the proof. �

2.2.3. Proof of Corollary 2.

Proof. First, using (8),

E[Zn+1|Fn] = E

[
an+1∑

k=0

Zn+1(k)|Fn

]

= E

[
an+1−1∑

k=0

Zn(k) +

Zn∑

i=0

Ri,n|Fn

]

=

an+1−1∑

k=0

Zn(k) +mZn

≤ (m+ 1)Zn,

since an+1 − 1 ≤ an. Thus, Mn = (m+ 1)−nZn is a supermartingale.
Since Mn is a non-negative supermartingale, it converges a.s. to a non-negative

finite r.v. M .
Moreover, using Lemma A.3 (i), we get thatmn is of the same magnitude as (m+1)n

when lim infi→∞ ai/ log i > 1/ log(m + 1). The part (i) of the Corollary is then a
consequence of Theorem 1.
Similarly, the fact thatmn/(m+1)n goes to 0 as n → ∞ soon as lim supi→∞ ai/ log i <
1/ log(m+ 1) yields (ii). �
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2.3. Aging branching process with immigration. We now consider the aging
branching process with immigration (Zn : n ∈ N) defined in (1). We still denote
mn = E[Zn]. We also assume that

(17) lim sup
n→∞

log(E(In))

n
< (m+ 1).

We derive now from the previous section the following counterpart for aging
branching process with immigration:

Theorem 3. The sequence (Zn/mn)n converges a.s. to a positive r.v. W .

We are not needing the L2 convergence in the sequence, whose proof seems
rather technical. Thus, it is not considered is this paper. We focus finally on the
cumulative number of new born individuals until generation n, which will be useful
in the next section:

Zn(0) =

n∑

k=0

Zk(0).

Corollary 4. The sequence of random variable (Zn(0)/mn)n converges a.s.

2.3.1. Proof of Theorem 3 and Corollary 4. We use that Zn is the sum over k ≤ n
of the descendants of immigrants arrived at generation k. Moreover the successive
number of descendants of an immigrant i in generation k is equal to an aging

branching process (Z
(i)
k,n : n ∈ N) without immigration started at generation k

with maximal age (an)n≥k. Thus,

Zn

mn
=

n∑

k=0

Ik∑

i=1

mk,n

mn
W

(i)
k,n a.s. ,

where for each k ≤ n,

W
(i)
k,n :=

Z
(i)
k,n

mk,n

is a squence of i.i.d. r.v. for i ≥ 0, distributed as a r.v. Wk,n.
Theorem 1 obtained in the previous Section ensures that for each (k, i) ∈ N

2,

(18) W
(i)
k,n

n→∞−→ W
(i)
k a.s. and in L2.

We also note that W
(i)
k are independent random variables. Moreover, Lemma 2.2

(iv) ensures that the following limit exists for k ≥ 0,

(19)
mk,n

mn

n→∞−→ αk,

while Lemma 2.1 ensures that αk goes geometrically to 0 as k → ∞.

Proof of Theorem 3. We use (14) to get

‖Wk+1,n −Wk,n‖2 ≤ C′
R

√√√√
∑

(n−k)/2≤i≤n−k

1

mk,k+i
+

(
1− m

m+ 1

)n−k

.

Adding that mk,k+i ≥ mi since an is non decreasing, we obtain that the sequence

Ck :=
∑

n≥k

‖Wk+1,n −Wk,n‖2
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is bounded for k ≥ 0. We get by Cauchy Schwarz inequality

sup
k

E(
∑

n≥k

|Wk+1,n −Wk,n|) < ∞.

As a consequence,

sup
k≥0

E(sup
n≥k

Wk,n) < ∞

and it ensures that there exist C > 0 such that

E (Rk) ≤ C
∑

k≥K

E(Ik)
mk,n

mn
,

where

RK := sup
n≥K

n∑

k=K

Ik∑

i=1

mk,n

mn
W

(i)
k,n

Adding thanks to Lemma 2.1 that mn ≥ mk(0, 0)mk,n and for each ̺ ∈ (1,m+ 1),
there exists C > 0 such that mn ≥ C̺kmk,n for any k ≤ n, Assumption (17)
ensures that ∑

k≥K

E(Ik)
mk,n

mn
−→ 0

as K → ∞. Using now that RK is a.s. non increasing when K → ∞, we obtain

lim
K→∞

RK = 0 a.s.

Finally we combine (18) and (19) to get

lim
n→∞

K−1∑

k=0

Ik∑

i=1

mk,n

mn
W

(i)
k,n =

K−1∑

k=0

Ik∑

i=1

αkW
(i)
k

and conclude for the a.s. convergence. �

Proof of Corollary 4. The proof is in the same vein as the previous one and we just
give the main lines. We note that

Zn(0)

mn
=

Z0

mn
+

n−1∑

k=0

Zn−k(0)

mn

=
Z0

mn
+

n−1∑

k=0

Zn−k(0)

mn−k−1

mn−k−1

mn
.

First, following the law of large numbers (16) and using Theorem 3 ensures that
for each k ≥ 0,

lim
n→∞

Zn−k(0)

mn−k−1
= lim

n→∞

Zn−k(0)

Zn−k−1

Zn−k−1

mn−k−1
= mW .

Recalling from Lemma 2.1 (i) that mn−k−1/mn → (m + 1)−k−1 as n → ∞, we
obtain

lim
n→∞

K∑

k=0

Zn−k(0)

mn
= Wm

K∑

k=0

(m+ 1)−k−1

We then use Lemma 2.1 (ii) to write

mn−k

mn
≤ Cαk
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for some C > 0 and α ∈ (0, 1/(m+ 1)) and control the rest of the serie

n−1∑

k=K

Zn−k(0)

mn
≤ C

n∑

k=K

αk sup
n≥k

Zn−k

mn−k

≤ C

1− α
αKS,

where

S := sup
n≥0

Zn

mn

is a.s. finite thanks to Theorem 3. This proves the a.s. convergence. �

3. Queuing system for bus line

We are now able to study the model for a bus line introduced in the beginning.
We consider an infinite bus line, where stations are labeled by N = {0, 1, 2, 3, . . .}.
Let τ be the time spent by the bus to go from station i to station i+ 1.
To describe the position of the bus, we will denote by Hi the time when he leaves
from station i and by Pt the station he is occupying or he has just left at time t.
Then,

Pt = inf{i / Hi ≥ t} = H−1
t .

The customers arrive to station i with a Poisson process with parameter α ∈ (0, 1).
We suppose that the time for each customer to get on the bus is equal to one. So,
the bus waits in a station during a time which is equal to the number of customers
which have got on. Furthermore, the bus line obeys the following discipline, with
di a non-decreasing sequence. When a customer arrives at station i, if the bus
is further than di stations, then he decides not to take the bus and he leaves the
queue. Thus, the customers who are waiting at station i when the bus arrives came
at this station when the bus was between stations i − di and i. The fact that di
may be unbounded is motivated in particular by the study of the distance between
two consecutive buses, see below. Note also that di = i amounts to get rid of the
discipline : any customer arriving at a station waits for the bus.

Let us give a more precise definition of the process and recall some classic results
on queuing systems. We associate to each station i ∈ N independent Poisson Point

Process {T (i)
k : k ≥ 0} on [0,∞) with intensity α. The following quantities can be

defined recursively with H0 = 0 a.s.
We first note that the time when the bus arrives at station i ∈ {1, 2, . . .} is equal
to Hi−1 + τ . We denote by

Fi = min(j ∈ N : T
(i)
j > Hi−di−1 + τ)

the label of the first customer which is not leaving the station because the bus is
too far from station i.

First, the customers are waiting at station i if they arrive just after the bus

arrived in station i−di and their arrival times T
(i)
k are such that T

(i)
k > Hi−di−1+τ .

Then, customers will get on the bus if the bus is still at station i when they arrive,
i.e.

T
(i)
k ≤ (Hi−1 + τ) + k − Fi.
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Thus, the last customer getting on the bus at station i is labeled by

Mi = max(k ≥ Fi : T
(i)
k − (Hi−1 + τ) ≤ k − Fi)

and we take the convention max∅ = −∞. Thus, since (Mi − Fi + 1)+ customers
get on the bus, the sequence Hi is recursively defined as

(20) Hi = Hi−1 + τ + (Mi − Fi + 1)+.

Let us now focus on what happens when only one customer is waiting when
the bus arrives. During the time he gets on the bus, new customers arrive and
while these customers get on the bus, other customers arrive,. . . Thus, different
generations of customers can be defined and the number of customers at generation
i is the sum of independent Poisson r.v. with parameter α. Since α < 1, we get
a subcritical Galton-Watson Process and it will extinct a.s. in finite time. More
generally, if the customers have accumulated during a time interval of size t at
a station before the bus arrives, then the number of customers the bus will take
at this station is a finite r.v. R(t), which is distributed as a subcritical branching
process with initial population distributed as a Poisson distribution with parameter
αt. Moreover, we recall in Appendix B that

E[R(t)] =
αt

1− α
and E

[
R(t)2

]
=

α

(1− α)3
t+

α2

(1− α)2
t2.

3.1. From Aging Branching Process to the motion of one single bus. To
highlight the link with aging branching process, we denote by

Zn(0) = (Mn − Fn + 1)+ (n ≥ 1)

the number of customers getting on at station n. We observe that (20) ensures that

Hn = nτ +

n∑

i=0

Zi(0).

Then, the maximal age and the mean reproduction number will be denoted

an = dn+1 − 1, m = E[R(1)] =
α

1− α
,

and

Zn(a) = Zn−a(0) and Zn =

n∑

i=n−an

Zi(0) =

an∑

i=0

Zn(i).

and the following result shows that Hn − nτ is the cumulated sum of the number
of newborns until time n in an Aging Branching Process with maximal age (an),
with reproduction law R(1) and with immigration in generation n distributed as
R(anτ).

Proposition 3.1. For every n ≥ 1,

Zn(0) =

Zn−1∑

j=1

Rj,n + In,

where (Rj,n, In) are independent r.v., Rj,n are distributed as R(1) and In are dis-
tributed as R(anτ).
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Proof. The customers which get on the bus at station n can be split in the two
following subpopulations, depending whether they correspond to customers which
arrived at the station during the time when the bus was in a previous station or
during the time when the bus was moving between two stations.

• The customers which are arrived at the station n when the bus was staying
in station i = n− dn, . . . , n− 1 and the customers which then arrived at station n
while these customers are getting on the bus and so on...
The time that the bus has stayed in station i = n − dn, . . . , n − 1 is equal to the
number of customers which have get on the bus in these stations, so it is equal to

n−1∑

k=n−dn

Zk(0) = Zn−1.

Then the number of customers which want to get on the bus at station is n is given
by

Zn−1∑

k=1

Rk,n
d
= R(Zn−1),

where Rk,n are i.i.d. and distributed as R(1).
• The customers which are arrived at station n during the time intervals when

the bus was traveling between the stations i = n − dn, . . . , n and the customers
which then arrived at station n while these customers are getting on the bus and
so on...
During each travel between two such successive stations, the numbers of customers
arriving at station n is a random variable of parameter and the whole number of
customers associated which are getting on the bus in station n is distributed as
R(τ). Then the sum over i = n − dn, . . . , n, which we note In, is distributed as
R(dnτ) and independent of (Rk,n : k, n ≥ 0).
Summing these two numbers of customers gives the result. �

We can now describe the motion of the bus for large time, recalling mn = E[Zn].

Theorem 5. (i) If an = a is constant and ρ(a) < 1, then there exists c > τ such
that

Hn ∼n→∞ cn a.s.

Moreover, (Hn − nc)/
√
n converges to a Gaussian r.v. with positive variance.

(ii) If an = a is constant with ρ(a) > 1 or an → ∞, then there exists a finite
positive r.v. W s.t.

Hn ∼n→∞ mnW a.s.

Let us recall that if an = a and ρ(a) > 1, then mn ∼ Cρ(a)n for some
C > 0 since we get a classical MBP with immigration. Moreover we recall that
lim infn→∞ an/ log i > 1/ log(m+ 1) ensures that mn is of the same magnitude as
(m+ 1)n.

Proof. For (i), let an = a constant and ρ(a) < 1. The process (Zn : n ∈ N) is a
MBP with finite space types and immigration. Let M be the reproduction matrix
associated to this process. Since ρ(a) < 1, thanks to Theorems 1.2 and 1.3 in [19],

∑n
k=0 Zk

n

n→∞−→ b :=

∞∑

k=0

E(MkI) a.s.
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and (
∑n

k=0 Zk − nb)/
√
n converges in distribution to a Gaussian r.v. Then we use

this limit for the first coordinate of
∑n

k=0 Zk, which is Zn(0). We get then the
asymptotic behavior of Hn via Proposition 3.1.
The point (ii) when an = a and ρ(a) > 1 is similar, but now the MBP is supercrit-
ical.
The point (ii) for an → ∞ is a direct consequence of Corollary 4 and Proposition
3.1, since

lim sup
n→∞

1

n
log(E(In)) = lim sup

n→∞

1

n
log(anτα/(1 − α)) = 0 < m+ 1.

It completes the proof. �

Remark 1. We stress that [19] deal with multitype branching process in random
environment with immigration and we just apply here Theorems 1.2 and 1.3 in
the constant environment case, where the assumptions can be easily verified. The
results of the Corollary could be extended to the case of an random, which follows
a stationnary ergodic sequence. Let us note that in that case b can have infinite
components be infinite and new regimes appear, which could be of interest for a
future work.

Corollary 6. (i) If an = a is constant and ρ(a) < 1, then

Pt ∼t→∞

t

c
a.s.

(ii) If an = a is constant with ρ(a) > 1 or an → ∞, then

lim sup
t→∞

|Pt − ut| < ∞ a.s.

where ut = inf{n ∈ N : mn ≥ t} is the inverse function of mn.

Recall that when lim infn→∞ an/ log i > 1/ log(m + 1), then mn is of the same
magnitude as (m + 1)n. So in that case, the proof below ensures that ut ∼
log(t)/ log(m+ 1) when t → ∞.

Proof. The point (i) is a direct consequence of Theorem 5 (i).
For the point (ii), we first use Theorem 5 (ii) to get that

Hn ∼n→∞ Wmn a.s.

with W ∈ (0,∞) a.s. So we just need to prove that for any sequence vn such that

vn ∼n→∞ cmn

for some c > 0, then wt − ut is bounded for t ≥ 0, where w is the inverse of v.
Indeed, recall that ρ(a) > 1 or an → ∞ ensures that

lim inf
n→∞

mn+1

mn
> 1,

so there exists ℓ > 1 such that for n large enough, mn+1/mn ≥ ℓ. Moreover there
exists C > 0 such that vn ≥ Cmn for any n ∈ N. Then for t large enough

vwt−1

mut

≥ C
mwt−1

mut

≥ Cℓwt−1−ut .

Adding that by definition of the inverse functions u and w,

vwt−1

mut

≤ t

t
= 1
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ensures that wt − ut is upper bounded and we conclude by symmetry. �

3.2. Coalescence criteria for two buses with the same discipline. We now
consider two buses on the same line. We assume that the first bus starts from
station 0 at time 0 and the second bus starts at time µ > 0 from the station 0.
Then, the second follows the same discipline as the first one. But some customers
may have already been got on. In other words, the customers arrived at station
i after the departure of the first bus wait for the second bus if and (only if) it is
between station i− di and i. Let us denote by P (1) (resp. P (2)) the position of the
first (resp. the second) bus. We say that the two buses merge if there exists t > 0

such that P
(1)
t = P

(2)
t . After this time, we consider that the two buses stay together

and travel as a single bus. The following results shows that several regimes exist,
depending on the discipline (ai : i ≥ 0). Quite surprisingly for us, they do not only
depend on the stability of the queue (i.e. the criticality of MBP).

Corollary 7. (i) If an = a is constant and ρ(a) < 1, then the two buses merge a.s.
(ii) If an = a is constant and ρ(a) > 1, then with positive probability the two buses
do not merge.
(iii) If an → ∞ as n → ∞, then the two buses merge a.s.

The proof relies on a coupling argument, which enables us to compare the process
with two buses which travel independently following the discipline (dn). Then, we
use the previous results.

Proof. We denote by H
(1)
n (resp. H

(2)
n ) the time when the bus 1 (resp the bus 2)

leaves station n. The number of customers waiting for the bus 2 at the successive
stations is stochastically less than the number of customers for the bus 1, since the
customers obey the same discipline for the two buses, but some of them may have
taken the bus 1 instead of waiting for the bus 2. Then, recalling that µ is the initial
time delay between the two buses, we have for each n ≥ 0,

(21) H(2)
n ≤ H̃(1)

n + µ a.s.,

where (H
(1)
n )n and (H̃

(1)
n )n are independent and identically distributed as the pro-

cess (Hn)n considered in the previous Section . We denote by

N = inf{n ≥ 0 : H(1)
n ≥ H(2)

n }
the station at which the two buses merge, where inf ∅ = ∞ and the event {N =
+∞} means that the two buses do not merge.

(i) In this regime, we can use the central limit theorem of Theorem 5 (i) to get that
there exists n1 ∈ N such that

P(Hn1
+ µ < n1c) ≥ 1/4, P(Hn1

> n1c) ≥ 1/4.

Thus, the coupling (21) ensures that

P(N ≤ n1) ≥ P(H̃(1)
n1

+ µ < n1c,H
(1)
n1

> n1c) ≥ 1/16

We can iterate this procedure and conclude as follows. Choose n2 ∈ N such that

P(N ≤ n2|N ≥ n1) ≥ 1/16

and inductively find nk ≥ nk−1 for k ≥ 3 such that

P(N ≥ nk) ≤ (1− 1/16)k.
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Letting k go to infinity ends up the proof.

(ii) We show that

(22) P(∃t0 > 0, ∀t ≥ t0 : P
(1)
t − P

(2)
t > a) > 0,

so that the two buses can travel with the same discipline a after time t0, indepen-
dently, as if they were on two different lines.
For that purpose,we denote by Eℓ,n0

the event when there are no customers at
stations i = 1, 2, . . . , ℓ+ a when the bus 1 arrives and the number of customers at
station 0 arriving during the time interval [0, τ ] (so before bus 2 arrives) is equal
to n0. We first observe that Eℓ,n0

has a positive probability and a.s. on Eℓ,n0
, we

have

H
(1)
a+ℓ = (a+ ℓ)τ.

For i ≥ 0, we consider the following point processes on R
+:

{T̂ (i)
k : k ≥ 0} := {T (i+a+ℓ)

k − ℓτ} ∩ R
+.

These are independent Poisson Point processes. Let us note by P̂
(1)
t the position

of the (single) bus at time t associated with these arrival times on stations i ≥ 0.

We note that P̂ (1) is independent of Eℓ,n0
. Moreover, these arrival times T̂ (i)

correspond to the customers which may go inside the bus 1 on the event Eℓ,n0
.

Thus, a.s. on the event Eℓ,n0
, for any t ≥ 0,

P
(1)
t+(a+ℓ)τ = P̂

(1)
t + a+ ℓ.

We take P̃ (1) independent of P̂ (1) and distributed as P (1). By Corollary 6 (ii),
we have

lim sup
t→∞

|P̃ (1)
t − ut| < ∞ a.s.

A slight adaptation of Corollary 6 (ii) ensures that

lim sup
t→∞

|P̂ (1)
t − ut| < ∞ a.s.

Adding that the distribution of P̂ (1) does not depend on ℓ and P̂ (1) and P̃ (1) are
independent, we can now fix ℓ ∈ N such that

η := P
(
∀t ≥ 0, P̂

(1)
t − P̃

(1)
t > −ℓ

)
> 0.

Finally, we introduce the stopping time

Ta := inf{t ≥ H
(2)
1 , P

(1)
t − P

(2)
t ≤ a}.

We note that one can find n0 large enough and a process P̂ (2) independent of P̂ (1)

and distributed as P̃ (1) such that for all t ∈ [0, Ta],

P
(2)
t+(a+ℓ)τ ≤ P̂

(2)
t a.s. on Eℓ,n0

,
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since before Ta the second bus is not affected by the first one, while its departure
is delayed. Then,

P(Ta = ∞) ≥ P
(
Eℓ,n0

, ∀t ≥ (a+ ℓ)τ, P
(1)
t − P

(2)
t > a

)

≥ P
(
Eℓ,n0

, ∀t ≥ 0, P̂
(1)
t + a+ ℓ− P̂

(2)
t > a

)

≥ P(Eℓ,n0
)P
(
∀t ≥ 0, P̂

(1)
t − P̂

(2)
t > −ℓ

)
= P(Eℓ,n0

)η > 0,

so that (22) hold and the proof of (ii) is complete.

(iii) We use again the coupling (21) and Corollary 6 (ii) to get

lim sup
t→∞

P
(1)
t − P

(2)
t ≤ lim sup

t→∞

P
(1)
t − P̃

(1)
t < ∞ a.s.

Then the non-decreasing sequence of events

AK := {∀t > 0 : P
(1)
t − P

(2)
t ≤ K}

staisifes P(∪K∈NAK) = 1. Moreover, a new coupling for the second bus ensures
that

P(AK , ∀t > 0 : P
(1)
t > P

(2)
t ) ≤ P(∀t > 0 : P

(1)
t > P̂

(2)
t ),

where P̂ (2) is independent of P (1) and gives the position of a single bus with disci-
pline K. Using again Corollary 6 (ii), but now with an = K constant, we obtain

lim
t→∞

P̂
(2)
t − P

(1)
t = −∞ a.s.

so P(AK , ∀t > 0 : P
(1)
t > P

(2)
t ) = 0 and letting K → ∞,

P(∀t > 0 : P
(1)
t > P

(2)
t ) = 0,

which ends up the proof. �

Appendix A. Mean’s Regimes

Let ρ(a) be the greatest eigenvalue of the Leslie’s matrix governing a population
with maximal age a 



m m · · · m
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0,




i.e. the greatest root of Pa = Xa+1 −m
∑a

k=0 X
k.

Lemma A.1. We have

ρ(a) = (m+ 1)−m(m+ 1)−a−1 +O(a(m+ 1)−2a).

Moreover, the sequence (ρ(a)) is non decreasing.

Proof. Notice that we can rewrite Pa = Xa+1(X−m−1)+m
X−1 . Using monotonicity of

x 7→ xa+1(x−m− 1) +m,

a+ 1

a+ 2
(m+ 1) ≤ ρ(a) ≤ m+ 1.

Thus, ρ(a) goes to m + 1. This corresponds to the behavior of a Galton-Watson
process without death.
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Moreover, Pa+1(ρ(a)) = ρ(a)a+1(ρ(a) − (m + 1)). From the first point, ρ(a) ≤
ρ(a+ 1) and (ρ(a)) is non decreasing.

Noting ρ(a) = (m+ 1)(1− εa), we get

(
1− 1

a+ 2

)a+1

≤ (1− εa)
a+1 ≤ 1

and
(
(1− εa)

a+1
)

a
is bounded.

Since Pa(ρ(a)) = 0, (m+ 1)a+2(1− εa)
a+1εa = m.

First,

(a+ 1)εa = m · (a+ 1) · (m+ 1)−a−2 · (1− εa)
−a−1 → 0.

Then,

εa(m+ 1)a+2 = me−(a+1) ln(1−εa) → m.

Going one step further,

εa(m+ 1)a+2 −m = me(a+1)εa+o((a+1)εa)

= m(a+ 1)εa + o((a+ 1)εa)

∼ m2(a+ 1)(m+ 1)−a−2.

Finally,

(m+ 1)− ρ(a)−m(m+ 1)−a−1 ∼ m2(a+ 1)(m+ 1)−2a−3.

�

The following Lemma quantifies the behavior of the product of Leslie’s matrices.

Lemma A.2. We observe the following regimes.
(i) If

∑
(m+ 1)−ai = +∞, then

n∏

i=1

ρ(ai) = o((m+ 1)n).

(ii) If
∑

(m+ 1)−ai < +∞, then there exists α > 0 s.t.

n∏

i=1

ρ(ai) ∼ α · (m+ 1)n.

Remark 2. One can consider both particular cases :

• If lim sup ai

log i <
1

log(m+1) , then
∏

ρ(ai) = o((m+ 1)n).

• If lim inf ai

log i >
1

log(m+1) , then
∏

ρ(ai) ∼ α(m+ 1)n.

Proof. Let us write

(m+ 1)−n
n∏

i=1

ρ(ai) = exp

{
n∑

i=1

log
ρ(ai)

m+ 1

}
.

From Technical Lemma A, recall that ρ(ai)
m+1 = 1−m·(m+1)−ai−2+O(ai(m+1)−2ai)

and this term is equivalent to (m+ 1)−ai . �
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Lemma A.3 (Mean Asymptotic Regime). The mean number mn of individuals at
generation n asymptotics are lead by the following dichotomy.
(i) If

∑
i≥0(m+ 1)−ai < +∞, then there exists α > 0 s.t.

α(m+ 1)n ≤ mn ≤ (m+ 1)n.

(ii) If lim supi→∞ ai/ log i < 1/ log(m+ 1), then

mn = o((m+ 1)n).

Remark 3. First, from the preceding remark, there is a gap between the two regimes.
We espect that, in each regime, (mn) behaves like

∏
ρ(ai), but we cannot yet prove

it. Then, the first condition is valid as soon as lim inf ai/ log i > 1/ log(m+ 1).

Proof of (i) - Upper bound. branching process (Zn) is stochastically bounded by a
Galton-Watson process (Z̄n) where no one dies, i.e. with reproduction law R + 1.
Thus, for every integer n, Zn ≤ Z̄n and mn ≤ (1 +m)n. �

Proof of (i) - Lower bound. Since mn+1(0) = mmn, we prove the lower bound for
the mean number of newborns mn(0, 0).

Let xn =
∏n−1

j=0 ρ(aj). We’ll prove that xn ≤ mn(0, 0) which leads the asymptotic

result, thanks to Lemma A.2. Recall that m0(0) = 1 = ρ(0).
Then, for k ∈ Jn− an, nK, using induction hypothesis,

mk(0) ≥
k−1∏

j=0

ρ(aj)

≥
n−1∏

j=0

ρ(aj)



n−1∏

j=k

ρ(aj)



−1

≥
n−1∏

j=0

ρ(aj) · ρ(an)k−n,

since sequence (aj) and function ρ are increasing.
Thus, by induction,

m

n∑

k=n−an

mk(0) ≥
n−1∏

j=0

ρ(aj)

[
m

n∑

k=n−an

ρ(an)
k−n

]
=

n∏

j=0

ρ(aj).

�

Proof of (ii). Let us show, by induction, that

∀n ∈ N, mn(0, 0) ≤ ρ(an)
n.

First, m0(0) = ρ(0) = 1. Then, since ρ and (an) are increasing, for every k ∈
Jn− an, nK,

mk(0) ≤ ρ(ak)
k

≤ ρ(an)
k.

Thus,

m

n∑

k=n−an

mk(0) ≤ m

n∑

k=n−an

ρ(an)
k

mn+1(0) ≤ ρ(an)
n+1

≤ ρ(an+1)
n+1.
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Finally, from Technical Lemma , ρ(an)
n = exp{n log(1−m(m+1)−an−2+o((m+

1)−2an), which gives the desired result. �

Appendix B. M/G/1 queues

To be self-contained, we recall below some well known facts around queues.
We want to determine the time R a bus wait at a station where one passenger

was waiting when its arrived. We recall that, more generally, R(t) is the time a bus
wait at a station where passengers arrived from t unit of times when its arrived.
To do so, we model passengers by two means :
• a Galton-Watson process (Zn : n ∈ N). For each passengers getting on, his
children are the passengers arriving during his boarding. From the hypothesis,
the number of children is distributed as i.i.d. r.v. with Poisson distribution with
parameter α.
• a Lévy process (Yx : x ≥ 0). Starting from 0 with a drift −1, Y makes jumps
of height 1 when a passenger arrives at the station. The time the bus spend at the
station where N passengers are waiting is equal to the time Y reaches −N .

From the first description, the bus starts a finite time at the station if and only
if α ≤ 1. Intuitively, passengers arrive at the station slower than they board.

Proposition B.1. R < ∞ a.s. iff α ≤ 1. Then,

E[R(t)] =
α

1− α
t.

Furthermore,

E
[
R(t)2

]
=

α

(1− α)3
t+

α2

(1− α)2
t2.

Proof. Given the description with the Galton-Watson process (Zn : n ∈ N),

R =
∞∑

i=0

Zn.

Thus, R < +∞ if and only if α ≤ 1. Furthermore,

E[R] =
∞∑

i=0

E(Zi) =
∞∑

i=0

αi =
1

1− α
.

When the bus arrives after t times of accumulation of customers, the initial
number of passengers is distributed as N(t) a r.v. with Poisson distribution with
parameter αt. Then,

E[R(t)] = E[N(t)]E[R] =
αt

1− α
.

In the same way, using independence, we can reach the L2-moment values,

E[R(t)2] = E







N(t)∑

i=1

Ri




2

 = E[N(t)]E[R2] +E[N(t)(N(t) − 1)]E[R]2.

Finally, using that R and 1 +R(1) are equal in distribution, we have

E[R2] =
1

(1− α)3

and the proof is complete. �
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Using the Lévy Process representation, one can even get the distribution of R(t).

Proposition B.2. For everty α < 1 and n ∈ N,

P(R = n) =
1

n
e−αn (αn)

n−1

(n− 1)!
,

and for every t ≥ 0,

P (R(t) = n) =
te−t−αn (αn)

n

n · n!

(
1 +

t

αn

)n−1

(n ∈ N).

Proof. Let (Ti)i∈N be the arrival times of the customers. We construct the corre-
sponding Lévy process (Yx)x≥0 :

Yx = −x+
∑

i∈N

1Ti≤x.

If N customers are waiting when the bus arrive, the time the bus spend at the
station is equal to the time τN where the Lévy process reaches −N ,

τN := inf{t ≥ 0 : Yt < −N}.

From Chapters VI and VII in [7], (τN )N≥0 is a subordinator and

xP(τℓ = x) = ℓP(−Yx = ℓ).

Since, for all x ∈ R+ and n ∈ N,

P (Yx + x = n) = e−αx (αx)
n

n!
,

P (τx = x+ n) =
x

x+ n
e−α(x+n) (α(n+ x))

n

n!
.

Finally, since R(t) = τN(t), where N(t) is the number of passengers at the station
when the bus arrives,

P (R(t) = n) =
∑

0≤k≤n

P(N(t) = k)P(τk = n)

=
∑

1≤k≤n

e−αt(αt)k

k!

k

n
e−αn (αn)

n−k

(n− k)!

=
te−α(t+n)(αn)n

n · n!
∑

1≤k≤n

(n− 1)!

(n− k)!(k − 1)!

(
t

n

)k−1

=
te−α(t+n)(αn)n

n · n!

(
1 +

t

n

)n−1

.

It ends up the proof. �
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