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We consider an inverse boundary value problem for the heat equation ∂tv = divx (γ∇xv) in (0, T ) × Ω, where Ω is a bounded domain of R 3 , the heat conductivity γ(t, x) admits a surface of discontinuity which depends on time and without any spatial smoothness.

The reconstruction and, implicitly, uniqueness of the moving inclusion, from the knowledge of the Dirichlet-to-Neumann operator, is realised by a dynamical probe method based on the construction of fundamental solutions of the elliptic operator -∆ + τ 2 •, where τ is a large real parameter, and a couple of inequalities relating data and integrals on the inclusion, which are similar to the elliptic case. That these solutions depend not only on the pole of the fundamental solution, but on the large parameter τ also, allows the method to work in the very general situation.

where γ = γ(t, x) ∈ W 1,∞ ((0, T ); L ∞ (Ω)) with the following properties:

(C-γ) There exist a positive function (t, x) → k(t, x) and, for all t ∈ [0, T ], a non empty open set D(t) ⊂ Ω, such that

• 1 C ≤ k ≤ C in D T := ∪ [0,T ] {t} × D(t) for some C > 1, • k -1 has a constant sign in D T , • γ(t, x) = 1 if x ∈ D(t), k(t, x) if x ∈ D(t).
We don't assume any smoothness neither on D(t) nor that ∂D(t) ∩ Γ = ∅.

Our main purpose is to study discontinuous perturbations, however, we allow γ(t, •) to be continuous. Hence, we impose the following assumption.

(C-D) inf x∈K |k(t, x) -1| > 0 for any compact set K ⊂ D(t), for all t ∈ [0, T ].

We shall consider a large parameter τ > 0 and allow the initial data v 0 (x) to depend on τ , under the following condition:

(C-0) There exist τ -independent positive constants C, l 0 such that v 0 L 2 (Ω) ≤ Ce τ l0 , for all τ .

Physically, the region D(t) corresponds to some inclusion in the medium with heat conductivity different from that in the background domain Ω. The problem we address in this paper is to determine D(t) by using the knowledge of the Dirichletto-Neumann map (D-N map) : Λ γ,v0 : f → ∂ ν v(t, x), (t, x) ∈ Γ T , where v = V(γ; f ) denotes the unique solution of (1.1), ν is the outer unit normal to Γ, and

∂ ν = ∂ ∂ν = ν • ∇ x .
In physical terms, f = f (t, x) is the temperature distribution on the boundary and Λ γ,v0 (f ) is the resulting heat flux through the boundary.

The above inverse boundary value problem is related to nondestructive testing where one looks for anomalous materials inside a known material.

To clarify our purpose, we remind briefly Ikehata's probe method for the elliptic inverse problem.

1.2. The elliptic situation. In the probe method for the well-known elliptic situation, Problem (1.1) is replaced by

div x (γ∇ x v) = 0 in Ω, v = f on Γ, (1.2) 
D T is replaced by an open set D ⊂ Ω. The Dirichlet-to-Neumann operator Λ γ is a mapping:

H 1 2 (Γ) f → ∂ ν v ∈ H -1 2 (Γ)
, where v is the unique solution of (1.2). The probe method (see [START_REF] Ikehata | Probe method and a Carleman function[END_REF]) starts by considering the fundamental solution h 0 (x) = 1 4π|x-y| of -∆h 0 = δ y , with pole y ∈ Ω . Then, one approximates h 0 outside a needle Σ ⊂ Ω with one end on Γ and the other one being y by a sequence {h j } j≥1 such that -∆ x h j = 0 in Ω, and estimates D |∇h j (x)| 2 dx (or D |∇h 0 (x)| 2 dx) thanks to the following couple of inequalities:

1 C D |∇h j (x)| 2 ≤ Γ (Λ γ (h j | Γ ) -∂ ν h j )h j | Γ ≤ C D |∇h j (x)| 2 , (1.3) 
for some C > 1 which does not depend on h j . However, in the parabolic situation, inequalities like (1.3) are unclear, except in the static case D(t) = D(0), for a reduced class of functions as h(t, x) = e τ 2 t p(x), where τ > 0 is a large parameter and p satisfies -∆p + τ 2 p = 0 in Ω. See [START_REF] Gaitan | Probing for inclusions in heat conductive bodies[END_REF], and [START_REF] Ikehata | The enclosure method for the heat equation[END_REF][START_REF] Ikehata | On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval[END_REF] also for a similar approach.

In our work we built fundamental solutions for parabolic operators which slightly differs from the heat operator

L 1 ≡ ∂ t -∆ x or to its adjoint L * 1 ≡ -∂ t -∆ x .
Then, we obtain a couple of inequalities corresponding to (1.3), and, thanks to that, we run the probe method for the reconstruction of D T .

1.3. Special fundamental solutions. Let τ > 0, y ∈ R 3 , we consider the following function

p τ,y (x) := 1 r e -τ r , r = |x -y|.
It satisfies p τ,y ∈ L 2 (R 3 ) and

-∆p τ + τ 2 p τ = δ(x -y) in R 3 . (1.4)
Thus, the functions h τ (t, x) = e τ 2 t p τ (t, x) and h * τ (t, x) = e -τ 2 t p τ (t, x) are respectively solutions to the following parabolic equations

L 1 h := ∂ t h -∆ x h = δ(x -y), L * 1 h * := -∂ t h * -∆ x h * = δ(x -y). (1.5)
Of course, since the right term in Equalities (1.5) is not δ(t-s)⊗δ(x-y), our function

h τ differs from the usual fundamental solution G s,y (t, x) = χ (s,+∞) (t) (4π(t-s)) 3/2 e -|x-y| 2 4(t-s) , with parameter (s, y) ∈ R × R 3 , considered in [1, 2, 4].
Let Ω be any smooth bounded domain containing Ω. Let Σ be an finite or infinite globally lipschitzian curve in Ω with parameter y = y(t), t ∈ R, such that y(t) ∈ Ω for t ≤ 0. We shall use the restriction Σ| -1≤t≤T +1 only, which plays the role of a Ikehata's needle, but starts at point y(-1) outside Ω and can be self-intersecting. We put

p τ,y(t) =: p τ,Σ (t, x), (t, x) ∈ R × R 3 ,
and replace the functions h τ ,h * τ , respectively by solutions of

(L 1 + τ η(t))U (t, x) = δ(x -y(t)) in R × Ω, (1.6) 
(L * 1 + τ η(t))U * (t, x) = δ(x -y(t)) in R × Ω, (1.7) 
where functions η(t) are not necessarily the same in (1.6) and (1.7), but belong to L ∞ (R) with a τ -independent upper bound:

|η(t)| ≤ µ, t ∈ R, (1.8) 
for some µ > 0 that we shall precise later. (By q we denote the derivative of a function q according to the time variable t).

The solutions U and U * we look for should be respectively written U τ,T,Σ , U * τ,T,Σ , but we simply denote them by U τ , U * τ . We construct them so that they have the following form:

U τ (t, x) = e τ 2 t u τ (t, x), U * τ (t, x) = e -τ 2 t u * τ (t, x) in Ω T ,
with functions u τ (t, x), u * τ (t, x) sufficiently close to p τ,Σ (t, x) in the sense below.

Lemma 1.1. There exists a function ϕ(t, x; τ

) ∈ C([0, T ]; H 1 loc (R 3 )) satisfying the following points. ϕ(t, y(t); τ ) = 1, t ∈ R, τ ≥ 0.
(1.9)

There exists τ 1 (µ) such that for all τ > τ 1 , we have

1 C(µ) ≤ ϕ(t, x; τ ) ≤ C(µ) (t, x) ∈ R × Ω, (1.10) |∇ x ϕ(t, x; τ )| ≤ C(µ), (t, x) ∈ R × Ω, (1.11) 
for some C(µ) > 0 which does not depend on τ or (t, x) ∈ R × Ω. The function U τ (t, x) := e τ 2 t u τ (t, x) ≡ e τ 2 t ϕ(t, x; τ )p τ,Σ (t, x) (1.12) satisfies (1.6) for all τ > 0.

Remark 1. Similarly we construct ϕ * (t, x; τ ) ∈ C([0, T ]; H 1 loc (R 3 )) such that the function

U * τ (t, x) = e -τ 2 t u * τ (t, x) = e -τ 2 t ϕ * (t, x; τ )p τ,Σ (t, x)
satisfies (1.7), with Relation 1.9 and Estimates (1.10), (1.11) where ϕ is replaced by ϕ * .

We choose functions η as follows. Let us consider the following function

κ(t) := e -τ µ|t-θ| , t ∈ R, (1.13) 
where the parameters µ > 0, θ ∈ [0, T ], are independent of τ and will be precised later. For U τ , we put simply η ≡ 0. For U * τ , we put

η(t) = - κ τ κ = µ sgn(t -θ).
(Thus each η satisfies (1.8) obviously).

1.4. Needle sequences. Let T ∈ (0, T ], we put Σ T = {(t, y(t)), 0 ≤ t ≤ T }. We consider needle sequences {U j } j , {U * j,T } j , respectively associated to (Σ T , U τ , η ≡ 0), (Σ T , U * τ , η ≡ -κ τ κ ). They satisfy:

(L 1 + τ η(t))U j = 0 in Ω T , U j (0, •) = U τ (0, •) in Ω, (L * 1 + τ η(t))U * j,T = 0 in Ω T , (1.14) 
U * j,T (T , •) = U * τ (T , •) in Ω, (1.15) 
and, for all open set

V ⊂ Ω T such that d(V, Σ T ) > 0, (U j , U * j,T ) j→∞ → (U τ , U * τ ) (strongly) in (H 1,0 (V ) ∩ H 0,1 (V )) 2 . (1.16)
Here, we use the notation

H s,p (V ) = C ∞ 0 (V ) • s,p , s, p ≥ 0, with u s,p ≡ (t → u(t, •) H p (R 3 ;dx) ) H s (R;dt) .
Remark 2. Since y(0) ∈ Ω, thanks to (1.16), we have

U * j,T (0, •) j→∞ → U * τ (0, •) (strongly) in L 2 (Ω).
1.5. Reflected waves. Let V j := V(γ, U j | Γ T ) be the solution of (1.1) with data f = U j | Γ T , put W j = V j -U j . By denoting L γ = ∂ t -∇ x ((γ -1)∇ x , we have

L γ W j = ∇ x ((γ -1)∇ x U j ) in Ω T ,
(1.17)

W j = 0 on Γ T , (1.18) 
W j | t=0 = v 0 -U τ in Ω.
If Σ T ∩ D T = ∅ then, in view of (1.17), we have

W j j→∞ → W τ in C([0, T ], H 1 (Ω)), (1.19) 
where W τ is the unique solution of

L γ W τ = ∇ x ((γ -1)∇ x U τ ) in Ω T , W τ = 0 on Γ T , (1.20) 
W τ | t=0 = v 0 -U τ in Ω. Thus V j j→∞ → V τ = U τ + W τ in H 0,1 (V ), (1.21) 
for all open set V such that V ⊂ Ω T \ Σ T . The function V τ satisfies

L γ V τ = δ(x -y(t)) in Ω T , V τ = U τ on Γ T , V τ | t=0 = v 0 in Ω.
1.6. Pre-indicator sequence and indicator function. Let θ ∈ (0, T ), µ > 0, and put

I j (τ, µ, θ, T ) := Γ T (∂ ν W j ) U * j,T dσ(x)κ(t)dt, I ∞ (τ, µ, θ, T ) := Ω T (γ -1)∇ x V τ ∇ x U * τ dxκ(t)dt + Ω [κW τ U * τ ] T 0 dx,
where κ is defined by (1.13), and dσ(x) is the usual measure on the boundary Γ.

Remark 3. As opposite to dynamical probe methods in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF][START_REF] Ikehata | On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval[END_REF], the indicator function I ∞ depends on the needle Σ.

The following result ensures us that we have the knowledge of I ∞ (τ, µ, θ, T ) from the Cauchy data of (1.1) when Σ T does not touch D T . Lemma 1.2. Assume that Σ T ∩ D T = ∅. Then, for all θ ∈ [0, T ], µ, τ ≥ 0, we have

I j (τ, µ, θ, T ) j→∞ → I ∞ (τ, µ, θ, T ) ∈ R.
(1.22) 1.7. Main theorems. The following theorem separates the cases Σ T ∩D T = ∅ and Σ T ∩ D T = ∅. In the second case, we can put

T * := min{T ∈ [0, T ]; Σ T ∩ D T = ∅} > 0.
We put also

µ T ,θ := l 0 max 1 θ , 1 (T -θ) , 0 < θ < T ≤ T,
where l 0 is the constant in (C-0).

By d(y, X) we denote the "distance" from the point y to the set X, and by d(Y, X) the "distance" from the set Y to the set X:

d(Y, X) = inf y∈Y d(y, X), d(y, X) = inf x∈X |x -y|. Theorem 1. Assume (C-D) and let θ ∈ (0, T ). Assume that Σ T ∩ D T = ∅. Then there exists µ 1 > µ T,θ such that, for all µ > µ 1 , there exist C(µ) > 1, τ 1 > µ 1 such that, under assumption (C-0), we have 1 C(µ) Ω T |γ -1| |∇ x p τ,Σ | 2 dxκdt ≤ |I ∞ (τ, µ, θ, T )| ≤ (1.23) C(µ) Ω T |γ -1| |∇ x p τ,Σ | 2 dxκdt,
Theorem 2. Assume (C-D). Then the following points hold.

• Let θ ∈ (0, T ). For all µ > µ 1 , under assumptions (C-0), Σ T ∩ D T = ∅, we have

lim τ →∞ 1 τ ln | I ∞ (τ, µ, θ, T )| = -2d(y(θ), D(θ)) < 0. (1.24) • under assumptions (C-0), Σ T ∩ D T = ∅, we have lim sup θ∈(0,T ) lim µ→∞ lim τ →∞ 1 τ ln | I ∞ (τ, µ, θ, T )| = -2d(Σ T , D T ) < 0. (1.25) • Assume that Σ T ∩ D T = ∅.
Then, under assumption (C-0), we have

lim T T * lim sup θ∈(0,T ) lim µ→∞ lim τ →∞ 1 τ ln | I ∞ (τ, µ, θ, T )| = 0. (1.26)
So we can detect if Σ T touches D T or not. Consider the function

F (T ) = lim sup θ∈(0,T ) lim µ→∞ lim τ →∞ lim j→∞ 1 τ ln | I j (τ, µ, θ, T )|, 0 ≤ T ≤ T, defined in [0, T * [. The problem is that T * is defined from F itself.
The following result gives a strategy to determine T * .

Lemma 1.3. There exists

δ > 0 such that if T < T * then T < T +|F (T )|/δ < T * .
In practice, if we have the a priori knowledge of δ, we can determine T * as the limit of the sequence

(t n ) n∈N : t 0 = 0; t n+1 = t n + |F (t n )|/δ, n ≥ 0.
If t n+1 > T for some n, this indicates that Σ T does not touch D T . We write T * = T + 0 in this case.

Corollary 1.1. From the knowledge of Λ γ,v0 we can compute : (1) the maximal time T * of a given curve Σ.

(2) the connected components of Ω T \ D T that touch {0} × Γ.

In particular, the connected components of Ω T \ D T that touch {0} × Γ are completly characterized from Λ γ,v0 .

Let us make some remarks on Theorem 1, Corollary 1.1.

Remark 4. -We emphazise the fact that we don't make assumption on D(t), 0 ≤ t ≤ T .

-From the knowledge of Λ γ,v0 , we get the information not only on d(Σ T , D(T )), when T < T * , but on d(y(θ), D(θ)), θ ∈ (0, T ), too.

1.8. Literature review. Many articles solve a version of the Calderón inverse problem for the heat equation. The biggest part of them assume that the unknown coefficient γ, or the unknown inclusion D, do not depend on time t: see for example [START_REF] Ikehata | The enclosure method for the heat equation[END_REF][START_REF] Ikehata | On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval[END_REF] But they are very few results concerning the time dependent situation D = D(t). The authors in [START_REF] Elayyan | On uniqueness of the recovery of the discontinuous conductivity coefficient of a parabolic equation[END_REF] proved uniqueness of D T under the assumption that the inclusion D(t) is x-lipchitzian for all t. They used a proof by contradiction and is not constructive at all. A more recent paper for a similar question is [START_REF] Kawakami | Uniqueness in shape identification of a time-varying domain and related parabolic equations on non-cylindrical domains[END_REF].

A reconstruction method by a dynamical probe method is performed in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF], but it works for the one dimensional spatial space only. In this case, an easier way is to put as input the trace of plane waves U τ (t, x) = e τ 2 t+τ x at the spatial boundary, then to compute the solution V τ (t, x) by using an ansatz and an energy estimate: see [START_REF] Gaitan | Inverse problems for timedependent singular heat conductivities -One dimensional case[END_REF]. This approach works in the x-multidimensional case if D(t) is a convex set: see [START_REF] Gaitan | Inverse problems for timedependent singular heat conductivities. Multi dimensional case[END_REF].

With the aim of working the dynamical probe method in the x-multidimensional case with, the authors of [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF] computed the reflected solution at points (t, x) close to the lateral boundary of D T . But this way is painful enough to assume that D(t) = D does not depend on t. Moreover, since the data these authors consider are the traces on Γ T of Runge approximations of the fundamental solution G s,y of the heat equation, this method requires some regularity of ∂D (more precisely, they assumed that ∂D is of class C 1,α , for some α ∈ (0, 1)).

In [START_REF] Poisson | Stable determination of the discontinuous conductivity coefficient of a parabolic equation[END_REF] the stability of the operator γ → Λ γ,0 is quantified, under the assumption that D T belongs to some class

K contained in L ∞ ((0, T ); W 2,∞ (Ω)) ∩ W 1,∞ ((0, T ); W 1,∞ (Ω)).
We think that our approach, based on special fundamental solutions and inequalities (1.23), would be able to extend the frameworks of many of these articles.

1.9. Outline of the paper. The paper is organized as follows. Section 2 is devoted to the proofs and is devided in several subsections. In subsection 2.1, we give basic estimates for integrals on D T with weight functions as (p τ,Σ κ)(t, x). In subsection 2.2, we build the functions U τ , U * τ by proving Lemma 1.1 of section 1.4. In subsection 2.7 we prove Lemma 1.3. In subsection 2.5 we prove Theorem 1. In subsection 2.6 we prove Theorem 2. In subsection 2.8, we build the needle sequences U j , U j,T .

Proofs.

Notations. We consider the usual Sobolev spaces H m (V ), where V ⊂ R k is an open set, and also

H m ((T 1 , T 2 ); H m (V )) = H m (T 1 , T 2 ; H m (V )), for m, m ∈ Z.
Here, H 0 is the well-know space L 2 .

The formal parabolic operator is

L γ = ∂ t -∇ x • (γ∇ x •).
2.1. Basic Estimates. In this part we establish some basic estimates on W τ etc. 

O |p τ,y (x)| 2 dx ≤ C 1 τ d(y, O) e -2τ d(y,O) , ∀y ∈ R 3 (2.1) O |∇ x p τ,y (x)| 2 dx ≤ Cτ 1 + 1 τ d(y, O) e -2τ d(y,O) , ∀y ∈ O. (2.2 
J(y) := O |∇ x p τ,y (x)| 2 dx ≥ O d (τ r + 1) 2 (4π) 2 r 4 e -2τ d dx ≥ Cτ 2 e -2τ d , with C = O d 1 (4πr) 2 dx > 0. Remark 5. It is clear that if y ∈ O, or if ∂O is lipschitz and y ∈ ∂O, then O |∇ x p τ,y (x)| 2 dx = +∞. Lemma 2.2. Assume that Σ T ∩ D T = ∅. Let θ ∈ [0, T ]. Let d > d(y(θ), D(θ)).
Then, there exists µ 1 > 0, τ 1 > 0 such that, for all µ > µ 1 , τ > τ 1 , we have

Ω T |γ -1| |∇ x p τ,Σ (x)| 2 dxκ(t)dt ≤ C µ 1 + 1 τ d(y(θ), D(θ)) e -2τ d(y(θ),D(θ)) , (2.4 
)

Ω T |γ -1| |∇ x p τ,Σ (x)| 2 dxκ(t)dt ≥ C τ µ e -2τ d , (2.5) 
for some C > 0 which does not depend on µ or τ . Proof. a) Thanks to (2.2) we have

I := Ω T |γ -1| |∇ x p τ,Σ (x)| 2 dxκ(t)dt ≤ Cτ T 0 1 + 1 τ d(y(t), D(t)) e -2τ d(y(t),D(t)) κ(t)dt.
By . We have

I ≤ Cτ e -2τ d(y(θ),D(θ)) 1 + 1 τ (d(y(θ), D(θ)) -δε) |t-θ|<ε e τ (2δ-µ)|t-θ| dt +T e -2τ d(y(θ),D(θ)) e τ ε(2δ-µ) 1 + 1 τ (d(Σ T , D T ) dt ≤ e -2τ d(y(θ),D(θ)) C µ -2δ 1 + 2 τ d(y(θ), D(θ)) + O(e -δ √ τ ) .
for some δ > 0. Estimate (2.4) is proved. b) Put

J(t) := Ω |γ(t, x) -1| |∇ x p τ,y(t) (x)| 2 dx.
Thanks to assumption (C-D) we have

J(θ) ≥ δ Ω |∇ x p τ,y(θ) (x)| 2 dx, with δ = lim inf x∈O |γ(θ, x) -1| > 0.
Then, thanks to (2.3), we have

J(θ) ≥ δ τ 2 e -2τ d ,
for some δ > 0. Obviously, J(•) depends continuously on t, since γ ∈ L ∞ (Ω T ). Hence if |t -θ| < ε and ε > 0 is sufficiently small, we have

J(t) ≥ 1 2 δ τ 2 e -2τ d .
We then have

I := Ω T J(t)κ(t)dt ≥ |t-θ|<ε J(t)κ(t)dt ≥ Cτ 2 e -2τ d |t-θ|<ε κ(t)dt ≥ C τ µ e -2τ d (1 -e -τ µε ).
for some C > 0. Taking µ 1 > 1 ε , this proves (2.5). Lemma 2.3. Let θ ∈ (0, T ). Then there exist δ > 0, µ 1 > 0 such that for all µ > µ 1 there exist C(µ) ≥ 0, (2.9)

τ 1 > 0 such that Ω κ(0)|U | 2 dx ≤ C(µ)e -2τ d(y(t),D(t))+δ) , t ∈ [0, T ], τ > τ 1 , U = U τ (0), U * τ (0); (2.6) Ω κ(T )|u * τ (T )| 2 dx ≤ C(µ)e -2τ (d(y(θ),D(θ))+δ) , τ > 1; (2.7) 
Proof. a) Thanks to Lemma 1.1, (1.10), to Remark 1, to (2.1), and reminding that y(0) ∈ Ω, we have

Ω |U | 2 dx ≤ C Ω |p τ,y(0) | 2 dx ≤ Cτ -1 e -2τ d(y(0),Ω) ≤ C .
Since κ(0) = e -τ µθ , we then have (T -θ) , we obtain (2.7). c) Let us remind that W τ (0, x) = v 0 (x) -U τ (0, x). Thanks to Assumption (C-0) and to (1.10), (1.12), (2.6), we have

Ω κ(0)|U | 2 dx ≤ C e -τ µθ . ( 2 
Ω κ(0)|W τ (0)| 2 dx ≤ Ce -τ µθ (e l0τ + τ -1 e -2τ d(y(0),Ω) ) ≤ Ce -θ(µ-µ T ,θ )τ . Choosing µ 1 > µ T,θ + sup (t,x)∈Ω T 2d(y(t),x) θ
we obtain (2.8). d) Estimates (2.6), (2.8) and standart inequalities imply (2.9).

Construction of the special functions

. Let R > 0 such that Ω ⊂ {x | |x| < R} = B R . Put z = x -y(t), u τ (t, x) = f (t, z). We have ∂ t u τ = ∂ t f + ż∇ z f = ∂ t f -ẏ∇ z f, (∂ t -∆ z )f -ẏ(t)∇ z f + (τ 2 + τ η(t))f = δ 0 (z). Let f (t, k) = (2π) -3/2
z∈R 3 f (t, z)e -ikz dz be the Fourier transform of f (t, •). It satisfies

∂ t f + (k 2 -ik ẏ(t) + τ 2 + τ η(t)) f = 1. Put ρ(t) = t 0 η(s)ds. We then have f (t, k) = (2π) -3/2 t -∞ exp k 2 (s -t) -ik(y(s) -y(t)) + τ 2 (s -t) + τ (ρ(s) -ρ(t)) ds,
(2.11) and so

f (t, z) = (2π) -3/2 t -∞ k∈R 3
e k 2 (s-t)+ik(z+y(t)-y(s)) dk e τ 2 (s-t)+τ (ρ(s)-ρ(t)) ds,

= 1 8π 3/2 ∞ 0 k∈R 3
e -k 2 s+ik(z+y(t)-y(t-s)) dk e -τ 2 s+τ (ρ(t-s)-ρ(t)) ds,

u τ (t, x) = 1 8π 3/2 ∞ 0 e -τ 2 s+τ (ρ(t-s)-ρ(t)) e -(x-y(t-s)) 2 4s
s -3/2 ds.

(2.12)

The integral in (2.12) is convergent if and only if x = y(t). We set

ϕ := u τ p τ,Σ .
Let us prove (1.10). We put

g τ (s, t, x) = e τ (ρ(t-s)-ρ(t))+ 1 4s (y(t-s)-y(t))(2x-y(t-s)-y(t)) , k τ (s, t, x) = 1 8π 3/2 e -τ 2 s e -(x-y(t)) 2 4s s -3/2 ,
and write

u τ (t, x) = ∞ 0 k τ (s, t, x)g τ (s, t, x)ds.
Let us observe that

p τ,y(t) (x) = ∞ 0 k τ (s, t, x)ds, x ∈ R 3 .
In fact, the right-hand side in the above relation belongs to L 2 (R 3 ), with a Fourier transform corresponding to (2.11) where g is replaced by 1. Moreover, it satisfies (1.4), since it is a time-independent solution of (1.6). Hence this right-hand side is p τ,y(t) (x).

Since ρ(•) is lipschitzian, we can fix K ∈ R such that τ > |K| > ρ ∞ . Let us remind that ρ = η and η satisfies (1.8). Thus the above inequalities impose µ < τ , and, in fact, µ << τ, as τ → ∞.

Then, if K > 0, we can write, for x ∈ Ω ⊂ B R , x = y(t), k τ (s, t, x)g τ (s, t, x) = k τ -K (s, t, x)e 2τ Ks+K 2 s g τ (s, t, x)ds ≤ C(µ, K, R)k τ -K (s, t, x). Hence u τ ≤ C(µ, K, R)p τ,Σ in Ω T .
For K < 0 we obtain

u τ (t, x) ≥ p τ -K,y(t) (x) ≥ C (µ, K, R)p τ,y(t) (x),
where C (µ, K, Ω) > 0. Thus (1.10) is proved. Let us prove (1.11). Let x ∈ Ω ⊂ B R , x = y(t), We use the following changes of variable

s = r 2τ e a , s := r 2τ e -a , b = cosh a (a > 0), α = τ rb , b = b -1.
We then have

u τ (t, x) = 1 8π 3/2 ∞ 0 e -τ 2 s-r 2 4s s -3/2 g τ (s, t, x)ds = 1 8π 3/2 ( r 2τ ) -1/2 ∞ -∞
e -τ r cosh a e -a/2 g τ (s, t, x)da

= 1 8π 3/2 ( 2τ r ) 1/2
∞ 0 e -τ r cosh a (e -a/2 g τ (s, t, x) + e a/2 g τ (s, t, x))da

= 1 8π 3/2 ( 2τ r ) 1/2 ∞ 0 e -τ rb cosh(a/2)(g τ (s, t, x) + g τ (s, t, x)) - sinh(a/2)(g τ (s, t, x) -g τ (s, t, x)) da ≡ u + -u -, with u + τ (t, x) = 1 8π 3/2 ( 2τ r ) 1/2 ∞ 0 (g τ (s, t, x) + g τ (s, t, x))e -τ rb cosh(a/2)da = 1 8π 3/2 ( 2τ r ) 1/2 e -τ r ∞ 0 (g τ (s, t, x) + g τ (s, t, x))e -τ rb cosh(a/2) sinh(a) db = √ 2 8π 3/2 1 r e -τ r ∞ 0 (g τ (s, t, x) + g τ (s, t, x)) cosh(a/2) sinh(a) e -α dα √ τ r ≡ p τ,y(t) ϕ + (t, x), u - τ (t, x) = 1 8π 3/2 ( 2τ r ) 1/2 ∞ 0 (g τ (s, t, x) -g τ (s, t, x))e -τ rb sinh(a/2)da = √ 2 8π 3/2 1 r e -τ r ∞ 0 (g τ (s, t, x) -g τ (s, t, x)) sinh(a/2) sinh(a) e -α dα √ τ r ≡ p τ,y(t) ϕ -(t, x).
Estimate (1.11) in Lemma 1.1 is a consequence of the relation ϕ = ϕ -+ ϕ + and the folllowing Lemma.

Lemma 2.4. We have, for r ≤ R and τ sufficiently large (τ > C(µ, R)),

|ϕ -(t, x)| ≤ C(µ, R)/ √ τ , (2.13) |ϕ + (t, x)| ≤ C(µ, R), (2.14) |∇ x ϕ ± (t, x)| ≤ C(µ, R).
(2.15)

Proof. We observe that 0 < s < 1 < s for a > 0, and

cosh(a/2) = (b + 2)/2 = α 2τ r + 1, sinh(a/2) = b /2 = α 2τ r , τ (s -s) = r sinh(a) = r b 2 -1 = r b (b + 2) = 1 √ τ √ α α τ + 2r, ≤ α τ + 2r τ √ α, τ (s + s) = r cosh(a) = rb = r + rb = r + α τ .
Hence, for 0 < r ≤ R, we have

g τ (s, t, x) = exp -τ (ρ(t -s) -ρ(t)) + 1 4s (y(t -s) -y(t))(2r + y(t) -y(t -s)) ≤ exp τ s| ρ| ∞ + | ẏ| ∞ (r + s| ẏ| ∞ ) ≤ e C(r+τ s) ≤ Ce 2Cr+C α τ ≤ Ce C α τ ,
where C = C(µ, R). The same estimate for g τ (s, t, x) holds: max(g τ (s, t, x), g τ (s, t, x)) ≤ Ce C α τ .

We thus have

|g τ (s, t, x) -g τ (s, t, x)| ≤ τ |ρ(t -s) -ρ(t -s)| + 1 4s (y(t -s) -y(t)) •(2x -y(t -s) -y(t)) - 1 4s (y(t -s) -y(t))(2x -y(t -s) -y(t)) • max(g τ (s, t, x), g τ (s, t, x)) ≤ | ρ| ∞ τ (s -s) + 1 4 | ẏ| ∞ (2r + | ẏ| ∞ s) + 1 4 | ẏ| 2 ∞ (s + s) e C α τ ≤ C(τ (s -s) + r + s + s)e C α τ ≤ C( α τ + 2r τ √ α + r + 1 τ (r + α τ ))e C α τ ≤ C( α τ + r)e C α τ , C = C(µ, R).
Consequently, since

ϕ -(t, x) = 1 √ 2π ∞ 0 (g τ (s, t, x) -g τ (s, t, x)) sinh(a/2) sinh(a) e -α dα √ τ r = 1 √ 2π ∞ 0 (g τ (s, t, x) -g τ (s, t, x)) 1 2 cosh(a/2) e -α dα √ τ r , we then have, for τ > C = C(µ, R), |ϕ -(t, x)| ≤ C ∞ 0 ( α τ + r)e ( C τ -1)α dα √ τ r α 2τ r + 1 ≤ C ∞ 0 ( √ α τ + r τ )e ( C τ -1)α dα ≤ C ( 1 τ + r τ ).
Thus (2.13) is proved. Moreover, since

∇ x g τ (s, t, x) = y(t -s) -y(t) 2s g τ (s, t, x), |∇ x g τ (s, t, x)| ≤ 1 2 | ẏ| ∞ |g τ (s, t, x)| ≤ Ce C α τ , (2.16) 
we then have

|∇ r ϕ -(t, x)| ≤ C ∞ 0 |g τ (s, t, x) + g τ (s, t, x)| 1 2 cosh(a/2) e -α dα √ τ r ≤ C ∞ 0 e ( C τ -1)α 1 2 α 2τ r + 1 dα √ τ r ≤ C ∞ 0 e ( C τ -1)α dα √ α ≤ C .
Thus the estimate of ∇ r ϕ -(t, x) in (2.15) is proved. Let us prove (2.14). Since

cosh(a/2) sinh(a) = 1 2 sinh(a/2) = 1 √ 2b = √ τ r √ 2α ,
we then have

ϕ + (t, x) = 1 √ 2π ∞ 0 (g τ (s, t, x) + g τ (s, t, x)) cosh(a/2) sinh(a) e -α dα √ τ r ,
and so

|ϕ + (t, x)| ≤ C| ∞ 0 e C α τ -α 1 √ 2α dα ≤ C .
This proves (2.14). Similarly, thanks to (2.16), we have

|∇ x ϕ + (t, x)| = 1 √ 2π ∞ 0 (∇ x g τ (s, t, x) + ∇ x g τ (s, t, x)) 1 √ 2α e -α dα , ≤ C ∞ 0 e C α τ -α 1 √ 2α dα ≤ C ,
which proves (2.15) for ∇ x ϕ + . So Lemma 2.4 is proved.

By observing that ϕ = ϕ -+ ϕ + , Lemma 1.1 is then proved.

Properties of reflected waves.

Putting

Ψ τ = (γ -1)∇ x V τ + ∇ x W τ = γ∇ x V τ -∇ x U τ , Ψ j = (γ -1)∇ x V j + ∇ x W j = γ∇ x V j -∇ x U j , (2.17) 
we have

div x Ψ τ = div x (γ(t, •)∇ x V τ ) -∆ x U τ = ∂ t W τ in Ω T , (2.18) 
div x Ψ j = div x (γ(t, •)∇ x V j ) -∆ x U j = ∂ t W j in Ω T . (2.19) 
If Σ T ∩ D T = ∅ then, in view of (2.17), (1.16), (1.19), we have

Ψ j j→∞ → Ψ τ in C([0, T ], (L 2 (Ω)) 3 ).
2.4. Proof of Lemma 1.2. Let us set T = T which does not restrict the proof. We denote U * j instead of U * j,T . Put

J j (t) := ∂Ω (∂ ν W j )(t, x) U * j (t, x)dσ(x), F j (t) := Ω (γ -1)∇ x V j ∇ x U * j dx.
Thanks to (2.19) and integration by parts, we have

J j (t) = ∂Ω (ν • Ψ j )U * j dσ(x) = Ω Ψ j ∇ x U * j dx + Ω (div x Ψ j )U * j dx = F j (t) + Ω (∇ x W j ∇ x U * j + ∂ t W j U * j )dx.
Thanks to (1.18), (1.14), we compute

Ω ∇ x W j ∇ x U * j dx = - Ω W j ∆ x U * j dx = Ω W j (∂ t U * j + L * 1 U * j )dx = Ω W j (∂ t U * j + κ κ U * j )dx = Ω W j κ -1 ∂ t (κU * j )dx. Thus J j (t) = F j (t) + Ω κ -1 ∂ t (W j U * j κ)dx.
(2.20)

Thanks to (1.14), (2.20), an integration by parts according to t brings 

I j ≡ T 0 J j (t)κ(t)dt = T 0 F j (t)κ(t)dt + Ω [W j U * j κ] T 0 dx, ( 2 
Ω [W j U * j κ] T 0 dx j→+∞ → Ω [W τ U * τ κ] T 0 dx, T 0 F j (t)κ(t)dt j→+∞ → Ĩτ ≡ Ω T (γ -1)∇ x V j ∇ x U * j κ(t)dt, I j j→+∞ → I ∞ (τ, µ, θ, T ) ≡ Ĩτ + Ω [W τ U * τ κ] T 0 dx,
which proves (1.22) in (1) of Lemma 1.2.

Proof of Theorem 1.

For the sake of simplicity, we assume that γ ≥ 1. The case γ ≤ 1 is similar. We put We remind that

F τ := Ω (γ -1)∇ x V τ ∇ x U * τ dx.
U * τ = ρe -2τ 2 t U τ , ρ := ϕ * ϕ , (2.22) 
where ϕ, ϕ * are characterized in Lemma 1.1, and we put

r 1 := γ -1 γ Ψ τ ( ∇ x ρ ρ )U * τ , r 2 := γ -1 γ (∇ x ϕ * ϕ + ϕ * ∇ x ϕ)p τ,Σ ∇ x p τ,Σ + ∇ x ϕ * ∇ x ϕ|p τ,Σ | 2 .
We firstly have

(γ -1)∇ x V τ ∇ x U * τ (1) = γ -1 γ Ψ τ ∇ x U * τ + γ -1 γ ∇ x U τ ∇ x U * τ (2) = r 1 + γ -1 γ Ψ τ ρ∇ x U τ e -2τ 2 t + γ -1 γ ∇ x U τ ∇ x U * τ (3) = r 1 + 1 γ Ψ 2 τ ρe -2τ 2 t -Ψ τ (∇ x W τ )ρe -2τ 2 t + γ -1 γ ∇ x U τ ∇ x U * τ = r 1 + 1 γ Ψ 2 τ ρe -2τ 2 t -Ψ τ (∇ x W τ )ρe -2τ 2 t + γ -1 γ |∇ x p τ,Σ | 2 ϕ * ϕ + r 2 .
Explanations -(1): write

∇ x V τ = 1 γ (Ψ + ∇ x U τ ). ( 2 
): use (2.22). (3): write (γ -1)∇ x U τ = Ψ τ -γ∇ x W τ in the second term.
By integration by parts, thanks to (1.20) and (2.18), we have

- Ω Ψ τ ∇ x W τ ρdx = Ω ∂ t W τ W τ ρdx + r 3 , (2.23) 
r 3 := Ω Ψ τ W τ ∇ x ρdx.
We thus have

F τ = Ω γ -1 γ |∇ x p τ,Σ | 2 ϕ * ϕe -2τ 2 t dx + Ω 1 γ Ψ 2 τ ρe -2τ 2 t dx + Ω (∂ t W τ )W τ ρe -2τ t 2 dx + Ω ( γ -1 γ (r 1 + r 2 ) + r 3 )dx.
Writing

Ω T (∂ t W τ )W τ ρe -2τ t 2 κdtdx = Ω T (τ 2 ρ - 1 2 ρ)|W τ | 2 e -2τ t 2 κdtdx (2.24) + 1 2 Ω [W 2 τ e -2τ t 2 κ] T 0 ,
we then have

I ∞ (τ, µ, θ, T ) = Ĩτ + Ω [W τ U * τ κ] T 0 dx = Ω T γ -1 γ |∇ x p τ,Σ | 2 ϕ * ϕκdtdx + Ω T 1 γ Ψ 2 τ ρe -2τ 2 t κdtdx (2.25) + Ω T (τ 2 ρ - 1 2 ρ)|W τ | 2 e -2τ t 2 κdtdx + 1 2 Ω (W 2 τ e -2τ t 2 )κ| t=T dx + R,
where we put

R := R 1 + R 2 + R 3 + R 4 + R 5 , R j := Ω T r j κdtdx, j = 1, 2, 3, R 4 := Ω [W τ U * τ κ] T 0 dx, R 5 := - 1 2 Ω (W 2 τ κ)| t=0 dx,
We prove in the next Lemma that R is neglictable.

Lemma 2.5. There exist δ > 0, µ 1 > 0, so that for all µ > µ 1 , there exists τ 1 > 0 so that for all τ > τ 1 , the following estimates hold.

|R 1 | ≤ τ -1 Ω T Ψ 2 τ ρe -2τ 2 t κdtdx + Cτ -1 Ω T |γ -1| |∇ x p τ,Σ | 2 κdtdx; (2.26) |R 2 | ≤ Cτ -1 Ω T |γ -1| |∇ x p τ,Σ | 2 κdtdx; (2.27) |R 3 | ≤ Ω T 1 2γ Ψ 2 τ ρe -2τ 2 t κdtdx + C Ω T |W τ | 2 e -2τ 2 t κdtdx;
(2.28) 

|R 4 | ≤ 1 4 Ω |W τ | 2 | t=T e -2τ T κ(T )dx + Ce -2τ (y(t),D(t))+δ) , (2.29) 
|R 5 | ≤ Ce -2τ (y(t),D(t))+δ) , t ∈ [0, T ]. ( 2 
|R 4 | ≤ 1 4 Ω |W τ | 2 | t=T e -2τ T κ(T ))dx + C Ω |p τ,y(T ) | 2 κ(T )dx + Ω |W τ U * τ | t=0 κ(0)dx d) Estimate (2.30) is (2.8
). Then (2.29) comes from (2.6) , (2.9). This proves the Lemma.

From Lemma 2.5, (2.25), (1.10), Remark 1, and since

τ 2 ρ - 1 2 ρ + C ≥ C τ 2 , C > 0,
for τ sufficiently large, we obtain

I ∞ (τ, µ, θ, T ) ≥ 1 C Ω T γ -1 γ |∇ x p τ,Σ | 2 κdtdx + Ω T Ψ 2 τ ρe -2τ 2 t κdtdx + Ω T τ 2 |W τ | 2 e -2τ t 2 κdtdx + Ω |W τ | 2 | t=T e -2τ T 2 κ(T )dx ,
for some C > 1, which implies the lower bound for |I ∞ | in (1.23).

2.5.2. Upper Bound for I ∞ . In the same way, putting

r 6 := (γ -1)∇ x W τ (∇ x ρ)U τ e -2τ 2 t , we have, (γ -1)∇ x V τ ∇ x U * τ (1) = (γ -1)∇ x W τ ∇ x U * τ + (γ -1)∇ x U τ ∇ x U * τ (2) = (γ -1)ρ∇ x W τ ∇ x U τ e -2τ 2 t + (γ -1)∇ x U τ ∇ x U * τ + r 6 = γρ∇ x W τ ∇ x U τ e -2τ 2 t -ρ∇ x W τ ∇ x U τ e -2τ 2 t + (γ -1)∇ x U τ ∇ x U * τ + r 6 (3) = -γρ∇ x |W τ | 2 e -2τ 2 t + ρ∇ x W τ Ψ τ e -2τ 2 t + (γ -1)∇ x U τ ∇ x U * τ + r 6 .
Explanations -(1): write 

V τ = U τ + W τ . ( 2 
F τ = - Ω γρ∇ x |W τ | 2 e -2τ 2 t dx - Ω ∂ t W τ W τ ρdx -r 3 + Ω (γ -1)∇ x U τ ∇ x U * τ dx + Ω r 6 dx.
Thanks to (2.23), (2.24), we obtain Ĩτ = -

Ω T γρ|∇ x W τ | 2 e -2τ 2 t κdtdx - Ω T (τ 2 ρ - 1 2 ρ)|W τ | 2 e -2τ t 2 κdtdx - 1 2 Ω (W 2 τ e -2τ t 2 κ) t=T dx + Ω T (γ -1)∇ x U τ ∇ x U * τ κdtdx -R 3 -R 5 + R 6 ,
where we put

R 6 := Ω T r 6 κ(t)dtdx.
Similarly to the above section §2.5.1, for τ sufficiently large, we obtain

I ∞ (τ, µ, θ, T ) ≤ 1 C Ω T (γ -1)|∇ x p τ,Σ | 2 κdtdx - Ω T |∇ x W τ | 2 e -2τ 2 t κdtdx - Ω T τ 2 |W τ | 2 e -2τ t 2 κdtdx - Ω |W τ | 2 | t=T e -2τ T 2 κ(T )dx ,
for some C > 1, which implies the upper bound for |I ∞ | in (1.23).

Thus Theorem 1 is proved.

2.6. Proof of Theorem 2. a) Assume that T < T * . Let θ ∈ (0, T ) and µ > µ 1 , where µ 1 is defined in Theorem 1. Thanks to (2.5) and to Theorem 1, we obtain (1.24). Since in this formula the right-hand side does not depend on µ, we let µ tend to infinity. We then obtain (1.25).

b) Assume that Σ T ∩ D T = ∅, that is, T ≥ T * . Let 0 < T < T * . Thus, (1.25) holds with T replaced by T . Taking the limit as T T * , and since d(Σ T , D T ) tends to d(Σ T * , D T * ) = 0 when, we obtain (1.26). Let U be a simply connected open set in R 4 with lipschitz boundary, and such that U ⊂ Σ C . Observe that Σ C \ U is connected. For all open set V such that U ⊂ V ⊂ V ⊂ Σ C , we have H| V ∈ H 1,2 (V ) , H| V (t, •) = 0 for -1 < t ≤ 0, and (L 1 + τ η)H = 0 in V . Similarly to [2, Theorem 2.3], there exists a sequence H j ∈ (-1, T + 1) × Ω such that (L 1 + τ η)H j (t, x) = 0 in (-1, T + 1) × Ω , (2.31)

H j | t≤0 = 0 in Ω ,
and H j converges to H in L 2 (U ) (with the strong norm). We then have the existence of another sequence H j ∈ H 1,2 loc (Σ C ) satisfying the homogeneous relation (2.31) and such that H j converges to H in H 1,2 loc (Σ C ), as noted in [2, §3]. Finally, the sequence U j = H j + G satisfies Equation (2.31) in Ω T , with U j | t=0 = U τ (0) in Ω , and U j → U τ in H 1,0 loc (Ω T \ Σ T ) ∩ H 0,1 loc (Ω T \ Σ T ). Remark 6. We used the fact that U τ (0) ∈ L 2 (Ω ) only. Hence, the proof for the existence of U * j in the dual case, where the triplet (L 1 , t, t = 0) is replaced by (L * 1 , T -t, t = T ), works similarly.

1. Introduction. 1 . 1 .

 11 Inverse heat conductivity problem. Let Ω be a bounded domain in R 3 , with lipschitzian boundary Γ = ∂Ω, and consider the following initial boundary value problem   ∂ t v = div x (γ∇ x v) in Ω T = (0, T ) × Ω, v = f on Γ T = (0, T ) × Γ, v t=0 = v 0 on Ω, (1.1)

Lemma 2 .

 2 1. a) Let O ⊂ R 3 be an non empty open set and τ > 0. Then we have

1 τ

 1 ) b) Let O ⊂ R 3 is a non empty open. Let y ∈ O and d > d(y, O). Then there exists C(O, y, d) > 0, such that O |∇ x p τ,y (x)| 2 dx ≥ C(O, y, d)τ 2 e -2τ d , ∀τ ≥ 0. (2.3) Proof. a) We check easily: O |p τ,y (x)| 2 dx = O 1 (4π) 2 r 2 e -2τ r dx ≤ r>d(y,O) 1 4π e -2τ r dr ≤ s>τ d(y,O) e -2s ds = (2τ d(y, O)) -1 e -2τ d(y,O) .Hence (2.1). Similarly we haveO |∇ x p τ,y (x)| 2 dx = O (τ r + 1) 2 (4π) 2 r 4 e -2τ r dx ≤ r>d(y,O) (τ r + 1) 2 4πr 4 e -2τr r 2 dr ≤ τ 4π s>τ d(y,O) (s + 1) 2 s 2 e -2s ds ≤ Cτ 1 + 1 τ d(y, O) e -2τ d(y,O) . b) Let us prove (2.3). Observe that the open set O d := {x ∈ O; |x -y| < d} is non empty. Hence we get

  assumption on D T and Σ, we have d(y(θ), D(θ)) + δ|t -θ| ≥ d(y(t), D(t)) ≥ d(y(θ), D(θ)) -δ|t -θ|, t ∈ [0, T ], for some δ > 0 depending on Σ T and D T only. Fix µ 1 > 2δ and let µ ≥ µ 1 . Put ε = d(y(θ),D(θ)) √ τ

Ω κ( 0 )

 0 |W τ (0)| 2 dx ≤ C(µ)e -2τ d(y(t),D(t))+δ) , t ∈ [0, T ], µ > µ 1 , τ > 1; (2.8) Ω κ(0)|W τ (0)U * (0)|dx ≤ C(µ)e -2τ d(y(t),D(t))+δ) , t ∈ [0, T ], τ > τ 1 .

2. 5 . 1 .T 0 F

 510 Lower Bound for I ∞ . Let us give another expression of Ĩτ = τ (t, x)κ(t)dt.

  ): use (2.22). (3): write U τ = V τ -W τ in the firs two terms.Thanks to (2.23), we have

2. 7 .

 7 Proof of Lemma 1.3. First remind that F is defined at least for T sufficiently close to 0. Observe that the function G:G : [0, T ] ⊃ T → -2d(Σ T , D T )is lipschitzian, non-decreasing, and G(0) < 0. Thus, there exists δ > 0 such thatG(T ) ≤ G(T ) + 2δ(T -T ), 0 ≤ T ≤ T ≤ T. Hence, if G(T ) < 0, then G(T + |G(T )|/δ) < 0. The result is proved since , G = F on [0, T * [. 2.8. Existence of Needle sequences. Denote by Σ C the open set ((-1, T + 1)×Ω )\Σ [-1,T +1] , with Σ [t,t ] = {(s, y(s)); t ≤ s ≤ t }. Let us prove the existence of {u j } j . Let G(t, x) be the solution in L 2 ((0, T +1); H 1 0 (Ω ))∩H 1 ((0, T +1); L 2 (Ω )) ⊂ C([-1, T + 1]; L 2 (Ω )) of (L 1 + τ η)G = 0 in Ω T +1 , G| t=0 = U τ (0, •) in Ω , and ∂ t G ∈ L 2 ((0, T + 1); H -1 (Ω )). Since U τ ∈ C([-1, T + 1]; L 2 (Ω )) and ∂ t U τ ∈ L ∞ ((-1, T + 1); H -1 (Ω )), then the function H = U τ -G extended by 0 for t < 0 belongs to C([-1, T +1]; L 2 (Ω )) with ∂ t H ∈ L 2 ((-1, T +1); H -1 (Ω )), and satisfies (L 1 + τ η)H (t, x) = χ (0,+∞) (t) ⊗ δ(x -y(t)) in (-1, T + 1) × Ω , H| t≤0 = 0 in Ω .