Recovering metric from full ordinal information

Thibaut Le Gouic

To cite this version:

Thibaut Le Gouic. Recovering metric from full ordinal information. 2016. hal-01162490v3

HAL Id: hal-01162490 https://hal.science/hal-01162490v3

Preprint submitted on 12 Feb 2016 (v3), last revised 29 Dec 2018 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Recovering metric from full ordinal information

February 12, 2016

Abstract

Given a geodesic space (E, d), we show that full ordinal knowledge on the metric d - i.e. knowledge of the function $$
D_{d}:(w, x, y, z) \mapsto \mathbf{1}_{d(w, x) \leq d(y, z)},
$$ determines uniquely - up to a constant factor - the metric d. For a subspace E_{n} of n points of E, converging in Hausdorff distance to E, we construct a metric d_{n} on E_{n}, based only on the knowledge of D_{d} on E_{n} and establish a sharp upper bound of the Gromov-Hausdorff distance between $\left(E_{n}, d_{n}\right)$ and (E, d).

1 Introduction

Given a set of unknown points that are known to belong to \mathbb{R}^{k} and for which pairwise distance is known, it is useful to be able to find an embedding of these points in \mathbb{R}^{k}. Methods to find this embedding are known as multi-dimensional scaling (MDS) methods, and are widely used as data visualization tools, in particular in social sciences. Tor52 is often considered as a pioneer paper in MDS.

This method, requiring the knowledge of distance between each pair of points, is sometimes too restrictive in practice. It happens that the actual distance is unknown, but ordinal information of the distances can be obtained. Namely, for any four points w, x, y, z in the dataset, their distance $\|w-x\|,\|y-z\|$ are not known, but they can be compared:

$$
\mathbf{1}_{\|w-x\| \leq\|y-z\|}
$$

is known. It is a typical case in social sciences and there exist methods developed in this context. This problem is referred as non-metric MDS or ordinal embedding.

She62a and She62b introduced non-metric MDS techniques, allowing to find an embedding of the data in \mathbb{R}^{n-1} given a data set of n points. Kru64 introduced a procedure to obtain the best possible representation in a k-dimensional space, for a given $k<n$. These techniques are now widely used in practical applications, to visualize data.

The book YH87 deals with these methods and some applications.
Theoretical guarantees on these methods has not been studied until recently. Namely, is it guaranteed that there exists a unique embedding for the data? Given that the dataset grows up to filling a subset of the space \mathbb{R}^{k}, does the embedding of the dataset converges to the limit subset?

Let us formulate formally the questions.

Let f be a function defined on $E \subset \mathbb{R}^{k}$ onto \mathbb{R}^{k} such that for all $w, x, y, z \in \mathbb{R}^{k}$,

$$
\begin{equation*}
\|w-x\| \leq\|y-z\| \text { if and only if }\|f(w)-f(x)\| \leq\|f(y)-f(z)\| \tag{1}
\end{equation*}
$$

Such functions are said to be isotonic. f is embedding the dataset E into \mathbb{R}^{k} and preserves the ordinal information on the distances that is known. Clearly f needs not to be the identity function; any similarity function (i.e. such that there exists $C>0$ such that for any $x, y \in \mathbb{R}^{k},\|f(x)-f(y)\|=$ $C\|f(x)-f(y)\|)$ can fit. The first question is then: are similarity functions the only functions that satisfy (1)? This refers to the uniqueness question.

Let E_{n} be a set of n points in \mathbb{R}^{k} for which only $\mathbf{1}_{\|w-x\| \leq\|y-z\|}$ is known for any given points $w, x, y, z \in E_{n}$. Does any function $f: E_{n} \rightarrow \mathbb{R}_{k}$ that satisfies (11) satisfies that the limit of $f\left(E_{n}\right)$ is the limit E of E_{n} (up to a similarity)? This refers to the consistency question.

KvL14 provides a positive answer to both uniqueness (up to a similarity) and consistency.
The rate of convergence of the dataset embedding to its limit is tackled in Ari15, when the limit set E is a bounded connected open set. It basically states that the rate of convergence of E_{n} to E is the same as $f\left(E_{n}\right)$ to $f(E)$ in Hausdorff metric, up to a constant factor that grows with the dimension k. Methods developed in KvL14 and Ari15 use the vector space structure of \mathbb{R}^{k}.

The aim of this paper is to provide similar results in non Euclidean spaces.
This investigation is motivated by the use of such type of information in manifold learning. Unweighted k-nearest neighbor methods are widely used and fits in the framework where only a partial ordinal information on distances is known. For instance, the ISOMAP method introduced in TDSL00 aims to learn a non linear manifold from k-nearest neighbor weighted graph. Little is known on what can be inferred from unweighted k-nearest neighbor graphs.

While previous results on \mathbb{R}^{k} are non constructive, our investigation provides a way to compute a metric given a dataset, for which theoretical guarantees are obtained.

In order to consider the problem for non Euclidean space, we make the following remark for the \mathbb{R}^{k} case. If f is a similarity function then, E and $f(E) / C$ are isometric. Stated differently, E and $f(E)$ can be rescaled to have the same diameter, and then be isometric. In particular, their Gromov-Hausdorff distance is zero.

This remark allows us to state the problem in term of isometry or Gromov-Hausdorff distance between metric spaces. Let us formulate formally the problem.

Given a metric space (E, d) for which only the function

$$
D_{d}:(w, x, y, z) \mapsto \mathbf{1}_{d(w, x) \leq d(y, z)}
$$

is known (in other words, the metric itself is unknown but two distances can be compared), is it possible to recover the metric d ?

The answer is clearly no when the problem is formulated this way, because multiplying the metric by a constant does not change the known function D_{d} (just like space can be reconstructed only up a to similarity in \mathbb{R}^{k}). More importantly, given a sub-additive positive function l, such that $l(x)=0 \Leftrightarrow x=0$, then the composed function $l \circ d$ is a metric that also gives the same observed function:

$$
D_{d}=D_{l \circ d}
$$

However, one can observe that if (E, d) is a geodesic space, then $(E, l \circ d)$ is geodesic only if l is a linear function (i.e. if $f: x \mapsto c x$ for some $c>0$). Thus, if the space (E, d) is known to be geodesic, the latter argument fails.

The paper falls into the following parts.
We first show that the result of uniqueness in KvL14 holds for geodesic spaces, that is D_{d} determines d up to a constant factor.

Secondly, we present our main result which answers how to built a metric on a finite subspace E_{n} of E that is known to converge in Gromov-Hausdorff metric to E, when only D_{d} is known on E_{n}. Sharp bounds of this convergence are proven.

Then, statistical applications are developed.
Proofs of the results follows and the paper ends with a short discussion.

2 Uniqueness of the metric

In order to set the problem properly, recall the definition of a geodesic space.
Definition 1. Let (E, d) be a complete metric space. If for any $x, y \in E$, there exists $z \in E$ such that

$$
d(x, z)=d(y, z)=\frac{1}{2} d(x, y)
$$

then (E, d) is said to be a geodesic space. And z is called a middle point of (x, y).
A segment $[x, y]$ is a subset of E such that there exists a continuous mapping $\gamma:[0,1] \rightarrow E$ such that $\gamma([0,1])=[x, y]$ and for all $t \in[0,1]$,

$$
d(x, \gamma(t))=t d(x, y) \text { and } d(\gamma(t), y)=(1-t) d(x, y)
$$

Our first result can then be stated as following. Metric of geodesic spaces is determined by ordinal information on the metric.

Theorem 2. Let $\left(E_{1}, d_{1}\right)$ and $\left(E_{2}, d_{2}\right)$ be two complete geodesic spaces such that there exists a one-to-one map f such that

$$
\begin{equation*}
D_{d_{1}}=D_{d_{2} \circ f \times f} \tag{2}
\end{equation*}
$$

then, there exists $c>0$ such that f is an isometry between $\left(E_{1}, d_{1}\right)$ and $\left(E_{2}, c d_{2}\right)$.
Proof. We first show that the result is true when E is restricted to any segment $[w, x]$.
Let $w, x \in E_{1}$, then since E_{1} is geodesic, there exists a middle point m, so that

$$
d_{1}(w, m)=d_{1}(m, x)=\frac{1}{2} d_{1}(w, x) .
$$

Since
$1=D_{d_{1}}(w, m, m, x)=D_{d_{2} \circ f \times f}(w, m, m, x)=1$, and $1=D_{d_{1}}(x, m, m, w)=D_{d_{2} \circ f \times f}(x, m, m, w)=1$
then,

$$
d_{2}(f(w), f(m))=d_{2}(f(m), f(x))
$$

Thus, in order to show that $f(m)$ is a middle point of $[f(w), f(x)]$, is suffices to show that for any m^{\prime} such that $f\left(m^{\prime}\right)$ is a middle point of $[f(w), f(x)]$,

$$
d_{2}(f(w), f(m)) \leq d_{2}\left(f(w), f\left(m^{\prime}\right)\right)
$$

Suppose that

$$
d_{2}(f(w), f(m))>d_{2}\left(f(w), f\left(m^{\prime}\right)\right)
$$

then the equality

$$
0=D_{d_{1}}\left(w, m, w, m^{\prime}\right)=D_{d_{2} \circ f \times f}\left(w, m, w, m^{\prime}\right)=0
$$

implies

$$
d_{1}\left(w, m^{\prime}\right)<d_{1}(w, m)
$$

Similarly, we can show that

$$
d_{1}\left(m^{\prime}, x\right)<d_{1}(m, x)
$$

which contradicts that m is a middle point of $[w, x]$.
We thus showed that middle points are mapped to middle points by f.
Applying this recursively on a segment $[w, x]$, we show that for any $t \in[0,1]$ of the form

$$
t=\frac{k}{2^{n}}
$$

with $k, n \in \mathbb{N}$, and $u_{t} \in[w, x]$ such that $d_{1}\left(w, u_{t}\right)=t d_{1}(w, x)$, the following holds

$$
\begin{equation*}
f\left(u_{t}\right) \in[f(w), f(x)] \text { and } d_{2}\left(f(w), f\left(u_{t}\right)\right)=t d_{2}(f(w), f(x)) \tag{3}
\end{equation*}
$$

Since such t are dense in $[0 ; 1]$, the result holds true for any $t \in[0 ; 1]$ by continuity. Indeed, since for a sequence $w_{t} \rightarrow w$ there exists a sequence $s_{t} \rightarrow 0$ such that $s_{t} \geq t$ and s_{t} is of the form $\frac{k}{2^{n}}$ with $k, n \in \mathbb{N}$, continuity of f holds using

$$
d_{1}\left(w, w_{t}\right) \leq d_{1}\left(w, u_{t}\right) \Longrightarrow d_{2}\left(f(w), f\left(w_{t}\right)\right) \leq d_{2}\left(f(w), f\left(u_{t}\right)\right)=t d_{2}(f(w), f(x))
$$

Thus, we showed that the result holds for any segment (with eventually different constants c).
Take now $w, x, y, z \in E_{1}$ and set

$$
c=\frac{d_{1}(w, x)}{d_{2}(f(w), f(x))} .
$$

We want to show that constants c are the same for any other segment $[y, z]$, i.e, i.e..

$$
d_{1}(y, z)=c d_{2}(f(y), f(z))
$$

Without loss of generality, we can suppose that $d_{1}(y, z) \leq d_{1}(w, x)$. Thus, there exists $u \in[w, x]$ such that $d_{1}(y, z)=d_{1}(w, u)=t d_{1}(w, x)$ for some $t \in[0 ; 1]$. This equality also provides

$$
\begin{aligned}
d_{1}(y, z) & =t d_{1}(w, x) & & \\
& =t c d_{2}(f(w), f(x)) & & \text { by definition of } c, \\
& =c d_{2}(f(w), f(u)) & & \text { using (3), } \\
& =c d_{2}(f(y), f(z)) & & \text { using (2) and } d_{1}(y, z)=d_{1}(w, u) .
\end{aligned}
$$

Thus, f is an isometry between $\left(E_{1}, d_{1}\right)$ and $\left(E_{2}, c d_{2}\right)$.

3 Construction of the metric

Now that we know that we can construct - up to a constant factor - a geodesic metric d given D_{d}, how do we build it?

To give an answer, the problem needs to be properly posed.
Let $E_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a subset of a geodesic compact space (E, d) of diameter 1 . Suppose that $\left(E_{n}\right)_{n \geq 1}$ converges to E in Hausdorff metric in (E, d). Can we build a metric d_{n} on E_{n} so that $\left(E_{n}, d_{n}\right)$ converges to (E, d) in Gromov-Hausdorff distance, with d_{n} a function of D_{d} ?

To set the notations, let us recall definitions of Hausdorff and Gromov-Hausdorff metric.
Definition 3 (Hausdorff and Gromov-Hausdorff metric). Let A, B be two subset of a metric space (E, d). The Hausdorff distance between A and B is defined by

$$
d_{H}(A, B)=\inf \left\{\varepsilon>0 \mid A \subset B^{\varepsilon}, B \subset A^{\varepsilon}\right\}
$$

where $A^{\varepsilon}=\{x \in E ; \exists a \in A$ s.t. $d(a, x)<\varepsilon\}$.
The Gromov-Hausdorff distance between two metric spaces $\left(E, d_{E}\right)$ and $\left(F, d_{F}\right)$ is defined as $d_{G H}(E, F)=\inf \left\{d_{H}(g(E), h(F)) \mid g: E \mapsto G, h: F \mapsto G\right.$ isometric embeddings and G metric space $\}$.

More details on these metrics can be found on BBI01.

3.1 Main results

The idea of the proof of theorem 2 can be used to construct a consistent pseudo-metric on E_{n}.
Definition 4 (Pseudo metrics on $\left.E_{n}\right)$. Let (E, d) be a complete compact geodesic space, with diameter 1. Set $E_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset E$. For $a, b \in E$, define - if it exists

$$
\begin{aligned}
& M_{a b}=\{z \in E ; \max (d(a, z), d(b, z)) \leq d(a, b)\}, \\
& M_{a b}^{n}=M_{a b} \cap E_{n} \backslash\{a, b\}, \\
& m_{a b} \in \arg \min \left\{\max (d(a, z), d(b, z)) ; z \in M_{a b}\right\}, \\
& m_{a b}^{n} \in \arg \min \left\{\max (d(a, z), d(b, z)) ; z \in M_{a b}^{n}\right\},
\end{aligned}
$$

and set $A_{0}^{n}=(x, y)$, where $d(x, y)=\operatorname{diam}\left(E_{n}\right)$ and then for $p \geq 1$ and $A_{p}^{n}=\left(a_{1}^{n}, \ldots, a_{k}^{n}\right)$ - if all $m_{a_{i}^{n} a_{j}^{n}}^{n}$ exist,

$$
A_{p+1}^{n}=\left(a_{1}^{n}, m_{a_{1}^{n} a_{2}^{n}}^{n}, a_{2}^{n}, m_{a_{2}^{n} a_{3}^{n}}^{n}, a_{3}^{n}, \ldots, m_{a_{k-1}^{n} a_{k}^{n}}^{n}, a_{k}^{n}\right)
$$

Then, for the largest p such that A_{p}^{n} exists, define c_{n} on $A_{p}^{n} \times A_{p}^{n}$ by

$$
c_{n}\left(a_{i}^{n}, a_{j}^{n}\right)=|i-j| 2^{-p} .
$$

and for any $p \geq 1$ such that A_{p}^{n} exists and for any $u, v \in E$, set

$$
\begin{aligned}
d_{n, p}^{+}(u, v) & =\min \left\{c_{n}(a, b) ; d(a, b) \geq d(u, v), a, b \in A_{p}^{n}\right\} \\
d_{n, p}^{-}(u, v) & =\max \left\{c_{n}(a, b) ; d(a, b) \leq d(u, v), a, b \in A_{p}^{n}\right\}
\end{aligned}
$$

Finally, set $p_{n}=\max \left\{p \in \mathbb{N}^{*} ; A_{p}^{n}\right.$ exists, $\left.\forall a, b \in A_{p}^{n}, d_{n, p}^{+}(a, b)=d_{n, p}^{-}(a, b)\right\}$.

Remark 5. Given x, y in a geodesic space, the set of $m_{x y}$ coincides with the set of middle points of (x, y).

Intuitively, the largest A_{p} is longest geodesic path we can "make" from E_{n}, with each point being a middle point of its neighbors on A_{p}, and both $d_{n, p}^{+}$and $d_{n, p}^{-}$define a "metric" by comparing distances with the ones on this longest "segment" A_{p}. Then p is chosen so that $d_{n, p}^{+}$and $d_{n, p}^{-}$are "precise" (with a high p) and close enough.

Theorem 6. Let (E, d) be a complete compact geodesic space, with diameter 1. Set $E_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset$ E.

Then, for $C_{0}=\frac{48}{\log 2}$,

$$
\begin{aligned}
& \left.\sup _{u, v \in E_{n}}\left|d(u, v)-d_{n, p_{n}}^{+}(u, v)\right| \leq C_{0} d_{H}\left(E_{n}, E\right)\right)\left(1-\log d_{H}\left(E_{n}, E\right)\right) \\
& \left.\sup _{u, v \in E_{n}}\left|d(u, v)-d_{n, p_{n}}^{-}(u, v)\right| \leq C_{0} d_{H}\left(E_{n}, E\right)\right)\left(1-\log d_{H}\left(E_{n}, E\right)\right)
\end{aligned}
$$

Corollary 7. Let (E, d) be a complete compact geodesic space, with diameter 1 , and E_{n} be a finite subset of (E, d). Then, one can construct a metric d_{n} on E_{n}, depending only on D_{d} such that

$$
d_{G H}\left(\left(E_{n}, d_{n}\right),(E, d)\right) \leq 2 C_{0} d_{H}\left(E, E_{n}\right)\left(1-\log \left(d_{H}\left(E, E_{n}\right)\right)\right),
$$

where $C_{0}=\frac{48}{\log 2}$.
Remark 8. This result implies that if E_{n} converges to E in Hausdorff metric, then the constructed $\left(E_{n}, d_{n}\right)$ also converge to (E, d) in Gromov-Hausdorff metric. The hypotheses $\# E_{n}=n$ and $E_{n} \rightarrow$ E in Hausdorff metric implies that E is precompact. Since it is also closed, E is compact. To relax that hypothesis, one can assume that $E_{n} \cap B \rightarrow E \cap B$ for any closed ball B. In that case, the result states pointed Gromov-Hausdorff convergence of $\left(E_{n}, d_{n}\right)$ to (E, d). Although, since the construction of d_{n} uses the fact that the diameter of (E, d) is 1 , its construction have to be slightly adjusted.

This result has an extra logarithmic factor compared to the one of Ari15, which holds in \mathbb{R}^{k} with a constant factor growing with k. It is not clear whether the logarithmic factor is a consequence of the method we use, or if it needed to obtained a result independent of k. Benefits of our result is that it holds in generic geodesic spaces (E, d) and that a computable way to build the metric d_{n} is provided.

4 Applications to statistics

Consider now that the points $E_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ of E are chosen randomly, in a i.i.d. setting. Then, if the law of X_{i} are smooth enough, the set E_{n} will converge to E in Hausdorff metric. The following proposition gives a more precise statement.

Proposition 9. Let (E, d) be a geodesic space of diameter 1 , such that

$$
\mathcal{N}(E, t) \leq \frac{C}{t^{d}}
$$

for all $t>0$, where $\mathcal{N}(E, t)$ denotes the minimal number of balls of radius t to cover E, C is a positive constant, and d an integer. Set μ a Borel probability measure on (E, d) such that

$$
\mu\left(B_{t}\right) \geq \frac{c}{\mathcal{N}(E, t)}
$$

for some $c>0$ and any B_{t}, ball of radius $t>0$. Set $n \in \mathbb{N}$ and let $E_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be the set of i.i.d. random variables with common law μ. Then, there exists a constant K depending only on c and C such that,

$$
\mathbb{E} d_{H}\left(E_{n}, E\right) \leq K\left(\frac{\log n}{n}\right)^{1 / d}
$$

Given this random set E_{n}, and metric-comparison function D on this set, our theorem 6 allows us to build a metric d_{n} on E_{n}, that converges to (E, d) at a speed we can control in expectation.

Corollary 10. Let (E, d) be a geodesic space of diameter 1 , such that

$$
\mathcal{N}(E, t) \leq \frac{C}{t^{d}}
$$

for all $t>0$, where $\mathcal{N}(E, t)$ denotes the minimal number of balls of radius t to cover E, C is a positive constant, and d an integer. Set μ a Borel probability measure on (E, d) such that

$$
\mu\left(B_{t}\right) \geq \frac{c}{\mathcal{N}(E, t)}
$$

for some $c>0$ and any B_{t}, ball of radius $t>0$. Set $n \in \mathbb{N}$ and let $E_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be the set of i.i.d. random variables with common law μ.

Then, one can construct a metric d_{n} on E_{n} only based on the function

$$
D_{d}:(w, x, y, z) \in E_{n}^{4} \mapsto \mathbf{1}_{d(w, x) \leq d(y, z)}
$$

such that there exists a constant $K>0$

$$
\mathbb{E} d_{G H}\left(E_{n}, E\right) \leq K\left(\frac{\log n}{n}\right)^{1 / d} \log n
$$

5 Proofs

5.1 Main theorem

The proof of theorem 6 is based on the following lemmas.
Lemma 11. In the setting of theorem 6. denote d_{H} the Hausdorff metric, then,

$$
\forall n \geq 1, \forall p \geq 1, \forall a, b \in A_{p}^{n},\left|d(a, b)-c_{n}(a, b)\right| \leq 6 p d_{H}\left(E_{n}, E\right)
$$

Lemma 12. In the setting of theorem 6.

$$
\begin{equation*}
p_{n} \geq\left\lfloor\frac{1}{\log 2}\left(-\log \left(C_{0} d_{H}\left(E_{n}, E\right)\right) \mid-\log \left(\log \left(e / d_{H}\left(E_{n}, E\right)\right)\right)\right)\right\rfloor \tag{4}
\end{equation*}
$$

Lemma 13. In the settings of theorem [6] for $p \leq p_{n}$ and any $u, v \in \cup_{n \geq 1} E_{n}$,

1. $d_{n, p}^{+}(u, v) \leq d_{n, p}^{-}(u, v)+2^{-p}$,
2. $d_{n, p}^{-}(u, v) \leq d_{n, p}^{+}(u, v)$.

Proof of lemma 11. Set $\varepsilon=d_{H}\left(E_{n}, E\right)$.

First step

Remark 5 states that since E is geodesic, for all $a, b \in E$,

$$
d\left(a, m_{a b}\right) \vee d\left(m_{a b}, b\right)=\frac{d(a, b)}{2}
$$

Also, by definition of the Hausdorff metric, for all $n \geq 1$, there exists $m_{n} \in E_{n}$ such that $d\left(m_{n}, m_{a b}\right) \leq \varepsilon$, so that

$$
d\left(a, m_{n}\right) \vee d\left(m_{n}, b\right) \leq \frac{d(a, b)}{2}+\varepsilon
$$

Taking $a, b \in A_{p}^{n}$, it shows that

$$
d\left(a, m_{a b}^{n}\right) \vee d\left(m_{a b}^{n}, b\right) \leq \frac{d(a, b)}{2}+\varepsilon
$$

Using, $d(a, b) \leq d\left(a, m_{a b}^{n}\right) \vee d\left(m_{a b}^{n}, b\right)+d\left(a, m_{a b}^{n}\right) \wedge d\left(m_{a b}^{n}, b\right)$, one can show that

$$
d\left(a, m_{a b}^{n}\right) \wedge d\left(m_{a b}^{n}, b\right) \geq \frac{d(a, b)}{2}-\varepsilon
$$

Thus, for all $a, b \in A_{p}^{n}$,

$$
\begin{equation*}
\left|d\left(a, m_{a b}^{n}\right)-\frac{d(a, b)}{2}\right| \leq \varepsilon \tag{5}
\end{equation*}
$$

Second step

We want to show recursively on p that for all $p \geq 0$, setting $A_{p}^{n}=\left(a_{1}, \ldots, a_{1+2^{p}}\right)$, for all $1 \leq i \leq 2^{p}$,

$$
\left|d\left(a_{i}, a_{i+1}\right)-2^{-p}\right| \leq\left(3-2^{-p}\right) \varepsilon
$$

Triangular inequality and the fact that the diameter of E is 1 show that it is true for $p=0$. Suppose it holds true for all $0 \leq p \leq q$. Then, set $A_{q+1}^{n}=\left(b_{1}, \ldots, b_{1+2^{q+1}}\right)$. Thus, for any odd i (and similarly for i even), $b_{i+1}=m_{b_{i} b_{i+2}}^{n}$, so that, using (51) and the recurrence assumption,

$$
\begin{aligned}
d\left(b_{i}, b_{i+1}\right) & \leq \frac{d\left(b_{i}, b_{i+2}\right)}{2}+\varepsilon \\
& \leq 2^{-(q+1)}+\left(3 / 2-2^{-(q+1)}\right) \varepsilon+\varepsilon \\
& \leq 2^{-(q+1)}+\left(3-2^{-(q+1)}\right) \varepsilon
\end{aligned}
$$

Similarly, $d\left(b_{i}, b_{i+1}\right) \geq 2^{-(q+1)}+\left(3-2^{-(q+1)}\right) \varepsilon$.
So that, for all $1 \leq i \leq 2^{p}$,

$$
\begin{equation*}
\left|d\left(a_{i}, a_{i+1}\right)-2^{-p}\right| \leq 3 \varepsilon \tag{6}
\end{equation*}
$$

Third step

Inequality (6) proves the lemma for $p=1$. Suppose it is true for all $1 \leq p \leq k$. Then, take $a, b \in A_{k+1}^{n}=\left(a_{1}, \ldots, a_{1+2^{k+1}}\right)$.

- If $a, b \in A_{k}^{n}$, then it is already supposed to be true.
- If $a=a_{i} \in A_{k}^{n}$ and $b=a_{j} \notin A_{k}^{n}$, with $i<j$, then $a_{j-1}, a_{j+1} \in A_{k}^{n}$, so that

$$
\begin{aligned}
d(a, b)-c_{n}(a, b) & \leq d\left(a_{i}, a_{j-1}\right)-c_{n}\left(a_{i}, a_{j-1}\right)+d\left(a_{j-1}, a_{j}\right)-c_{n}\left(a_{j-1}, a_{j}\right) \\
& \leq 6 k \varepsilon+3 \varepsilon \\
c_{n}(a, b)-d(a, b) & \leq c_{n}\left(a_{i}, a_{j+1}\right)-d\left(a_{i}, a_{j+1}\right)-c_{n}\left(a_{j+1}, a_{j}\right)+d\left(a_{j}, a_{j+1}\right) \\
& \leq 6 k \varepsilon+3 \varepsilon
\end{aligned}
$$

- If $a, b \notin A_{k}^{n}$, the same ideas lead to

$$
\left|d(a, b)-c_{n}(a, b)\right| \leq 6(k+1) \varepsilon
$$

which concludes the proof.
Proof of lemma 12. First remark that if A_{p}^{n} exists and

$$
\forall a, b \in A_{p}^{n},\left|d(a, b)-c_{n}(a, b)\right|<2^{-(p+1)}
$$

then

$$
\forall a, b \in A_{p}^{n}, d_{n, p}^{+}(a, b)=d_{n, p}^{-}(a, b)
$$

Using lemma 11 and the fact that for any $a, b \in E_{n}$ such that $d(a, b) \geq 2^{-p}$, the set $M_{a b}^{n}$ is not empty if $d_{H}\left(E_{n}, E\right)<2^{-(p+1)}$ (as it contains the closest point of E_{n} to $m_{a b}$), one can show recursively on p that A_{p}^{n} exists for any n, p such that $6 p d_{H}\left(E_{n}, E\right)<2^{-(p+1)}$. Thus, lemma 11 and the remark above imply that if $6 p d_{H}\left(E_{n}, E\right)<2^{-(p+1)}$, then, $p_{n} \geq p$. Consequently, using lemma 14 (with $\left.u=d_{H}\left(E_{n}, E\right), x=p \log 2, c=\frac{12}{\log 2}\right)$, for $C_{0}=\frac{12}{\log 2}$,

$$
p_{n} \geq\left\lfloor\frac{1}{\log 2}\left(-\log \left(C_{0} d_{H}\left(E_{n}, E\right)\right)-\log \left(\log \left(e / d_{H}\left(E_{n}, E\right)\right)\right)\right)\right\rfloor
$$

Proof of lemma 13. Set $n \in \mathbb{N}^{*}$ and $p \leq p_{n}$ and denote $\left(a_{1}, \ldots, a_{2^{p}+1}\right)=A_{p}^{n}$.

1. Take any $a_{i}, a_{j} \in A_{p}^{n}$ such that $d_{n, p}^{+}=c_{n}\left(a_{i}, a_{j}\right)$ and

$$
d\left(a_{i}, a_{j}\right) \geq d(u, v)
$$

Then, by definition of $d_{n, p}^{+}(u, v)$ (as a minimum),

$$
d\left(a_{i}, a_{j-1}\right)<d(u, v)
$$

so that

$$
d_{n, p}^{-}(u, v) \geq c_{n}\left(a_{i}, a_{j-1}\right)=d_{n, p}^{+}(u, v)-2^{-p}
$$

2. First, remark that since A_{p}^{n} increases with $p, d_{n, p}^{-}(u, v)$ increases with p and $d_{n, p}^{+}(u, v)$ decreases with p, so that is suffices to show $d_{n, p_{n}}^{-}(u, v) \leq d_{n, p_{n}}^{+}(u, v)$. In order to show a contradiction, suppose that there exists $u, v \in \cup_{n \geq 1} E_{n}$ such that $d_{n, p_{n}}^{-}(u, v)>d_{n, p_{n}}^{+}(u, v)$. Then, there exists, $a_{i_{+}}, a_{j_{+}}, a_{i_{-}}, a_{j_{-}} \in A_{p_{n}}^{n}$ such that

$$
\begin{aligned}
c_{n}\left(a_{i_{-}}, a_{j_{-}}\right) & =d_{n, p_{n}}^{-}(u, v), \\
d\left(a_{i_{-}}, a_{j_{-}}\right) & \leq d(u, v) \\
c_{n}\left(a_{i_{+}}, a_{j_{+}}\right) & =d_{n, p_{n}}^{+}(u, v), \\
d\left(a_{i_{+}}, a_{j_{+}}\right) & \geq d(u, v)
\end{aligned}
$$

with

$$
\begin{align*}
c_{n}\left(a_{i_{-}}, a_{j_{-}}\right) & >c_{n}\left(a_{i_{+}}, a_{j_{+}}\right) \tag{7}\\
d\left(a_{i_{-}}, a_{j_{-}}\right) & \leq d\left(a_{i_{+}}, a_{j_{+}}\right) \tag{8}
\end{align*}
$$

Thus, (8) gives $d_{n, p_{n}}^{+}\left(a_{i_{-}}, a_{j_{-}}\right) \leq d_{n, p_{n}}^{+}\left(a_{i_{+}}, a_{j_{+}}\right)$.
So, using definitions of $d_{n, p}^{+}$and $d_{n, p}^{-}$(as maximum and minimum), and definition of p_{n},

$$
c_{n}\left(a_{i_{-}}, a_{j_{-}}\right) \leq d_{n, p_{n}}^{-}\left(a_{i_{-}}, a_{j_{-}}\right)=d_{n, p_{n}}^{+}\left(a_{i_{-}}, a_{j_{-}}\right) \leq d_{n, p_{n}}^{+}\left(a_{i_{+}}, a_{j_{+}}\right) \leq c_{n}\left(a_{i_{+}}, a_{j_{+}}\right)
$$

This contradicts (7), proving that hypothesis $d_{n, p_{n}}^{-}(u, v)>d_{n, p_{n}}^{+}(u, v)$ was wrong.

Proof of theorem 6. Set $n \in \mathbb{N}^{*}$ and $p \leq p_{n}$. Let $u, v \in E_{n}$. Using lemma 11

$$
\begin{aligned}
d_{n, p}^{+}(u, v) & =\min \left\{c_{n}(a, b) ; d(a, b) \geq d(u, v), a, b \in A_{p}^{n}\right\} \\
& \geq \min \left\{c_{n}(a, b) ; c_{n}(a, b)+6 p d_{H}\left(E_{n}, E\right) \geq d(u, v), a, b \in A_{p}^{n}\right\} \\
& \geq d(u, v)-6 p d_{H}\left(E_{n}, E\right)
\end{aligned}
$$

Similarly,

$$
d_{n, p}^{-}(u, v) \leq d(u, v)+6 p d_{H}\left(E_{n}, E\right)
$$

Thus, lemma 13 implies

$$
\begin{aligned}
d(u, v)-6 p d_{H}\left(E_{n}, E\right)-2^{-p} & \leq d_{n, p}^{+}(u, v)-2^{-p} \\
& \leq d_{n, p}^{-}(u, v) \\
& \leq d_{n, p_{n}}^{-}(u, v) \\
& \leq d_{n, p_{n}}^{+}(u, v) \\
& \leq d_{n, p}^{+}(u, v) \\
& \leq d_{n, p}^{-}(u, v)+2^{-p} \leq d(u, v)+6 p d_{H}\left(E_{n}, E\right)+2^{-p} .
\end{aligned}
$$

Taking $p=\left\lfloor\frac{1}{\log 2}\left(-\log \left(C_{0} d_{H}\left(E_{n}, E\right)\right)-\log \left(\log \left(e / d_{H}\left(E_{n}, E\right)\right)\right)\right)\right\rfloor \leq p_{n}$ as in (44), lemma 14 implies that $6 p d_{H}\left(E_{n}, E\right) \leq 2^{-p-1}$, so that

$$
\begin{aligned}
& \left.\sup _{u, v \in E_{n}}\left|d(u, v)-d_{n, p_{n}}^{+}(u, v)\right| \leq 2^{-p+1} \leq 4 C_{0} d_{H}\left(E_{n}, E\right)\right)\left(1-\log d_{H}\left(E_{n}, E\right)\right) \\
& \left.\sup _{u, v \in E_{n}}\left|d(u, v)-d_{n, p_{n}}^{-}(u, v)\right| \leq 2^{-p+1} \leq 4 C_{0} d_{H}\left(E_{n}, E\right)\right)\left(1-\log d_{H}\left(E_{n}, E\right)\right)
\end{aligned}
$$

Lemma 14. Set $u \in(0,1], x \in \mathbb{R}$, and $c \geq 1$, such that

$$
x \leq \log \left(\frac{1}{c u}\right)-\log (1-\log (u))
$$

then,

$$
c x u \leq e^{-x}
$$

5.2 Corollary

Proof of corollary 0 . It suffices to choose the closest metric d_{n} to $d_{n, p_{n}}^{+}$in the sup sense:

$$
d_{n} \in \arg \min \left\{\sup _{u, v \in E_{n}}\left|d(u, v)-d_{n, p_{n}}^{+}(u, v)\right| ; d \text { is a metric on } E_{n}\right\}
$$

Then, since $E_{n} \subset E$, there exists a surjective map $f: E \mapsto E_{n}$ such that

$$
d_{H}\left(\left(E_{n}, d\right),(E, d)\right)=\sup _{u, v \in E}|d(u, v)-d(f(u), f(v))|
$$

so that

$$
\begin{aligned}
d_{G H}\left(\left(E_{n}, d_{n}\right),(E, d)\right) & \leq d_{G H}\left(\left(E_{n}, d_{n}\right),\left(E_{n}, d\right)\right)+d_{H}\left(E_{n}, E\right) \\
& \leq \sup _{u, v \in E_{n}}\left|d(u, v)-d_{n}(u, v)\right|+d_{H}\left(E_{n}, E\right) \\
& \leq 2 \sup _{u, v \in E_{n}}\left|d(u, v)-d_{n, p_{n}}^{+}(u, v)\right|+d_{H}\left(E_{n}, E\right) \\
& \left.\leq C d_{H}\left(E_{n}, E\right)\right)\left(1-\log d_{H}\left(E_{n}, E\right)\right)
\end{aligned}
$$

The argmin does not actually necessarily exists, but any metric close enough satisfies it too.

5.3 Proposition

Proof. For $t>0$, denotes $\mathcal{N}(E, t)$ by m_{t}. Given balls $\left(B_{i}\right)_{1 \leq i \leq m_{t / 2}}$ that cover E,

$$
\begin{aligned}
\mathbb{E} d_{H}\left(E_{n}, E\right) & \leq \mathbb{E} d_{H}\left(E_{n}, E\right) \mathbf{1}_{\left\{d_{H}\left(E_{n}, E\right)>t\right\}}+\mathbb{E} d_{H}\left(E_{n}, E\right) \mathbf{1}_{\left\{d_{H}\left(E_{n}, E\right) \leq t\right\}} \\
& \leq \mathbb{P}\left(d_{H}\left(E_{n}, E\right)>t\right)+t \\
& \leq \mathbb{P}\left(\bigcup_{1 \leq i \leq m_{t / 2}} \bigcap_{1 \leq k \leq n}\left\{X_{k} \notin B_{i}\right\}\right)+t \\
& \leq \sum_{1 \leq i \leq m_{t / 2}} \prod_{1 \leq k \leq n} e^{\log \left(1-\mu\left(B_{k}\right)\right)}+t \\
& \leq m_{t / 2} e^{-\frac{c n}{m_{t}}}+t \\
& \leq \frac{2^{d} C}{t^{d}} e^{-c n t^{d} / C}+t
\end{aligned}
$$

Choosing $t=\left(\frac{C(1+1 / d)}{c} \frac{\log (n)}{n}\right)^{1 / d}$ leads to

$$
\begin{aligned}
\mathbb{E} d_{H}\left(E_{n}, E\right) & \leq \frac{2^{d} c n}{(1+1 / d) \log n} e^{-(1+1 / d) \log n}+\left(\frac{C(1+1 / d)}{c} \frac{\log (n)}{n}\right)^{1 / d} \\
& \leq K\left(\frac{\log n}{n}\right)^{1 / d}
\end{aligned}
$$

6 Conclusion

We have shown that ordinal information on the metric of a geodesic space (E, d) is enough to recover the full metric. Also, given a sample E_{n} of the geodesic space E, and the ordinal information on that sample, a metric d_{n} can be built in such a way that the sample $\left(E_{n}, d_{n}\right)$ equipped with this metric is as close, in Gromov-Hausdorff metric, to the geodesic space (E, d) as the sample $\left(E_{n}, d\right)$ equipped with the true metric, up to a logarithmic factor.

This allows to quantify the information of the full ordinal information on the metric has compared to the metric itself. It is enough to recover the metric sharply (i.e. up to a log factor). An interesting question is whether a weaker ordinal information would be as efficient. For instance, knowing only D on quadruple (w, x, y, z) of the form (x, y, x, z) would be useful. It has already been solved on KvL14 on \mathbb{R}^{d} that this weaker notion of ordinal information is enough to recover the metric, but rates of convergence or sharp bounds are still unknown.

An important question left open, is then how much information is required to recover the metric. Is it unweighted k-nearest neighbors graph enough?

References

[Ari15] E. Arias-Castro. Some theory for ordinal embedding. ArXiv e-prints, January 2015.
[BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A Course in Metric Geometry, volume 33. AMS, 2001.
[Kru64] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.
[KvL14] Matthäus Kleindessned and Ulrike von Luxburg. Uniqueness of ordinal embedding. Conference of Machine Learning (COLT), 2014.
[She62a] Roger N Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance function. i. Psychometrika, 27(2):125-140, 1962.
[She62b] Roger N Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance function. ii. Psychometrika, 27(3):219-246, 1962.
[TDSL00] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for nonlinear dimensionality reduction. science, 290(5500):2319-2323, 2000.
[Tor52] Warren S Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17(4):401-419, 1952.
[YH87] Forrest W Young and RM Hamer. Multidimensional scaling: History, theory, and applications. Theory and Applications Erlbaum, New York, 1987.

