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Recovering metric from full ordinal information

February 12, 2016

Abstract

Given a geodesic space (E, d), we show that full ordinal knowledge on the metric d - i.e.
knowledge of the function

Dd : (w, x, y, z) 7→ 1d(w,x)≤d(y,z),

determines uniquely - up to a constant factor - the metric d. For a subspace En of n points of
E, converging in Hausdorff distance to E, we construct a metric dn on En, based only on the
knowledge of Dd on En and establish a sharp upper bound of the Gromov-Hausdorff distance
between (En, dn) and (E, d).

1 Introduction

Given a set of unknown points that are known to belong to R
k and for which pairwise distance is

known, it is useful to be able to find an embedding of these points in R
k. Methods to find this

embedding are known as multi-dimensional scaling (MDS) methods, and are widely used as data
visualization tools, in particular in social sciences. [Tor52] is often considered as a pioneer paper in
MDS.

This method, requiring the knowledge of distance between each pair of points, is sometimes too
restrictive in practice. It happens that the actual distance is unknown, but ordinal information of
the distances can be obtained. Namely, for any four points w, x, y, z in the dataset, their distance
‖w − x‖, ‖y − z‖ are not known, but they can be compared:

1‖w−x‖≤‖y−z‖

is known. It is a typical case in social sciences and there exist methods developed in this context.
This problem is referred as non-metric MDS or ordinal embedding.

[She62a] and [She62b] introduced non-metric MDS techniques, allowing to find an embedding
of the data in R

n−1 given a data set of n points. [Kru64] introduced a procedure to obtain the
best possible representation in a k-dimensional space, for a given k < n. These techniques are now
widely used in practical applications, to visualize data.

The book [YH87] deals with these methods and some applications.

Theoretical guarantees on these methods has not been studied until recently. Namely, is it
guaranteed that there exists a unique embedding for the data? Given that the dataset grows up to
filling a subset of the space R

k, does the embedding of the dataset converges to the limit subset?
Let us formulate formally the questions.
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Let f be a function defined on E ⊂ R
k onto R

k such that for all w, x, y, z ∈ R
k,

‖w − x‖ ≤ ‖y − z‖ if and only if ‖f(w) − f(x)‖ ≤ ‖f(y) − f(z)‖. (1)

Such functions are said to be isotonic. f is embedding the dataset E into R
k and preserves the

ordinal information on the distances that is known. Clearly f needs not to be the identity function;
any similarity function (i.e. such that there exists C > 0 such that for any x, y ∈ R

k, ‖f(x)−f(y)‖ =
C‖f(x) − f(y)‖) can fit. The first question is then: are similarity functions the only functions that
satisfy (1)? This refers to the uniqueness question.

Let En be a set of n points in R
k for which only 1‖w−x‖≤‖y−z‖ is known for any given points

w, x, y, z ∈ En. Does any function f : En → Rk that satisfies (1) satisfies that the limit of f(En) is
the limit E of En (up to a similarity)? This refers to the consistency question.

[KvL14] provides a positive answer to both uniqueness (up to a similarity) and consistency.
The rate of convergence of the dataset embedding to its limit is tackled in [Ari15], when the

limit set E is a bounded connected open set. It basically states that the rate of convergence of En

to E is the same as f(En) to f(E) in Hausdorff metric, up to a constant factor that grows with the
dimension k. Methods developed in [KvL14] and [Ari15] use the vector space structure of Rk.

The aim of this paper is to provide similar results in non Euclidean spaces.

This investigation is motivated by the use of such type of information in manifold learning.
Unweighted k-nearest neighbor methods are widely used and fits in the framework where only a
partial ordinal information on distances is known. For instance, the ISOMAP method introduced
in [TDSL00] aims to learn a non linear manifold from k-nearest neighbor weighted graph. Little is
known on what can be inferred from unweighted k-nearest neighbor graphs.

While previous results on R
k are non constructive, our investigation provides a way to compute

a metric given a dataset, for which theoretical guarantees are obtained.

In order to consider the problem for non Euclidean space, we make the following remark for
the R

k case. If f is a similarity function then, E and f(E)/C are isometric. Stated differently, E
and f(E) can be rescaled to have the same diameter, and then be isometric. In particular, their
Gromov-Hausdorff distance is zero.

This remark allows us to state the problem in term of isometry or Gromov-Hausdorff distance
between metric spaces. Let us formulate formally the problem.

Given a metric space (E, d) for which only the function

Dd : (w, x, y, z) 7→ 1d(w,x)≤d(y,z)

is known (in other words, the metric itself is unknown but two distances can be compared), is it
possible to recover the metric d?

The answer is clearly no when the problem is formulated this way, because multiplying the
metric by a constant does not change the known function Dd (just like space can be reconstructed
only up a to similarity in R

k). More importantly, given a sub-additive positive function l, such that
l(x) = 0 ⇔ x = 0, then the composed function l ◦ d is a metric that also gives the same observed
function:

Dd = Dl◦d.

However, one can observe that if (E, d) is a geodesic space, then (E, l ◦ d) is geodesic only if l
is a linear function (i.e. if f : x 7→ cx for some c > 0). Thus, if the space (E, d) is known to be
geodesic, the latter argument fails.
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The paper falls into the following parts.
We first show that the result of uniqueness in [KvL14] holds for geodesic spaces, that is Dd

determines d up to a constant factor.
Secondly, we present our main result which answers how to built a metric on a finite subspace

En of E that is known to converge in Gromov-Hausdorff metric to E, when only Dd is known on
En. Sharp bounds of this convergence are proven.

Then, statistical applications are developed.
Proofs of the results follows and the paper ends with a short discussion.

2 Uniqueness of the metric

In order to set the problem properly, recall the definition of a geodesic space.

Definition 1. Let (E, d) be a complete metric space. If for any x, y ∈ E, there exists z ∈ E such

that

d(x, z) = d(y, z) =
1

2
d(x, y),

then (E, d) is said to be a geodesic space. And z is called a middle point of (x, y).
A segment [x, y] is a subset of E such that there exists a continuous mapping γ : [0, 1] → E such

that γ([0, 1]) = [x, y] and for all t ∈ [0, 1],

d(x, γ(t)) = td(x, y) and d(γ(t), y) = (1 − t)d(x, y).

Our first result can then be stated as following. Metric of geodesic spaces is determined by
ordinal information on the metric.

Theorem 2. Let (E1, d1) and (E2, d2) be two complete geodesic spaces such that there exists a

one-to-one map f such that

Dd1
= Dd2◦f×f , (2)

then, there exists c > 0 such that f is an isometry between (E1, d1) and (E2, cd2).

Proof. We first show that the result is true when E is restricted to any segment [w, x].
Let w, x ∈ E1, then since E1 is geodesic, there exists a middle point m, so that

d1(w, m) = d1(m, x) =
1

2
d1(w, x).

Since

1 = Dd1
(w, m, m, x) = Dd2◦f×f(w, m, m, x) = 1, and 1 = Dd1

(x, m, m, w) = Dd2◦f×f (x, m, m, w) = 1

then,
d2(f(w), f(m)) = d2(f(m), f(x)).

Thus, in order to show that f(m) is a middle point of [f(w), f(x)], is suffices to show that for any
m′ such that f(m′) is a middle point of [f(w), f(x)],

d2(f(w), f(m)) ≤ d2(f(w), f(m′)).
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Suppose that
d2(f(w), f(m)) > d2(f(w), f(m′)),

then the equality
0 = Dd1

(w, m, w, m′) = Dd2◦f×f (w, m, w, m′) = 0,

implies
d1(w, m′) < d1(w, m).

Similarly, we can show that
d1(m′, x) < d1(m, x),

which contradicts that m is a middle point of [w, x].
We thus showed that middle points are mapped to middle points by f .
Applying this recursively on a segment [w, x], we show that for any t ∈ [0, 1] of the form

t =
k

2n

with k, n ∈ N, and ut ∈ [w, x] such that d1(w, ut) = td1(w, x), the following holds

f(ut) ∈ [f(w), f(x)] and d2(f(w), f(ut)) = td2(f(w), f(x)). (3)

Since such t are dense in [0; 1], the result holds true for any t ∈ [0; 1] by continuity. Indeed,
since for a sequence wt → w there exists a sequence st → 0 such that st ≥ t and st is of the form
k

2n with k, n ∈ N, continuity of f holds using

d1(w, wt) ≤ d1(w, ut) =⇒ d2(f(w), f(wt)) ≤ d2(f(w), f(ut)) = td2(f(w), f(x)).

Thus, we showed that the result holds for any segment (with eventually different constants c).
Take now w, x, y, z ∈ E1 and set

c =
d1(w, x)

d2(f(w), f(x))
.

We want to show that constants c are the same for any other segment [y, z], i.e, i.e..

d1(y, z) = cd2(f(y), f(z)).

Without loss of generality, we can suppose that d1(y, z) ≤ d1(w, x). Thus, there exists u ∈ [w, x]
such that d1(y, z) = d1(w, u) = td1(w, x) for some t ∈ [0; 1]. This equality also provides

d1(y, z) = td1(w, x)

= tcd2(f(w), f(x)) by definition of c,

= cd2(f(w), f(u)) using (3),

= cd2(f(y), f(z)) using (2) and d1(y, z) = d1(w, u).

Thus, f is an isometry between (E1, d1) and (E2, cd2).
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3 Construction of the metric

Now that we know that we can construct - up to a constant factor - a geodesic metric d given Dd,
how do we build it?

To give an answer, the problem needs to be properly posed.
Let En = {x1, ..., xn} be a subset of a geodesic compact space (E, d) of diameter 1. Suppose

that (En)n≥1 converges to E in Hausdorff metric in (E, d). Can we build a metric dn on En so that
(En, dn) converges to (E, d) in Gromov-Hausdorff distance, with dn a function of Dd?

To set the notations, let us recall definitions of Hausdorff and Gromov-Hausdorff metric.

Definition 3 (Hausdorff and Gromov-Hausdorff metric). Let A, B be two subset of a metric space

(E, d). The Hausdorff distance between A and B is defined by

dH(A, B) = inf{ε > 0|A ⊂ Bε, B ⊂ Aε},

where Aε = {x ∈ E; ∃a ∈ A s.t. d(a, x) < ε}.

The Gromov-Hausdorff distance between two metric spaces (E, dE) and (F, dF ) is defined as

dGH(E, F ) = inf{dH(g(E), h(F ))|g : E 7→ G, h : F 7→ G isometric embeddings and G metric space}.

More details on these metrics can be found on [BBI01].

3.1 Main results

The idea of the proof of theorem 2 can be used to construct a consistent pseudo-metric on En.

Definition 4 (Pseudo metrics on En). Let (E, d) be a complete compact geodesic space, with

diameter 1. Set En = {x1, ..., xn} ⊂ E. For a, b ∈ E, define - if it exists

Mab = {z ∈ E; max(d(a, z), d(b, z)) ≤ d(a, b)},

Mn
ab = Mab ∩ En \ {a, b},

mab ∈ arg min{max(d(a, z), d(b, z)); z ∈ Mab},

mn
ab ∈ arg min{max(d(a, z), d(b, z)); z ∈ Mn

ab},

and set An
0 = (x, y), where d(x, y) = diam(En) and then for p ≥ 1 and An

p = (an
1 , ..., an

k ) - if all

mn
an

i
an

j
exist,

An
p+1 = (an

1 , mn
an

1
an

2
, an

2 , mn
an

2
an

3
, an

3 , ..., mn
an

k−1
an

k
, an

k ).

Then, for the largest p such that An
p exists, define cn on An

p × An
p by

cn(an
i , an

j ) = |i − j|2−p.

and for any p ≥ 1 such that An
p exists and for any u, v ∈ E, set

d+
n,p(u, v) = min{cn(a, b); d(a, b) ≥ d(u, v), a, b ∈ An

p }

d−
n,p(u, v) = max{cn(a, b); d(a, b) ≤ d(u, v), a, b ∈ An

p }.

Finally, set pn = max{p ∈ N
∗; An

p exists, ∀a, b ∈ An
p , d+

n,p(a, b) = d−
n,p(a, b)}.
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Remark 5. Given x, y in a geodesic space, the set of mxy coincides with the set of middle points

of (x, y).

Intuitively, the largest Ap is longest geodesic path we can "make" from En, with each point
being a middle point of its neighbors on Ap, and both d+

n,p and d−
n,p define a "metric" by comparing

distances with the ones on this longest "segment" Ap. Then p is chosen so that d+
n,p and d−

n,p are
"precise" (with a high p) and close enough.

Theorem 6. Let (E, d) be a complete compact geodesic space, with diameter 1. Set En = {x1, ..., xn} ⊂
E.

Then, for C0 = 48
log 2 ,

sup
u,v∈En

|d(u, v) − d+
n,pn

(u, v)| ≤ C0dH(En, E))(1 − log dH(En, E))

sup
u,v∈En

|d(u, v) − d−
n,pn

(u, v)| ≤ C0dH(En, E))(1 − log dH(En, E))

Corollary 7. Let (E, d) be a complete compact geodesic space, with diameter 1, and En be a finite

subset of (E, d). Then, one can construct a metric dn on En, depending only on Dd such that

dGH((En, dn), (E, d)) ≤ 2C0dH(E, En)(1 − log(dH(E, En))),

where C0 = 48
log 2 .

Remark 8. This result implies that if En converges to E in Hausdorff metric, then the constructed

(En, dn) also converge to (E, d) in Gromov-Hausdorff metric. The hypotheses #En = n and En →
E in Hausdorff metric implies that E is precompact. Since it is also closed, E is compact. To

relax that hypothesis, one can assume that En ∩ B → E ∩ B for any closed ball B. In that case,

the result states pointed Gromov-Hausdorff convergence of (En, dn) to (E, d). Although, since the

construction of dn uses the fact that the diameter of (E, d) is 1, its construction have to be slightly

adjusted.

This result has an extra logarithmic factor compared to the one of [Ari15], which holds in R
k

with a constant factor growing with k. It is not clear whether the logarithmic factor is a consequence
of the method we use, or if it needed to obtained a result independent of k. Benefits of our result
is that it holds in generic geodesic spaces (E, d) and that a computable way to build the metric dn

is provided.

4 Applications to statistics

Consider now that the points En = {X1, ..., Xn} of E are chosen randomly, in a i.i.d. setting.
Then, if the law of Xi are smooth enough, the set En will converge to E in Hausdorff metric. The
following proposition gives a more precise statement.

Proposition 9. Let (E, d) be a geodesic space of diameter 1, such that

N (E, t) ≤
C

td
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for all t > 0, where N (E, t) denotes the minimal number of balls of radius t to cover E, C is a

positive constant, and d an integer. Set µ a Borel probability measure on (E, d) such that

µ(Bt) ≥
c

N (E, t)

for some c > 0 and any Bt, ball of radius t > 0. Set n ∈ N and let En = {X1, ..., Xn} be the set of

i.i.d. random variables with common law µ. Then, there exists a constant K depending only on c
and C such that,

EdH(En, E) ≤ K

(

log n

n

)1/d

.

Given this random set En, and metric-comparison function D on this set, our theorem 6 allows
us to build a metric dn on En, that converges to (E, d) at a speed we can control in expectation.

Corollary 10. Let (E, d) be a geodesic space of diameter 1, such that

N (E, t) ≤
C

td

for all t > 0, where N (E, t) denotes the minimal number of balls of radius t to cover E, C is a

positive constant, and d an integer. Set µ a Borel probability measure on (E, d) such that

µ(Bt) ≥
c

N (E, t)

for some c > 0 and any Bt, ball of radius t > 0. Set n ∈ N and let En = {X1, ..., Xn} be the set of

i.i.d. random variables with common law µ.

Then, one can construct a metric dn on En only based on the function

Dd : (w, x, y, z) ∈ E4
n 7→ 1d(w,x)≤d(y,z)

such that there exists a constant K > 0

EdGH(En, E) ≤ K

(

log n

n

)1/d

log n.

5 Proofs

5.1 Main theorem

The proof of theorem 6 is based on the following lemmas.

Lemma 11. In the setting of theorem 6, denote dH the Hausdorff metric, then,

∀n ≥ 1, ∀p ≥ 1, ∀a, b ∈ An
p , |d(a, b) − cn(a, b)| ≤ 6pdH(En, E).

Lemma 12. In the setting of theorem 6,

pn ≥

⌊

1

log 2
(− log(C0dH(En, E))| − log (log(e/dH(En, E))))

⌋

. (4)
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Lemma 13. In the settings of theorem 6, for p ≤ pn and any u, v ∈ ∪n≥1En,

1. d+
n,p(u, v) ≤ d−

n,p(u, v) + 2−p,

2. d−
n,p(u, v) ≤ d+

n,p(u, v).

Proof of lemma 11. Set ε = dH(En, E).
First step

Remark 5 states that since E is geodesic, for all a, b ∈ E,

d(a, mab) ∨ d(mab, b) =
d(a, b)

2
.

Also, by definition of the Hausdorff metric, for all n ≥ 1, there exists mn ∈ En such that
d(mn, mab) ≤ ε, so that

d(a, mn) ∨ d(mn, b) ≤
d(a, b)

2
+ ε.

Taking a, b ∈ An
p , it shows that

d(a, mn
ab) ∨ d(mn

ab, b) ≤
d(a, b)

2
+ ε.

Using, d(a, b) ≤ d(a, mn
ab) ∨ d(mn

ab, b) + d(a, mn
ab) ∧ d(mn

ab, b), one can show that

d(a, mn
ab) ∧ d(mn

ab, b) ≥
d(a, b)

2
− ε.

Thus, for all a, b ∈ An
p ,

|d(a, mn
ab) −

d(a, b)

2
| ≤ ε. (5)

Second step

We want to show recursively on p that for all p ≥ 0, setting An
p = (a1, ..., a1+2p), for all

1 ≤ i ≤ 2p,
|d(ai, ai+1) − 2−p| ≤ (3 − 2−p)ε.

Triangular inequality and the fact that the diameter of E is 1 show that it is true for p = 0. Suppose
it holds true for all 0 ≤ p ≤ q. Then, set An

q+1 = (b1, ..., b1+2q+1 ). Thus, for any odd i (and similarly
for i even), bi+1 = mn

bibi+2
, so that, using (5) and the recurrence assumption,

d(bi, bi+1) ≤
d(bi, bi+2)

2
+ ε

≤ 2−(q+1) + (3/2 − 2−(q+1))ε + ε

≤ 2−(q+1) + (3 − 2−(q+1))ε

Similarly, d(bi, bi+1) ≥ 2−(q+1) + (3 − 2−(q+1))ε.
So that, for all 1 ≤ i ≤ 2p,

|d(ai, ai+1) − 2−p| ≤ 3ε. (6)

Third step

Inequality (6) proves the lemma for p = 1. Suppose it is true for all 1 ≤ p ≤ k. Then, take
a, b ∈ An

k+1 = (a1, ..., a1+2k+1 ).
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• If a, b ∈ An
k , then it is already supposed to be true.

• If a = ai ∈ An
k and b = aj /∈ An

k , with i < j, then aj−1, aj+1 ∈ An
k , so that

d(a, b) − cn(a, b) ≤ d(ai, aj−1) − cn(ai, aj−1) + d(aj−1, aj) − cn(aj−1, aj)

≤ 6kε + 3ε

cn(a, b) − d(a, b) ≤ cn(ai, aj+1) − d(ai, aj+1) − cn(aj+1, aj) + d(aj , aj+1)

≤ 6kε + 3ε

• If a, b /∈ An
k , the same ideas lead to

|d(a, b) − cn(a, b)| ≤ 6(k + 1)ε,

which concludes the proof.

Proof of lemma 12. First remark that if An
p exists and

∀a, b ∈ An
p , |d(a, b) − cn(a, b)| < 2−(p+1)

then
∀a, b ∈ An

p , d+
n,p(a, b) = d−

n,p(a, b).

Using lemma 11 and the fact that for any a, b ∈ En such that d(a, b) ≥ 2−p, the set Mn
ab is not empty

if dH(En, E) < 2−(p+1) (as it contains the closest point of En to mab), one can show recursively on
p that An

p exists for any n, p such that 6pdH(En, E) < 2−(p+1). Thus, lemma 11 and the remark

above imply that if 6pdH(En, E) < 2−(p+1), then, pn ≥ p. Consequently, using lemma 14 ( with
u = dH(En, E), x = p log 2, c = 12

log 2 ), for C0 = 12
log 2 ,

pn ≥

⌊

1

log 2
(− log(C0dH(En, E)) − log (log(e/dH(En, E))))

⌋

.

Proof of lemma 13. Set n ∈ N
∗ and p ≤ pn and denote (a1, ..., a2p+1) = An

p .

1. Take any ai, aj ∈ An
p such that d+

n,p = cn(ai, aj) and

d(ai, aj) ≥ d(u, v).

Then, by definition of d+
n,p(u, v) (as a minimum),

d(ai, aj−1) < d(u, v)

so that
d−

n,p(u, v) ≥ cn(ai, aj−1) = d+
n,p(u, v) − 2−p.

9



2. First, remark that since An
p increases with p, d−

n,p(u, v) increases with p and d+
n,p(u, v) decreases

with p, so that is suffices to show d−
n,pn

(u, v) ≤ d+
n,pn

(u, v). In order to show a contradiction,
suppose that there exists u, v ∈ ∪n≥1En such that d−

n,pn
(u, v) > d+

n,pn
(u, v). Then, there

exists, ai+
, aj+

, ai
−

, aj
−

∈ An
pn

such that

cn(ai
−

, aj
−

) = d−
n,pn

(u, v),

d(ai
−

, aj
−

) ≤ d(u, v),

cn(ai+
, aj+

) = d+
n,pn

(u, v),

d(ai+
, aj+

) ≥ d(u, v),

with

cn(ai
−

, aj
−

) > cn(ai+
, aj+

) (7)

d(ai
−

, aj
−

) ≤ d(ai+
, aj+

). (8)

Thus, (8) gives d+
n,pn

(ai
−

, aj
−

) ≤ d+
n,pn

(ai+
, aj+

).

So, using definitions of d+
n,p and d−

n,p (as maximum and minimum), and definition of pn,

cn(ai
−

, aj
−

) ≤ d−
n,pn

(ai
−

, aj
−

) = d+
n,pn

(ai
−

, aj
−

) ≤ d+
n,pn

(ai+
, aj+

) ≤ cn(ai+
, aj+

).

This contradicts (7), proving that hypothesis d−
n,pn

(u, v) > d+
n,pn

(u, v) was wrong.

Proof of theorem 6. Set n ∈ N
∗ and p ≤ pn. Let u, v ∈ En. Using lemma 11,

d+
n,p(u, v) = min{cn(a, b); d(a, b) ≥ d(u, v), a, b ∈ An

p }

≥ min{cn(a, b); cn(a, b) + 6pdH(En, E) ≥ d(u, v), a, b ∈ An
p }

≥ d(u, v) − 6pdH(En, E).

Similarly,
d−

n,p(u, v) ≤ d(u, v) + 6pdH(En, E).

Thus, lemma 13 implies

d(u, v) − 6pdH(En, E) − 2−p ≤ d+
n,p(u, v) − 2−p

≤ d−
n,p(u, v)

≤ d−
n,pn

(u, v)

≤ d+
n,pn

(u, v)

≤ d+
n,p(u, v)

≤ d−
n,p(u, v) + 2−p ≤ d(u, v) + 6pdH(En, E) + 2−p.

Taking p =
⌊

1
log 2 (− log(C0dH(En, E)) − log (log(e/dH(En, E))))

⌋

≤ pn as in (4), lemma 14

implies that 6pdH(En, E) ≤ 2−p−1, so that
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sup
u,v∈En

|d(u, v) − d+
n,pn

(u, v)| ≤ 2−p+1 ≤ 4C0dH(En, E))(1 − log dH(En, E))

sup
u,v∈En

|d(u, v) − d−
n,pn

(u, v)| ≤ 2−p+1 ≤ 4C0dH(En, E))(1 − log dH(En, E))

Lemma 14. Set u ∈ (0, 1], x ∈ R, and c ≥ 1, such that

x ≤ log

(

1

cu

)

− log (1 − log(u)) ,

then,

cxu ≤ e−x.

5.2 Corollary

Proof of corollary 7. It suffices to choose the closest metric dn to d+
n,pn

in the sup sense:

dn ∈ arg min

{

sup
u,v∈En

|d(u, v) − d+
n,pn

(u, v)|; d is a metric on En

}

.

Then, since En ⊂ E, there exists a surjective map f : E 7→ En such that

dH((En, d), (E, d)) = sup
u,v∈E

|d(u, v) − d(f(u), f(v))|

so that

dGH((En, dn), (E, d)) ≤ dGH((En, dn), (En, d)) + dH(En, E)

≤ sup
u,v∈En

|d(u, v) − dn(u, v)| + dH(En, E)

≤ 2 sup
u,v∈En

|d(u, v) − d+
n,pn

(u, v)| + dH(En, E)

≤ CdH(En, E))(1 − log dH(En, E))

The argmin does not actually necessarily exists, but any metric close enough satisfies it too.
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5.3 Proposition

Proof. For t > 0, denotes N (E, t) by mt. Given balls (Bi)1≤i≤mt/2
that cover E,

EdH(En, E) ≤ EdH(En, E)1{dH(En,E)>t} + EdH(En, E)1{dH(En,E)≤t}

≤ P(dH(En, E) > t) + t

≤ P





⋃

1≤i≤mt/2

⋂

1≤k≤n

{Xk /∈ Bi}



 + t

≤
∑

1≤i≤mt/2

∏

1≤k≤n

elog(1−µ(Bk)) + t

≤ mt/2e− cn
mt + t

≤
2dC

td
e−cntd/C + t.

Choosing t =
(

C(1+1/d)
c

log(n)
n

)1/d

leads to

EdH(En, E) ≤
2dcn

(1 + 1/d) log n
e−(1+1/d) log n +

(

C(1 + 1/d)

c

log(n)

n

)1/d

≤ K

(

log n

n

)1/d

6 Conclusion

We have shown that ordinal information on the metric of a geodesic space (E, d) is enough to recover
the full metric. Also, given a sample En of the geodesic space E, and the ordinal information on
that sample, a metric dn can be built in such a way that the sample (En, dn) equipped with this
metric is as close, in Gromov-Hausdorff metric, to the geodesic space (E, d) as the sample (En, d)
equipped with the true metric, up to a logarithmic factor.

This allows to quantify the information of the full ordinal information on the metric has com-
pared to the metric itself. It is enough to recover the metric sharply (i.e. up to a log factor). An
interesting question is whether a weaker ordinal information would be as efficient. For instance,
knowing only D on quadruple (w, x, y, z) of the form (x, y, x, z) would be useful. It has already
been solved on [KvL14] on R

d that this weaker notion of ordinal information is enough to recover
the metric, but rates of convergence or sharp bounds are still unknown.

An important question left open, is then how much information is required to recover the metric.
Is it unweighted k-nearest neighbors graph enough?
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