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For each generic (3-j) the column parities, 2(j ± m), define 3 intrinsic parities: α, β, γ. In algebra so(3) only (3-j) α exists whereas super-algebra osp(1|2) admits 3 kinds of super-symbols (3-j) S α , (3-j) S β , (3-j) S γ . Instead of 4 for {6-j} symbols, Regge symmetry this time produces 5 partitions S ≀ (0), S ≀ (1), S ≀ (2), S ≀ (4), S ≀ (5), with S ≀ (3) = ∅. Valid for (3-j) α , (3-j) S α,γ they reduce to 2 for (3-j) S β with S ≀ (0), S ≀ (1). Unexpectedly a symbol (3-j) S β and its 'Regge-transformed' may be opposite in sign. In terms of integer parts and supertriangle △ S a formula similar to that of a (3-j) is obtained for the (3-j) S . Some forbidden (3-j) S β require an analytic prolongation, consistent with Regge β-partitions.

Introduction

As in our recent work on {6-j} symbols partitions [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF] the aim is to carry out a similar analysis on (3-j) symbols. The first task is to find the right partition parameters for the (3-j) symbols. A priori, they are far to be apparent data. However it well seems that they are involved in the analytic formulas themselves [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF], here under the form of (j k ± m k ) where k refers to the kth column, k = [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF][START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2). Part I[END_REF]. This key-parameter allows one to define a 'column-parity' even or odd according to the parity of 2(j k ± m k ), respectively. Any column c k = j k m k can be of two kinds, denoted by a shorthand notation like |ev| c k or |od| c k . In spite of its binary appearance, this is a parameter different from the binary variable 2(jl) introduced in [2, p. 2477] in relation to the so(3) doublets l = j, l = j - 12 . Thus alternative notations are possible:

j 1 j 2 j 3 m 1 m 2 m 3 = j 1 m 1 j 2 m 2 j 3 m 3 = (c 1 c 2 c 3 ). ( 1 
)
For so(3) any (3-j) is of kind (

|ev| c 1 |ev| c 2 |ev| c 3 
). This will be different for osp(1|2) and (3-j) S symbols. As will be seen further the concept of 'column-parity' naturally leads to properly assign intrinsic parities to super (3-j) S symbols [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF][START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2). Part I[END_REF] and classify their Regge-partitions. The paper is organized as follows: sections 2-3 are devoted to (3-j) symbols, 4-5 to super (3-j) S symbols and 6 to an analytic prolongation of some 'forbidden' super symbols.

2 Analytic formula for (3-j) symbols For Wigner 3-j symbols, denoted here by (3-j), the most commonly used expression [START_REF] Rotenberg | The 3-j and 6-j symbols[END_REF][START_REF] Biedenharn | Angular Momentum in Quantum Physics, Theory and Application[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Iachello | Lie Algebras and Applications[END_REF] can be written down as

j 1 j 2 j 3 m 1 m 2 m 3 | k m k =0 = △(j 1 j 2 j 3 ) v j 1 j 2 j 3 m 1 m 2 m 3 | k m k =0 , (2.1) 
where △ triangle of Edmonds [6, p. 99] has been used here for convenience

△(abc) = (a + b -c)!(a -b + c)!(-a + b + c)! (a + b + c + 1)! 1/2 , (2.2) 
and v is directly arranged with (j k ± m k ) parameters announced in introduction:

v j 1 j 2 j 3 m 1 m 2 m 3 = (-1) j 1 +m 1 -(j 2 -m 2 ) k (j k + m k )!(j k -m k )! 1 2 × z (-1) z z!(z-(j 2 +m 2 -(j 3 -m 3 )))!(z-((j 1 -m 1 )-(j 3 +m 3 )))!(j 1 +m 1 +j 2 +m 2 -(j 3 -m 3 ))-z)!(j 1 -m 1 -z)!(j 2 +m 2 -z)! . (2.3)
This is nothing more than that used in Ref. [START_REF] Rotenberg | The 3-j and 6-j symbols[END_REF] 1 for computing (3-j) symbols numerical values.

Regge symmetry of (3-j) symbols

By ignoring the phases, the symmetry group contains 12 elements and temporarily will be denoted by S ≀ (lack of better). Thanks to Regge [START_REF] Regge | Symmetry properties of Clebsch-Gordan coefficients[END_REF] surprising symmetries became known since 1958 and relate to Wigner (3-j) symbols. They were already reported in Table of Rotenberg and al. [START_REF] Rotenberg | The 3-j and 6-j symbols[END_REF], and analyzed in standard books like [START_REF] Biedenharn | Angular Momentum in Quantum Physics, Theory and Application[END_REF] where by way of conclusion we only learn that the initial symmetry group S ≀ becomes a larger group of order 72.

According to our analysis done with {6-j} symbols [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF], we are interested in the production of new triangles (j ′ 1 j ′ 2 j ′ 3 ) from a given (j 1 j 2 j 3 ). We shall write out in detail only the relevant transformations by avoiding phase factors in formulas, which is possible using one of the twelve (3-j) symmetries. Our notations of the partition parameters will be the following

j + k = (j k +m k ), j - k = (j k -m k ). (3.1)
As a matter of fact, a glance at the Regge array [START_REF] Rotenberg | The 3-j and 6-j symbols[END_REF][START_REF] Biedenharn | Angular Momentum in Quantum Physics, Theory and Application[END_REF], also used to represent a (3-j) symbol, directly shows the underlying existence of these parameters:

j 1 j 2 j 3 m 1 m 2 m 3 = R =   -j 1 +j 2 +j 3 j 1 -j 2 +j 3 j 1 +j 2 -j 3 j 1 -m 1 j 2 -m 2 j 3 -m 3 j 1 +m 1 j 2 +m 2 j 3 +m 3   , (3.2) 
R =   R 1 1 R 2 1 R 3 1 R 1 2 R 2 2 R 3 2 R 1 3 R 2 3 R 3 3   =   -j - 1 + j + 2 + j + 3 j + 1 -j - 2 + j + 3 j + 1 + j + 2 -j - 3 j - 1 j - 2 j - 3 j + 1 j + 2 j + 3   . (3.3) 
Below f ive Regge transformations are listed from R 1 up to R 5 . They generate at most f ive distinct triangles different from the original. This means also f ive distinct (3-j) symbols, of course with the same numerical value. We emphasize this point because for super (3-j) S symbols it may happen that numerical values do not have the same sign.

Overview of Regge transformations

j 1 j 2 j 3 m 1 m 2 m 3 = j 1 1 2 ( j - 3 + j - 2 ) 1 2 ( j + 3 + j + 2 ) (j 2 -j 3 ) 1 2 ( j - 3 -j - 2 ) 1 2 ( j + 3 -j + 2 ) , R 1 (3.4) = 1 2 ( j - 1 + j - 3 ) j 2 1 2 ( j + 1 + j + 3 ) 1 2 ( j - 1 -j - 3 ) (j 3 -j 1 ) 1 2 ( j + 1 -j + 3 ) , R 2 (3.5) = 1 2 ( j - 2 + j - 1 ) 1 2 ( j + 2 + j + 1 ) j 3 1 2 ( j - 2 -j - 1 ) 1 2 ( j + 2 -j + 1 ) (j 1 -j 2 ) . R 3 (3.6) j 1 j 2 j 3 m 1 m 2 m 3 = 1 2 ( j - 3 + j - 2 ) 1 2 ( j - 1 + j - 3 ) 1 2 ( j - 2 + j - 1 ) 1 2 ( j - 3 + j - 2 )-j + 1 1 2 ( j - 1 + j - 3 )-j + 2 1 2 ( j - 2 + j - 1 )-j + 3 , R 4 (3.7) = 1 2 ( j + 3 + j + 2 ) 1 2 ( j + 1 + j + 3 ) 1 2 ( j + 2 + j + 1 ) -1 2 ( j + 3 + j + 2 )+ j - 1 -1 2 ( j + 1 + j + 3 )+ j - 2 -1 2 ( j + 2 + j + 1 )+ j - 3 . R 5 (3.8)

Features of (3-j) symbols generated by Regge transformations

We will use various definitions and notations explicited below.

(3-j)

S ≀ -→ (3-j) = a set denoted by S ≀ that contains twelve (3-j).

(3-j) ∈ S ≀ Rκ -→ (3-j) Rκ ∈ S Rκ ≀ , κ ∈ [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF][START_REF] Biedenharn | Angular Momentum in Quantum Physics, Theory and Application[END_REF]. Let be n ∅ the number of empty intersections satisfying to

S Rκ ≀ ∩ S R λ ≀ ∩ S ≀ = ∅, κ = λ ∈ [1, 5].
(3.9)

A priori it results that 6 disjoint sets S ≀ (n ∅ ) may be defined for n ∅ ∈ [0, 5]. If a set S ≀ (n ∅ ) is not empty, then it contains 12(n ∅ + 1) (3-j) symbols.

Filtering operation (S ≀ filter): R all denotes the five Regge transformations. R all applied to a (3-j) 0 yields a list

R all (3-j) 0 = (3-j) R 1 , (3-j) R 2 , (3-j) R 3 , (3-j) R 4 , (3-j) R 5 .
(3.10) (3.10). After this first operation there may remain at least one and at most five (3-j) inside the list. Among the remaining (3-j)'s we continue a similar operation by checking if a (3-j) ∈ S ≀ 0 , if it is the case the (3-j) is deleted from the remaining list. It may happen that the final list is empty. The operation described above is denoted by (S ≀ filter) and we define R * egge by

If (3-j) R λ ∈ S Rκ ≀ , λ = κ ∈ [1, 5] then (3-j) R λ is deleted from the list
R * egge = (S ≀ filter) • R all . (3.11)
This allows us to build a partition of any (3-j) symbols into S ≀ (n ∅ ) sets.

Closure property under R * egge is ensured namely R * egge S ≀ (n ∅ ) ≡ S ≀ (n ∅ ). (3.12)
The method is similar to that followed in our previous paper [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF] about {6-j}.

Definitions: [(circ) will denote a circular permutation of (1,2,3)]

N d 0 = number of zeros of (j + i -j + k ) i =k + number of zeros of (j - i -j - k ) i =k . (3.13) N ± 0 = number of zeros of (j + i -j - k ) i =k + number of zeros of (j - i -j + k ) i =k . (3.14) 
N m 0 = number of zeros of (j + ij - i ) ≡ (2m i ) , with values 0, 1 or 3.

(3.15) Consider 6 differences between the first row of the Regge array and the second or third.

δR k i = (R k 1 -R k i ) with i ∈ [2, 3], k ∈ [1, 3]. (3.16)
Each quantity is a difference between a (j + -j -) and a (j --j + ) or a (j + -j + ):

δR 1 2 = (j + 2 -j - 1 ) -(j - 1 -j + 3 ), δR 1 3 = (j + 2 -j - 1 ) -(j + 1 -j + 3
) and so on.

(3.17)

N R 0 = number of zeros of [δR 2 ] + number of zeros of [δR 3 ]. (3.18)
The partition selectors belong to a set E Sel (15 elements) defined by

E Sel = #=3 (j + i -j + k ), #=3 (j - i -j - k ), #=3 (j + i -j - k ), #=3 (j - i -j + k ), #=3 (j + i -j - i ) i =k i, k ∈ [1, 3]. (3.19) As [ #=3 δR 2 ], [ #=3
δR 3 ] are linear combinations of elements of E Sel , they are not accounted for.

The partitions and selectors found are shown below.

S ≀ (0) = (3-j) | N ± 0 ∈ [3, 4] or N ± 0 = 6, (3.20) S ≀ (1) = (3-j) | N ± 0 = 2, (3.21) S ≀ (2) = (3-j) | N ± 0 = 1, (3.22) S ≀ (3) = ∅, (3.23) 
S ≀ (4) = (3-j) | N ± 0 = 0, (N m 0 = 0) and N d 0 = 2, N R 0 = 0, (j +  = j +  ) and (j -  = j -  ) or (circ) or N d 0 = 0, N R 0 = 3) or (N d 0 = 4, N R 0 = 0) ⊕ N ± 0 = 0, (N m 0 = 1) and (N d 0 = 0, N R 0 = 4) ⊕ N ± 0 = 0, (N m 0 = 3) and (N d 0 = 0, N R 0 = 0 or 2), (3.24) 
S ≀ (5) = (3-j) | N ± 0 = 0, (N m 0 = 0) and N d 0 = 2, N R 0 = 0, (j +  = j +  ) and (j -  = j -  ) or (circ) or N d 0 ∈ [0, 1], N R 0 ∈ [0, 2] or N d 0 = 3, N R 0 = 0 ⊕ N ± 0 = 0, (N m 0 = 1) and N d 0 = 0, N R 0 ∈ [0, 2] or N d 0 = 1, N R 0 ∈ [0, 1] . (3.25)
Instead of 4 for {6-j} symbols, we find here 5 partitions for (3-j) symbols.

A symbolic sequence illustrate the results where over each subset is indicated its cardinal:

(3-j) + R ⋆ egge symmetry -→ #=12 S ≀ (0) ⊕ #=24 S ≀ (1) ⊕ #=36 S ≀ (2) ⊕ #=60 S ≀ (4) ⊕ #=72 S ≀ (5) . (3.26)
As expected the larger symmetry group of order 72, i.e.

#=72

S ≀ (5), is well retrieved, however what remained unknown up to today is the existence of intermediate groups of order 12, 24, 36, 60 with exclusion of the order 48.

Achieving this difficult classification requires some comment. Our former program (symmetryregge) [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF] has been modified into (supersymbol3jcount) where this time a comparison of a lot of S ≀ sets is carried out. The discoveries of partition selectors are not automatic. Only a thorough examination, logical or intuitive, allows one to find them. For lack of a formal logic program able to optimize or reduce possible redundancies, we can not assert that our selectors are the best. Nevertheless, what is irrefutable is the existence of partitions and selectors. It may be noted also that our results are purely 'computed' and do not derive from a group-theoretical analysis (which remains to do).

Analytic formula for super (3-j) S symbols

Let us start by updating some definitions used in a ancient paper [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2). Part I[END_REF].

△ S (abc) = [a + b -c]![a -b + c]![-a + b + c]! [a + b + c + 1 2 ]! 1 2 
(supertriangle). (4.1)

Delimiters [ ] around a number, integer or half-integer, mean 'integer part of number'. ▽ stands for △ -1 and ▽ S for △ S -1 . A (so-called) parity independent (3-j) S symbol2 was introduced by Daumens et al. [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF] as the product of a scalar factor by a standard (3-j) symbol [its so(3) 'parent']:

j 1 j 2 j 3 l 1 m 1 l 2 m 2 l 3 m 3 = j 1 j 2 j 3 l 1 l 2 l 3 l 1 l 2 l 3 m 1 m 2 m 3 . (4.2)
We have proved [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2). Part I[END_REF] that any scalar factor can be written as:

j 1 j 2 j 3 l 1 l 2 l 3 = (-1) φ2 ▽(l 1 l 2 l 3 ) △ S (j 1 j 2 j 3 ) j 1 + j 2 + j 3 integer
△(l 1 l 2 l 3 ) ▽ S (j 1 j 2 j 3 ))

j 1 + j 2 + j 3 half-integer , (4.3) 
where the general phase factor φ 2 can be rewritten as (-1) φ2 = (-1) 2(j 1 +j 2 +j 3 )+8(j 1 -l 1 )(j 2 -l 2 )(j 3 -l 3 )+4(l 1 (j 3 +l 3 )+l 2 (j 1 +l 1 )+l 3 (j 2 +l 2 )) . (

We will reuse also our shortened notation of a (3-j) S , which drops out all l's:

j 1 j 2 j 3 m 1 m 2 m 3 S = j 1 j 2 j 3 l 1 m 1 l 2 m 2 l 3 m 3 . (4.5) 
It must be realized that the definition of a super (3-j) S implies two triangular constraints, one for the triangle (j 1 j 2 j 3 ) with integer or half-integer perimeter, the other for (l 1 l 2 l 3 ) with integer perimeter only. For example

|j 1 -j 2 | ≤ j 3 ≤ j 1 + j 2 and |l 1 -l 2 | ≤ l 3 ≤ l 1 + l 2 .
It is important for establishing a correct table of (3-j) S symbols from (4.2), (4.5) where the l's are no more visible and spins j are incremented by step of 1 2 . While forgetting the condition on the l's, we might have to compute a super symbol like 7/2 2 3/2 -1/2 1/2 0 S , that has no existence because its parent 7/2 3/2 1 -1/2 1/2 0 is not a valid (3-j) symbol for so(3). For the calculations now, it seems judicious to gather some square roots together and define a super scalar factor as

j 1 j 2 j 3 m 1 m 2 m 3 S = △(l 1 l 2 l 3 ) j 1 j 2 j 3 l 1 l 2 l 3 (super scalar factor). (4.6)
It is of interest because this super-factor then depends simply of an integer positive I(j 1 j 2 j 3 ) and of (j k ± m k ) for the phase. The result reads

j 1 j 2 j 3 m 1 m 2 m 3 S = (-1) φ2 △ S (j 1 j 2 j 3 ) I(j 1 j 2 j 3 ), (4.7) 
I(j 1 j 2 j 3 ) = 1 if j 1 + j 2 + j 3 = integer, (4.8)

I(j 1 j 2 j 3 ) = k (|(-1) 2(j k -m k ) j k |) + 1 2 if j 1 + j 2 + j 3 = half-integer. (4.9)
Expression k is a trick for representing the four possible positive integer values of I:

I 1 = (-j 1 + j 2 + j 3 + 1 2 ), I 2 = (j 1 -j 2 + j 3 + 1 2 ), I 3 = (j 1 + j 2 -j 3 + 1 2 ), I 4 = (j 1 + j 2 + j 3 + 1 2 ).
(4.10)

Another trick unifying (4.8)-(4.9) into a single formula is the use of integer parts and factorial.

I(j 1 j 2 j 3 ) = | k (-1) 2 (j k -m k ) j k |+ 1 2 ! | k (-1) 2 (j k -m k ) j k| ! . (4.11)
An essential remark concerns the possible doublets l k = j k , l k = j k -1 2 . We have

(l k ± m k ) = [j k ± m k ] = [j ± k ]. (4.12)
This gives the means to end all rearrangements and adopt a definition of a (3-j) S symbol fully similar to that of a (3-j) symbol in three equations like (2.1)-(2.2)-(2.3).

j 1 j 2 j 3 m 1 m 2 m 3 S = △ S (j 1 j 2 j 3 ) v S j 1 j 2 j 3 m 1 m 2 m 3 , (4.13) △ S (j 1 j 2 j 3 ) = [j 1 + j 2 -j 3 ]![j 1 -j 2 + j 3 ]![-j 1 + j 2 + j 3 ]! [j 1 + j 2 + j 3 + 1 2 ]! 1 2 , (4.14) v S j 1 j 2 j 3 m 1 m 2 m 3 = (-1) [j + 1 ]-[j - 2 ]+ k 2j k +8 k j ± k +4(j ± 1 m 2 +j ± 2 m 3 +j ± 3 m 1 ) k [j + k ]![j - k ]! 1 2 × k (-1) 2 j ± k j k + 1 2 ! k (-1) 2 j ± k j k ! z (-1) z z! z-([j + 2 ]-[j - 3 ]) ! z-([j - 1 ]-[j + 3 ]) ! ([j + 1 ]+[j + 2 ]-[j - 3 ])-z ! [j - 1 ]-z ! [j + 2 ]-z ! . (4.15)
For each (3-j) S , so(3) doublets can be retrieved by using

2l k = [j + k ] + [j - k ]
. Expressions (4.13)-( 4.15) allows one to compute a large table of (3-j) S that fits with analytic formulas (where one spin equals 1 2 ) given in [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF], after the correction of a misprint3 .

Regge symmetry of (3-j) S symbols

Exactly as for {6-j} S [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF] it is found that (3-j) S symbols admit a classification with three intrinsic parities which we will call again α, β, γ without confusion with the former ones. Parity α contains only j 1 + j 2 + j 3 integer, β can contain j 1 + j 2 + j 3 integer (β κ ) or half-integer (β ′ κ ) and γ only j 1 + j 2 + j 3 half-integer. Actually this discrepancy is embedded via the analytic expression of I(j 1 j 2 j 3 ) given by (4.11), so that a best classification of (3-j) S symbols should be expressed in terms of 'column-parity' and no longer by dichotomizing the cases where k j k is integer or half-integer. According to our defining choice of Regge transformations

R 1 , R 2 , R 3 , R 4 , R 5 , note that I 1 is invariant only under R 1 (parity β 1 , β ′ 1 ), I 2 only under R 2 (parity β 2 , β ′ 2 ), I 3 only under R 3 (parity β 3 , β ′
3 ), and I 4 under R all (parity γ). I numbers were defined by (4. 

(3-j) S α,γ + R ⋆ egge symmetry -→ #=12 S S ≀ (0) ⊕ #=24 S S ≀ (1) ⊕ #=36 S S ≀ (2) ⊕ #=60 S S ≀ (4) ⊕ #=72
S S ≀ (5) .

(5.1)

Parity β Indices κ ∈ [1, 3] of β κ , β ′
κ are no longer significant Only two sets may exist, namely S S ≀ (0) and S S ≀ (1) defined by the selector N ± 0 :

S S ≀ (0) = (3-j) S β | N ± 0 ∈ [1, 2], (5.2) 
S S ≀ (1) = (3-j) S β | N ± 0 = 0. ( 5.3) 
The analog of (5.1) then becomes

(3-j) S β + R ⋆ egge symmetry -→ #=12 S S ≀ (0) ⊕ #=24
S S ≀ (1) .

(5.4)

Moreover an unexpected specificity of β parity regards the sign of the numerical values of a symbol (3-j) S β and its transformed by Regge:it can be ±. This is explainable by the following proof: Regge transformations such as described by (3.4)-(3.8) and applied formally to a (3-j)

S leave invariant k 2j k . ∀ transformation (3-j) S Rκ -→ (3-j ′ ) S with κ ∈ [1, 5].
It can be proved that only two phases are relevant:

(-1) φ S = (-1) 8 k j ± k +4(j ± 1 m 2 +j ± 2 m 3 +j ± 3 m 1 ) . (5.5) 
(-1) φ ′S = (-1)

8 k j ′± k +4(j ′± 1 m ′ 2 +j ′± 2 m ′ 3 +j ′± 3 m ′ 1 ) . (5.6) 
From (4.2) it can be seen that (3-j ′ ) S = (-1) φ S +φ ′S × (3-j) S .

(5.7)

For parities α, γ we have (-1) φ S +φ ′S = +1. Consider a R 1 transformation, valid for a (3-j) S β 1 , we find a phase (-1) φ S R 1

(c 1 c 2 c 3 ) given by

(-1) φ S R 1 (c 1 c 2 c 3 ) = (-1) φ S β 1 +φ ′S β 1 = (-1) 2j 1 +4j 1 m 1 +2j + 1 (j + 2 -j + 3 )+(( k 2j k )+1)(j - 3 -j - 2 +1)+2m 2 +1 . (5.8) From our definitions of R 1 , R 2 , R 3 , it is clear that φ S R 2 (c 1 c 2 c 3 ) = φ S R 1 (c 2 c 1 c 3 ) and φ S R 3 (c 1 c 2 c 3 ) = φ S R 2 (c 1 c 3 c 2 ).
(5.9)

In shortcut where j 3 = j 1 + j 2 . Clearly m 1 can take values varying by a step of 1:

(3-j) S βκ Rκ -→ (3-j ′ ) S βκ =⇒ (3-j ′ ) S βκ = (-1) φ S Rκ × (3-j) S βκ with κ ∈ [1, 3]. ( 5 
m 1 = -j 1 + 1 2 , -j 1 + 3 2 , • • •, j 1 -3 2 , j 1 -1 2 .
The same holds for m 2 . The variation range of m 3 is similar, namely:

m 3 = -j 3 + 1, -j 3 + 2, • • •, j 3 -2, j 3 -1. Each increment is 1.
This leads immediately to an analogy with a standard (flat) symbol (3-j) whose value is derived from a formula given by Edmonds [6, p. 48]. That reads

|ev| j 1 -1 2 |ev| j 2 -1 2 |ev| j 1 +j 2 -1 m 1 m 2 m 3 = (-1) (j 1 -1 2 +m 1 )-(j 2 -1 2 -m 2 ) × (2j 1 -1)!(2j 2 -1)!(j 1 +j 2 -1+m 1 +m 2 )!(j 1 +j 2 -1-m 1 -m 2 )! (2j 1 +2j 2 -1)!(j 1 -1 2 +m 1 )!(j 1 -1 2 -m 1 )!(j 2 -1 2 +m 2 )!(j 2 -1 2 -m 2 )! 1 2 . ( 6.1) 
From (4.3), after noting that the scalar factor

j 1 -1 2 j 2 -1 2 j 3 -1 j 1 -1 2 j 2 -1 2 j 3 -1 = [2j 3 -1] 1 2 
, we re-write (6.1) under a form that highlights our proposal of analytic prolongation:

j 1 -1 2 j 2 -1 2 j 3 -1 j 1 -1 2 j 2 -1 2 j 3 -1 j 1 -1 2 j 2 -1 2 j 3 -1 m 1 m 2 m 3 = (-1) (j 1 -1 2 +m 1 )-(j 2 -1 2 -m 2 ) (2j 1 -1)!(2j 2 -1)!(j 3 -1+m 3 )!(j 3 -1-m 3 )! (2j 3 -2)!(j 1 -1 2 +m 1 )!(j 1 -1 2 -m 1 )!(j 2 -1 2 +m 2 )!(j 2 -1 2 -m 2 )! 1 2 . (6.2)

Analytic prolongation definition:

In a way fully similar to (4.2), we adopt the following definition, with j 1 , j 2 ≥ 1 2 , j 3 ≥ 1:

|od| j 1 |od| j 2 |ev| j 3 m 1 m 2 m 3 S× β 3 |j 3 =j 1 +j 2 = j 1 -1 2 j 2 -1 2 j 3 -1 j 1 -1 2 j 2 -1 2 j 3 -1 j 1 -1 2 j 2 -1 2 j 3 -1 m 1 m 2 m 3 = (-1) j + 1 -j - 2 (j + 3 -1)!(j - 3 -1)! (2j 3 -2)! 1 2 (2j 1 -1)!(2j 2 -1)! [j + 1 ]![j - 1 ]![j + 2 ]![j - 2 ]! 1 2 . ( 6.3) 
Then (3-j) S× β 3 |flat can be re-integrated in the set of regular (3-j) S symbols, according to a single set of equalities l 1 = j 1 -1 2 , l 2 = j 2 -1 2 , l 3 = j 3 -1, by making the following identification Regge transformations and notation for flat triangles: Since a symbol (3-j) S× βκ |flat is actually of the kind α then R all (3-j) S× βκ |flat have their five identical numerical values, phase included. In order to ensure the closure property (3.12), we need an additional filtering operation (S ≀ filter), where the bar which underlines means that only flat triangles (j 1 j 2 j 3 ) are retained. Extension of this underlining will be used elsewhere with an obvious signification. Analogously to (3.11) N d 0 = number of zeros of ( + i - + k ) i =k + number of zeros of ( - i - - k ) i =k , (6.9)

N ± 0 = number of zeros of ( + i - - k ) i =k + number of zeros of ( - i - + k ) i =k , (6.10) 
where the spins  are defined from (6.5) by .11) 

 λ = j λ -1 2 ,  µ = j µ -1 2 ,  κ = j κ -1 . ( 6 

2 |od| c 3

 23 ) S γ .

  10). A quick reading of the Regge transformations [such as they have been written by (3.4)-(3.8)] indicates right away what are the symbols possessing a (super) Regge symmetry. 5.1 Features of (3-j) S symbols generated by Regge transformations Parity α, γ: In this case properties like (3.20)-(3.25) of course are still valid. Thus analogously

m 1 m 2 m 3 S α |j 3 =j 1 +j 2 .j 1 j 2 j 3 m 1 m 2 m 3 S× βκ |flat ≃ j λ -1 2 j µ -1 2 j κ -1 m λ m µ m κ S α jκ = j λ + jµ j λ , jµ ≥ 1 2 (j 1 j 2 j 3 m 1 m 2 m 3 2 (

 323232 κ, λ, µ) = circ(1, 2, 3) S× βκ |flat = (-1) j + λ -j - µ (j + κ -1)!(j - κ -1)! (2jκ-2)! 1 2j λ -1)!(2jµ-1)! [j + λ ]![j - λ ]![j + µ ]![j -

8 )

 8 we may define a R * egge asR * egge = (S ≀ filter) • (S ≀ filter) • R all . (6.7)Clearly the number of disjoint sets S S ≀ (n ∅ ) will be reduced. A bit like for a true parity β (ie valid), the remaining selection comes from only one R 1 , or R 2 or R 3 . Accordingly both possible values of n ∅ belong to the range [0, 1]. We can present the results as follows:(3-j) S× β ≃ (3-j) S αThe relevant selectors here and their notations are slightly different from (3.13)-(3.14).

  .10) Accordingly, Regge transformations for β parity may bring a phase, or not .It depends if φ SRκ is even or odd. Tests on computer turn out satisfactory.6 Analytic prolongation of (3-j) S symbolsAn attempt for extrapolating our table of (3-j) S symbols to forbidden cases likel 3 < |l 1 -l 2 | or l 3 > l 1 + l 2 producesindefinite values, as expected. It shows that only cases of parity β are implicated with flat integer triangles defined by j κ = j λ + j µ , (κ, λ, µ) = circ(1, 2, 3). Let us denote these forbidden cases by (3-j) S× β [superscript × stands for 'forbidden']. So to say, they are 'orphans' ie without so(3) parent. The meaning of scalar factors 2 or integers I vanishes, at first sight. For a given κ, orphan symbols (3-j) S× β are precisely of the kind (3-j) S× βκ .

	For example consider	|od| j 1 m 1 m 2 m 3 |od| j 2 |ev| j 3	S× β 3

Misprints: in (1.11) no frontal phase, in rhs of (1.12), m 3 to be replaced by m

.

denoted in[START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF] by S3-j.

[START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF], p. 2495, TableIV-Analytic values of S3-j symbols, third formula: 1 2 to be removed.

Below are listed the selectors and their values such as we found them: [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2). Part I[END_REF][START_REF] Rotenberg | The 3-j and 6-j symbols[END_REF] or N ± 0 = 6, (6.12)

. Again, it is awkward to have so many defining equations of selectors for a few flat triangles. All could certainly be simplified and presented otherwise by optimizing the selectors that we have adopted throughout the research. This is another matter for reflection, not discussed in this study.

The advantage of the proposed analytical extension allows one to compute a complete table of (3-j) S symbols where the spins can vary by step of 1 2 by considering only the triangular constraint on the triangle (j 1 j 2 j 3 ).

Conclusion

As known the set of σ-orbits can provide a partition of a symmetric group S k , however the present situation is different since a partition of any (3-j) or (3-j) S symbol is built from linear transformations (Regge). Although the (3-j) symbols are objects simpler than the {6-j} symbols [START_REF] Ya | Nature of the Symmetry Group of the 6j Symbols[END_REF], for now this feature is far from evident when considering the disparities between the (Regge) partitions found here and that of {6-j}/{6-j} S analyzed in [START_REF] Bréhamet | Regge Symmetry of 6-j or Super 6-j S Symbols with Partition Properties[END_REF]. Our partitions and selectors being properly identified, the ideal would be to derive those of (3-j)/(3-j) S from those of {6-j}/{6-j} S since it is recognized that a (3-j) may be viewed as an asymptotic limit of a {6-j}. "In this limit the 6j Regge symmetry becomes the 3j Regge symmetry" [10, p. 118].

Actually the results obtained in this paper are far to close the studies of Regge symmetries sometimes qualified of 'mysterious' or 'surprising', even after the most recent studies [START_REF] Ya | Nature of the Symmetry Group of the 6j Symbols[END_REF][START_REF] Boalch | Regge and Okamoto Symmetries[END_REF]. Another approach oriented to the point of view of partitions might be fruitful.