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ABSTRACT 

Storage or buffer capacities between successive machines in flowshop problems may be unlimited, 

limited or null. The last two cases can lead to blocking situations. In flowshop scheduling 

literature, many studies have been performed about classical flowshop problems and also about 

some problems with only one blocking situation between all machines.  

This paper deals with makespan minimization in flowshop scheduling problems where mixed 

blocking constraints are considered. After a problem description and definitions of different 

blocking constraints, a mathematical model is presented and heuristics are developed to propose 

quick solutions to these kinds of problems. Then, metaheuristics are used to improve found 

solutions. A comparison between heuristics and metaheuristics is then performed. 
 

Keywords: flowshop scheduling problem, blocking constraints, heuristic, metaheuristics, 

makespan. 

 

1. INTRODUCTION 

In order to obtain higher profits, modern production companies usually try to maximize their 

productivity. The latter goal, among others, can be achieved by optimal or almost optimal jobs 

scheduling in the production process while reducing storage capacity and even to remove it 

whenever possible. Storage capacity reduction between machines can lead to situations that are 

known in literature as blocking situations. Scheduling models differ depending on the technology 

used and constraints applied in the system. The most common scheduling problem is classical 

flowshop where buffer space capacity between machines is considered unlimited. Other problems 

are characterized by only classical blocking constraint RSb (Release when Starting Blocking: a 

machine remains blocked by a job until this job starts on the next machine in routing) and some 

others by specific blocking constraints RCb or RCb* (Release when Completing Blocking: a 

machine will be available to treat its next operation after its job is finished on the following 

machine in the process). In this paper, a general case is presented where successive machines can 

be subject to different types of blocking constraints, considering makespan as optimization 

criterion. This problem is likely to better approach industry-derived cases, which can already be 

seen as flowshop problems. 

 

The first article dealing with a flowshop problem was published over fifty years ago (Johnson, 

1954). Since then, many authors have focused on different aspects of this problem. We can cite a 



few articles: (Bellman and Gross, 1954) and (Bellman et al., 1982) for classical flowshop problem 

with two machines and (Nawaz et al., 1983) and (Carlier and Rebaï, 1996) for general case with 

multiple machines. For greater sized problems, some heuristics and metaheuristics have been 

proposed, such as (Iyer and Saxena, 2004) and (Siarry and Michalewicz, 2007). 

 

For problems with classical blocking constraint (RSb), Sawik (1993, 1995) proposed a heuristic for 

multi-stage flowshop problem both respectively with and without storage capacity. In (Wang et 

al., 2006), authors developed a hybrid genetic algorithm for flowshop scheduling with limited 

buffers. Other papers dealing with flowshop problems with RSb constraint, such as (Carraffa et al., 

2001) and (Ronconi, 2005), can also be cited. 

 

Regarding RCb constraint, an Integer Linear Programming (I.L.P) model, lower bounds and a 

metaheuristic are presented in (Martinez, 2005) for flowshop and hybrid flowshop cases. These 

problems have been solved in (Yuan and Sauer, 2007) and (Yuan et al., 2009) by a metaheuristic 

"Electromagnetism-like Mechanism". A new blocking constraint called RCb* has been proposed 

in (Trabelsi et al., 2010) which is an RCb constraint variant. In this work, authors propose 

heuristics to solve jobshop problems with RCb and RCb* constraints. 

 

Finally, for articles that have dealt with different types of constraints mixed in a production 

system, we can cite (Martinez et al., 2006) who studied complexity issues with RSb and RCb 

constraints. We can also cite works by (Grabowski and Pempera, 2000) which consider a real-life 

problem of scheduling clients’ orders of concrete blocks in a factory of building industry modeled 

as a hybrid flowshop scheduling problem with mixed no-wait/no-store constraints and mixed 

bottleneck/non-bottleneck machines. To our knowledge, no other author was interested in solving 

flowshop problems simultaneously subjected to different types of blocking constraints on 

successive machines in a process. 

 

In this paper, we describe different flowshop cases with one or more blocking constraints. We 

present a mathematical model, propose a heuristic method to solve mixed flowshop problems, and 

compare it with NEH heuristic. We also use some improvement methods for both algorithms. 

Then, genetic algorithms are used to improve found solutions. In the last part, a comparison 

between heuristics and metaheuristics is performed. 

 

2. PROBLEM DESCRIPTION 

In flowshop scheduling problem, a set of n jobs, J = {J1, J2, …, Jn}, must be executed on a set of m 

machines, M = {M1, M2, …, Mm}. All jobs Ji require the same operation order, Oi = {Oi1, Oi2, …, 

Oim}, that must be executed according to the same manufacturing process. Operation Oij needs an 

execution time Pij on machine Mj  M. Each machine can only execute one job at any time. Pre-

emptive operation is not authorized in presented work. Objective function consists in determining 

best scheduling in order to reduce makespan, i.e. time when all operations are completed. 

 

In the following, we present different cases of flowshop problem: classical flowshop problem 

without blocking constraint (Fig. 1), a flowshop scheduling problem with only one blocking 

constraint present between all machines (Fig. 2, 3, and 4) and an example in which different 

blocking constraints are mixed (Fig. 5). To illustrate these different cases, we consider an example 

with five jobs and five machines.  



 

The following execution time matrix Pij, has list of machines Mj in columns and the list of jobs Ji 

in lines. 
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In classical flowshop problem, buffer space capacity is considered to be unlimited. Therefore, 

there is no blocking situation and the system can be called Wb (Without blocking): a machine will 

be immediately available to execute the next operation after its operation in process is finished. In 

the example presented in Fig. 1, machine M1 is available to treat job J4 as soon as job J3 on 

machine M1 will be finished.  
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Fig. 1. Classical flowshop problem (Wb case) 

 

For flowshop problem with a classical blocking constraint RSb (Release when Starting Blocking), 

a machine remains blocked by a job until this job starts on next machine in routing. This constraint 

is met in industrial problems where there is no intermediate storage between machines. In our 

example presented in Fig. 2, job J3 remains blocked on machine M1 as long as the following 

machine M2 is not available. 
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Fig. 2. Flowshop problem with classical blocking RSb 



In specific blocking RCb* (Release when Completing Blocking*), a machine will be immediately 

available to treat its next operation after its job on the following machine in process is finished 

without regard to whether or not it leaves the machine. In the example presented in Fig. 3, specific 

blocking RCb*  differs from classical blocking RSb by the fact that machine M1 remains blocked 

by job J3 until its operation on machine M2 is finished. This constraint was introduced for the first 

time by (Trabelsi et al., 2010). 
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Fig. 3. Flowshop problem with specific blocking RCb* 

 

We come across this kind of constraint in production lines when two successive machines are 

depending on same resource (tool or operator…), so they cannot process at same time.   

 

In the case of particular blocking constraint RCb, a machine will be immediately available to treat 

its next operation after the operation of its job on the following machine in process is finished and 

it has left this machine. This constraint was introduced for the first time by (Dauzère-Pérès et al., 

2000).  
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Fig. 4. Flowshop problem with specific blocking RCb 

 

RCb constraint is useful in some industrial environments, such as waste treatment industry and 

aeronautics parts fabrication (Martinez, 2005). For cider brewing applications for example, one 

cannot melt apples of different customers. In a first step, apples are poured in a bath and then 

pressed to make apple juice. New customer apples cannot be poured in bath before all of the first 

customer’s apples have been pressed. 

 



The difference between RCb and RCb* blocking is underlined by job J3 (Fig. 3 and 4): in an RCb* 

blocking problem, machine M1 remains blocked by job J3 until its following operation on machine 

M2 is finished, whereas in RCb problem, blocking time is bigger since machine M1 will only be 

available when its following operation on M2 is completed and job J3 leaves machine M2. This date 

corresponds to further following operation on machine M3 beginning. 

 

In a large production line, we can encounter different types of blocking constraints which depend 

on intermediate storage between machines, characteristics of machines and technical constraints. 

 

To describe a flowshop problem where different blocking constraints are mixed, we introduce a 

vector V that contains blocking constraints between machines. Element Vj is blocking constraint 

between machines Mj and Mj+1. This vector has m-1 elements (as many elements as the number of 

transitions between machines). In the previous example, if V = (RCb, RSb, RCb*, Wb), then RCb is 

the blocking constraint between machines M1 and M2. Thereby, we construct Gantt diagram as 

follows (Fig. 5): 
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Fig. 5. Flowshop problem with mixed blocking constraints 

 

3. MATHEMATICAL MODEL  

In this section, we present a mathematical model for a flowshop problem subject to different 

blocking constraints. This model is detailed in (Trabelsi et al., 2011) in order to minimize 

makespan of a flowshop with mixed blocking constraint. Since jobs sequence is identical on all 

machines, we have to determine jobs permutation G that minimizes scheduling completion time 

or makespan. This model was solved by Xpress-MP optimization software and run on a PC 

with a 3.16 GHz Core 2 Duo' CPU. 

 

3.1. Parameters 

Parameters used in this model are as follows: 

- n:  Number of jobs. 

- m:  Number of machines. 

- Pi, j: Job Ji execution time on machine Mj. 

- Bh,j = 1 if there is an h blocking constraint between machine Mj and machine Mj+1 and 0 

otherwise. With: 



h = 1: if there is Wb, i.e. no blocking constraint between machine Mj and machine Mj+1. 

h = 2: if there is an RSb constraint between machine Mj and machine Mj+1. 

h = 3: if there is an RCb* constraint between machine Mj and machine Mj+1. 

h = 4: if there is an RCb constraint between machine Mj and machine Mj+1. 

 

3.2. Variables 

Variables used in this model are as follows: 

- Sk, j : Starting time of job at position k in sequence G on machine Mj. 

- Ck, j : Completion time of job at position k in sequence G on machine Mj. 

- Gi,k = 1 if job Ji is at position k in sequence G and 0 otherwise. 

 

 3.3. Model 

Developed mathematical model is as follows: 

maxMin C  (1) 

With following constraints: 
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3.4. Equations meaning 

Each model constraint is described as follows: 

- Equation (1): Objective function of our problem: minimize total completion time of scheduling.  

- Equation (2): Makespan value must be greater than or equal to completion time of all jobs on 

the last machine. 

- Equation (3): Represents precedence constraint between the same job on successive operations: 

to start its operation on a downstream machine, a job must first finish its operation on the upstream 

machine. 

- Equation (4): This equation models different blocking constraints represented by parameter Bh,j. 

For example, if there is an RSb constraint between machine Mj and machine Mj+1, equation (4) 

becomes: 
11, j+k-k, j   S  S   

 - Equation (5): This is a special case of the above equation which only deals with the penultimate 

machine. There is no blocking RCb at this stage because it depends on the two following 

machines. 

- Equation (6): This is a special case of (4). It only deals with last machine, which can only be 

without blocking. 

- Equation (7): This constraint calculates the completing time of jobs: i.e. last machine operations 

completion time. 

- Equation (8): Each job Ji is placed at only one position k in sequence G. 

- Equation (9): At each position k of sequence G is only assigned one job Ji. 

- Equation (10): Gi, k is a Boolean variable. It is equal to 1 if job Ji is at position k in sequence G 

and 0 otherwise. 

- Equation (11): Starting time of jobs cannot be negative. 

- Equation (12): Completion time of jobs cannot be negative. 

 

4. HEURISTICS 

As presented in (Trabelsi et al., 2011), it is not possible to obtain an exact solution for big-sized 

problems in a reasonable time. Therefore, it is necessary to develop approached methods and 

estimate their mean error with optimal solution (when it is computable) or lower bounds. 

 

In this paper, we propose some heuristics with some local improvements in order to quickly obtain 

a feasible solution (in a polynomial time), but not necessarily an optimal one. In this section, we 

review the NEH method and present a new heuristic. We also use some improvement methods for 

both algorithms. 

 

4. 1. NEH heuristic presentation 

NEH heuristic is one of the most famous heuristics known for flowshop scheduling (Nawaz, 

Enscore and Ham, 1983). This heuristic is not only efficient, but also very simple to compute. It is 

a constructive algorithm that selects the longest job not yet sequenced and tries to place it at all 

possible positions of the partial sequence under construction. Selected position minimizes partial 

makespan. A lot of references took this heuristic as a reference to compare their results (Zobolas, 

Tarantilis and Ioannou, 2009), (Ruiz and Stützle, 2007). A pedagogical comparative study of some 

heuristics is performed in (Ruiz and Maroto, 2005). 

 

Algorithm 1 



Let J = (J1, J2, .., Jn) a list of jobs ordered by decreasing total processing time 

For i = 1 to n 

Select job Ji from J 

Cpmax = ∞ 

For k = 1 to i  

Place job Ji at position k in partial sequence without changing relative position of other 

jobs already sequenced  

Calculate Cmax of associated partial scheduling 

If Cmax < Cpmax then 

Bestk = k 

Cpmax = Cmax 

End if 

End for 

Place job Ji at position Bestk in partial sequence  

End for  

 

Adaptation of this heuristic to our problem is merely respect different blocking constraints 

between all machines when we calculate the corresponding makespan. 

 

4. 2. TSS heuristic presentation 

Proposed heuristic is based on a construction method. This proposal is inspired by an algorithm 

developed in (Trabelsi et al., 2010) for jobshop problem with RCb and RCb* blocking. From a 

partial solution, it is necessary to choose which job must be placed next. For that, we chose a 

criterion that combines three parameters: 

 

- Cpmax: Partial Makespan: i.e. completion time of a new placed job. 

- SomTpsIn: Sum of inactive times: i.e. the time during which machines are inactive, including 

idle times and blocking times. 

- SomTpsEx: Sum of execution times of placed operations in partial schedule. 

 

To have a best possible scheduling, we trend on one hand to minimize inactive times of machines 

and completion time, and on the other hand to maximize machine use, which is depicted in the 

following criterion:   

 

Cr = min (Cpmax + SomTpsIn – SomTpsEx). 

 

Then, n possibilities of schedule are constructed by switching jobs to place at first position and 

finally we choose the one that gives smallest final makespan Cmax. 

 

General structure of the proposed algorithm to solve flowshop problems with mixed constraints is 

given below.   

 

Algorithm 2 

 



Introduce problem data (jobs number, machines number, operations execution time and blocking 

constraints between machines)  

For i = 1 to n (we calculate all possibilities by switching job to place at first position)  

We place as first job Ji 

As long as it still remains jobs to place, do  

For t = 1 to [n - (number of already placed jobs)] 

Calculate Cpmax, SomTpsIn, SomTpsEx  

Calculate Crt (Criterion after placing a job Jt)  

End for 

Place job that has the smallest Crt 

End while  

Calculate Cmax,i (final makespan while placing job Ji at first)  

End for  

Choose scheduling that gives the smallest final makespan Cmax,i  

 

Example: Let be a flowshop scheduling problem with four jobs and three machines.  

 

Operations execution times are as follows: 
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Blocking constraints vector: 

V = (RCb, RSb) , i.e. RCb is blocking constraint between machines M1 and M2, and RSb is 

blocking constraint between machines M2 and M3. 

 

Let be J1 the job placed at first position. We have then three possibilities to place a following job: 

J2, J3 or J4 (Figure 6).  We use choice criterion between these three cases to choose the job that 

gives the smallest criterion.  
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Figure 6: Three possible scheduling cases 

 

We will explain how we calculated these different parameters through first case i.e. when job J2 is 

placed (Figure 6-A):   

 

- SomTpsEx = 


3

1

,

2

1 j

ji

i

P = 10 ut. We placed two first jobs and we calculate its operations 

execution times. 

- SomTpsIn = 1+1+1+2 = 5 ut.  It is the sum of inactive times with two time units as idle times 

(intervals [2-3] on machine M1 and [4-5] on machine M2) and three time units as blocking time 

due to RCb constraint between machines M1 on M2. 

- Cpmax = 8 ut. This partial makespan represents minimal date from which all machines will be 

available. 

 

Then, Cr(A) = 8 + 5 - 10 = 3 ut.   

  

The results of each possibility (J2, J3 or J4) are given in Table 1. In this example, job J3 is placed as 

second job in partial sequence because criterion Cr is minimal with job J3. 

 

 Execution time 

« SomTpsEx » (ut) 

Idle time + Blocking time  

« SomTpsIn » (ut) 

Partial makespan 

« Cpmax » (ut) 
Cr 

A 10 2 + 3 8 3 

B 8 1 + 2 6 1 

C 9 4 + 3 7 5 

Table 1: Choice criterion used to place next operation 

 



Final solution given by above presented algorithm for this F3|Mixed|Cmax example is presented by 

the Gantt diagram (Figure 7). 
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Figure 7: Complete scheduling for F3|Mixed|Cmax 

 

4. 3. NEH local improvement  

This local improvement is based on the iterative NEH method. In fact, we start with the scheduling 

order obtained by initial heuristic and then we use the iterative part of NEH algorithm, as long as 

we notice a solution improvement. 

 

Algorithm 3 

 

Let J = (J1, J2, .., Jn) a jobs order obtained by initial heuristic 

For i = 1 to n 

Select job Ji from J 

Cpmax = ∞ 

For k = 1 to n  

Place job Ji at position k in partial sequence without changing relative position of other 

jobs already sequenced  

Calculate Cmax of associated partial scheduling 

If Cmax < Cpmax then 

Bestk = k 

Cpmax = Cmax 

End if 

End for 

Place job Ji at position Bestk in partial sequence  

End for 

 

4. 4. TSS local improvement  

In regard to classical flowshop problems, RCb blocking induces supplementary blocking time, 

which is defined as differential blocking time. In (Sauvey and Sauer, 2010), the authors give two 

definitions of differential blocking time depending on whether it comes before occurrence of job Ji 

on machine Mj, or after.  

Differential blocking time “before” job Ji on machine Mj is due to insufficient execution time of 

job Ji on machine Mj-1 in front of the execution time of the preceding job in the routing on machine 

Mj+1. Differential blocking time “after” job Ji on machine Mj is due to insufficient execution time 

of the preceding job in the routing on machine Mj+2. (Figure 8) 
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Fig. 8. Four machines problem with RCb blocking constraint 

 

TSS local improvement is based on the fact that, in an obtained sequence, a job with greater 

differential blocking time is permuted with all other jobs of sequence and the best solution is 

chosen. We continue as long as permutations improve makespan. 

 

4. 5. Experimental results 

Presented works had been performed to see the effect of different improvements on obtained 

results by heuristics solving. 

 

To determine whether our heuristic TSS would give good results, we compared it with the NEH 

algorithm in step (a), and then for both algorithms we added an NEH local improvement in step (b) 

and a TSS local improvement in step (c). At the end, the best solution is kept as the better 

makespan (d). 

 

For each problem with fixed dimension, we generated 100 different instances (20 instances for 

problems bigger than 11 jobs / 10 machines) for which we know optimal solutions, obtained in 

works of (Trabelsi et al., 2011). For each of these instances, execution times were generated 

uniformly in interval [0, 99]. All heuristics processes are  programmed in the "C++" language and 

run on a PC with a 3.16 GHz Core 2 Duo' CPU. 

 

Table 2 presents the mean error between optimal solutions Opt and makespan Cmax. Error 

percentage is calculated as follows: 

 

100% max 



Opt

OptC
err

 

 



mach

jobs heuristic TSS NEH TSS NEH TSS NEH TSS NEH TSS NEH TSS NEH TSS NEH TSS NEH

a 4,46% 3,75% 3,39% 4,61% 3,94% 3,72% 2,86% 4,25% 2,55% 3,42% 1,76% 3,70% 1,20% 2,55% 0,86% 1,73%

5 b 0,48% 0,38% 0,21% 0,17% 0,29% 0,29% 0,40% 0,32% 0,44% 0,34% 0,39% 0,22% 0,36% 0,27% 0,20% 0,12%

c 0,45% 0,23% 0,19% 0,15% 0,23% 0,19% 0,38% 0,13% 0,38% 0,25% 0,35% 0,15% 0,32% 0,17% 0,19% 0,08%

d

a 4,15% 4,02% 4,25% 3,97% 5,37% 4,58% 4,14% 3,98% 4,35% 3,82% 2,91% 4,09% 1,78% 2,56% 1,12% 1,84%

6 b 0,41% 0,74% 0,38% 0,33% 0,61% 0,43% 0,39% 0,54% 0,86% 0,81% 0,73% 0,50% 0,58% 0,24% 0,39% 0,21%

c 0,35% 0,59% 0,37% 0,32% 0,53% 0,30% 0,36% 0,45% 0,76% 0,71% 0,67% 0,43% 0,55% 0,19% 0,35% 0,18%

d

a 5,21% 4,07% 4,87% 3,72% 5,68% 4,24% 4,92% 4,02% 4,58% 3,84% 3,95% 4,01% 2,46% 2,65% 1,72% 2,07%

7 b 0,50% 0,87% 0,46% 0,46% 0,78% 0,89% 0,82% 0,68% 0,93% 0,73% 0,84% 0,58% 0,88% 0,37% 0,53% 0,26%

c 0,48% 0,69% 0,46% 0,44% 0,66% 0,75% 0,69% 0,57% 0,84% 0,59% 0,75% 0,49% 0,85% 0,34% 0,48% 0,23%

d

a 5,35% 3,87% 5,21% 3,26% 6,42% 3,77% 5,90% 3,95% 5,80% 4,10% 4,36% 3,95% 3,09% 2,82% 2,16% 2,18%

8 b 0,82% 0,95% 0,54% 0,52% 0,94% 0,79% 1,13% 1,03% 1,23% 1,00% 1,09% 0,76% 0,96% 0,52% 0,64% 0,42%

c 0,75% 0,79% 0,50% 0,48% 0,84% 0,63% 1,02% 0,84% 1,14% 0,75% 1,01% 0,68% 0,93% 0,48% 0,61% 0,40%

d

a 5,33% 3,67% 6,10% 3,45% 6,35% 4,01% 6,27% 4,12% 5,74% 4,17% 5,19% 4,25% 3,33% 3,37% 2,43% 2,42%

9 b 0,57% 0,85% 0,80% 0,73% 1,25% 1,23% 1,53% 1,05% 1,49% 1,26% 1,18% 0,87% 1,26% 0,73% 0,92% 0,62%

c 0,53% 0,76% 0,75% 0,59% 1,14% 1,02% 1,49% 0,85% 1,41% 1,14% 1,11% 0,80% 1,13% 0,72% 0,82% 0,61%

d

a 5,51% 3,72% 5,57% 3,17% 6,33% 4,02% 6,86% 4,54% 6,77% 4,56% 5,67% 4,86% 3,95% 3,20% 2,94% 2,57%

10 b 0,81% 0,94% 0,74% 0,81% 1,46% 1,27% 1,31% 1,25% 2,16% 1,63% 1,51% 1,32% 1,60% 0,92% 1,08% 0,63%

c 0,72% 0,87% 0,68% 0,71% 1,31% 1,16% 1,22% 1,14% 2,10% 1,49% 1,43% 1,18% 1,51% 0,87% 1,01% 0,58%

d

a 5,52% 3,33% 6,21% 3,19% 7,20% 4,23% 7,03% 4,39% 7,16% 5,74% 6,03% 3,89% 4,32% 3,87% 3,43% 2,56%

11 b 0,75% 0,96% 1,04% 0,95% 1,57% 1,52% 1,49% 1,30% 1,67% 1,90% 1,97% 1,44% 1,44% 1,11% 1,07% 0,72%

c 0,65% 0,87% 0,97% 0,82% 1,44% 1,43% 1,32% 1,18% 1,57% 1,83% 1,95% 1,44% 1,43% 1,05% 1,01% 0,67%

d

a 5,47% 3,31% 5,27% 3,21% 7,15% 4,07% 7,58% 5,12% 7,85% 5,57% 6,41% 4,84% 4,80% 3,64% 3,49% 2,50%

12 b 0,77% 0,81% 0,96% 0,88% 1,34% 1,46% 2,00% 1,70% 2,33% 2,02% 1,67% 1,49% 1,56% 1,11% 1,12% 0,86%

c 0,75% 0,79% 0,94% 0,81% 1,24% 1,30% 1,85% 1,69% 2,22% 1,87% 1,46% 1,43% 1,56% 1,01% 1,06% 0,82%

d

50 100

0,11% 0,17% 0,17% 0,22%

15 20

0,07% 0,10%

0,45% 0,28%

5 6 7 10

0,08% 0,08% 0,11% 0,08% 0,08% 0,06%

0,31% 0,32% 0,22% 0,17%

0,12% 0,11%

0,24% 0,25% 0,35% 0,31%

0,47% 0,28% 0,41% 0,57%

0,39% 0,38% 0,78% 0,65%

1,17% 0,89%0,41% 0,39% 0,82% 0,74%

0,36% 0,28%

0,80% 0,59% 0,52% 0,46%

0,53% 0,44%

0,75% 0,47%

0,45% 0,53% 0,97% 0,80% 1,09% 1,13% 0,94% 0,52%

0,84% 0,58%0,51% 0,52% 0,90% 1,15% 1,61% 0,98%

 

Table 2 : Error percentages between optimal solutions and makespan by using different heuristics  

 

Results presented in Table 2 prove that for small-sized problems (with 5 to 8 jobs), NEH and TSS 

have a very close error percentage (TSS is often better for problems with big number of machines), 

while for problems of larger sizes, NEH is often much better than TSS. (Table 2, lines a) 

 

By adding an NEH local improvement on previous results, we note that error percentage becomes 

significantly smaller and comparable for both proposed heuristics. We also note that with TSS as a 

first heuristic, we only obtained best results for problems with 5 machines and some other 

problems (6/10, 7/7, 10/6...). (Table 2, lines b)  

 

Since NEH local improvement gives good results, and as computing time is negligible, we can add 

other improvements. We added TSS local improvement, and that still improves results for both 

types of heuristics (Table2, lines c). 

 



Finally, after adding different improvements to TSS and NEH heuristics, the best solution is kept 

for both cases (Table2, lines d) and we can note that error percentage is improving again, which 

means that the best solutions found with NEH or TSS heuristic taken first are often different. 

 

We can notice the interest of varying both heuristics and local improvements: 

- It gives us the possibility of tackling problems from different angles. Obtained solutions 

are rather different, which allows us to choose the best one. 

- As computing time of problems solved by heuristics and local improvement methods is 

negligible, we can mix them together to improve again solutions. 

We also notice that maximum error percentage by using our methods is obtained for about 15 

machines. 

 

5. META HEURISTICS 

5. 1. Genetic algorithms 

In order to further improve solutions obtained by heuristic methods, we propose to use genetic 

algorithms which have proven their efficiency on discrete optimization problems since 1962. 

Holland’s works on adaptive problems (Holland, 1962) and its fields of application have widely 

spread (Holger and Stützle, 2005), (Siarry and Michalewicz, 2007). 

 

Results obtained by genetic algorithm for flowshop scheduling problems with RCb blocking 

constraint proposed in works of (Sauvey and Sauer, 2010) encouraged us to perform this method 

on mixed blocking flowshop problems. We used this metaheuristic to consider different blocking 

constraints simultaneously. 

 

This genetic algorithm runs with two main phases: selection and evaluation (Figure 8). An initial 

population is randomly generated and directly evaluated. Evaluation consists in our problem to 

calculate each individual’s makespan in order to sort them. Then, a selection is operated on 

individuals in order to determine those likely to give the best results. Our selection includes 

crossing, mutation, and addition of new individuals at each new operation. 

 

 

Fig. 8. Genetic algorithm presentation 



 

In our genetic algorithm, we can impose best individuals keeping percentage (pc_best), new 

randomly generated people introduction percentage (pc_new), and crossing percentage (pc_cross). 

Individuals selected for crossing are taken among the preceding generation’s best individuals and 

new randomly generated people. The remaining percentage of the created generation is created by 

mutation. Mutation is a random alteration of an individual’s genes. In our algorithm, we select for 

mutation among best-kept individuals in order to see whether they further improve their good 

results. 

 

As represented on Fig. 8, the loop composed of steps 2 and 3 is repeated as long as it is allowed by 

step 4. To perform our simulations, we chose to stop when the population no longer evolves 

quickly enough or stops evolving altogether. Population is then homogeneous and we can hope 

that it is near to optimum. The criteria we have retained to stop our simulations is the number of 

times when the best value was identical (ctbvi). It is very easy to put a loop counter to count the 

number of times loop 2-3-4 is performed. At each loop iteration, we hope that the evaluation of the 

new population will give a better individuate than best individuate evaluated up to time. Then, if 

the best individuate of the new current population improves the algorithm solution, it is 

memorized as the algorithm temporary solution and a loop counter is initialized to 0. If the 

algorithm temporary solution is not improved by the current loop population, this loop counter is 

incremented up to a maximum value defined by the parameter ctbvi. The returned algorithm 

solution is a temporary solution which has not evolved since ctbvi algorithm loops. 

 

5. 2. Experimental results 

Percentages of crossing, mutation, and new individuals are adjustable. To perform work presented 

in this paper, we set for our experiments these percentages as follows: (pc_best : 0,1 ; pc_new : 0,1 

; pc_cross : 0.65). The criteria we have retained to stop our simulations is the number of times 

when the best value was identical (ctbvi = 500). The genetic algorithms processes are also 

programmed in the "C++" language and run on a PC with a 3.16 GHz Core 2 Duo' CPU. 

 

In table 3, we can see at first (lines a) mean error between optimal solutions and makespan 

obtained by using genetic algorithm with 50 individuals. We add local improvements (lines b) to 

TSS and NEH. Then, in (lines c) we take best solution that gives the better makespan between the 

last genetic algorithm with local improvements (b) and another genetic algorithm with 100 

individuals. Computing time of (c) is then presented. 

 



 

Table 3 : Error percentages between optimal solutions and makespan obtained with different 

metaheuristics 

 

We note that genetic algorithms are very efficient: 0% error for problems up to 8 jobs with a 

computing time that is almost negligible, and remains inferior to 0.64% error for all other 

problems up to 12 jobs and 100 machines with a reasonable computing time. 

 

If we detail further results, we find that there is not much improvement of results in (b) when 

adding NEH and TSS local improvements. On the contrary, in (c), we see a marked improvement 



on obtained solutions, allowing us to note that tackling a problem from different angles (i.e. use of 

two genetic algorithms or more) is better than adding local improvements to obtained schedules. 

 

6. CONCLUSION AND PERSPECTIVES 

In this paper, we focused on flowshop scheduling problem with mixed blocking constraints and its 

solving with heuristic and metaheuristic methods. Among the most effective heuristic methods, 

NEH has been taken to be locally improved and compared with our proposed heuristic TSS. We 

have tackled this problem with NEH and TSS heuristics successively, with two local 

improvements. First one is based on the iterative NEH method. Second is based on the 

permutation of the job that has the greatest differential blocking time in the sequence with all other 

jobs of this sequence. The best solution of the two heuristics with both improving methods is then 

chosen. 

 

Our methods, when combined, improves significantly and very quickly our solutions: less than 

1.61% error between optimal solutions and makespan in a time less than a second for a tested 

range of problems. Using metaheuristics, we further improved the results (highest error percentage 

is 0.34%), but it can be considerably more time consuming: up to 11.15s per problem on realized 

tests.  

 

In our future works, we intend to further improve the efficiency of these methods, especially in 

computation time for the genetic algorithm. Then, we will try to adapt our methods on hybrid 

flowshop problems in order to obtain comparable results. 
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