
HAL Id: hal-01162454
https://hal.science/hal-01162454

Submitted on 15 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heuristics and metaheuristics for mixed blocking
constraints flowshop scheduling problems

Wajdi Trabelsi, Christophe Sauvey, Nathalie Sauer

To cite this version:
Wajdi Trabelsi, Christophe Sauvey, Nathalie Sauer. Heuristics and metaheuristics for mixed block-
ing constraints flowshop scheduling problems. Computers and Operations Research, 2012, 39 (11),
pp.2520-2527. �10.1016/j.cor.2011.12.022�. �hal-01162454�

https://hal.science/hal-01162454
https://hal.archives-ouvertes.fr

Heuristics and metaheuristics for mixed

blocking constraints flowshop scheduling

problems

Wajdi Trabelsi, Christophe Sauvey and Nathalie Sauer

LGIPM, Paul Verlaine University of Metz, France

ABSTRACT

Storage or buffer capacities between successive machines in flowshop problems may be unlimited,

limited or null. The last two cases can lead to blocking situations. In flowshop scheduling

literature, many studies have been performed about classical flowshop problems and also about

some problems with only one blocking situation between all machines.

This paper deals with makespan minimization in flowshop scheduling problems where mixed

blocking constraints are considered. After a problem description and definitions of different

blocking constraints, a mathematical model is presented and heuristics are developed to propose

quick solutions to these kinds of problems. Then, metaheuristics are used to improve found

solutions. A comparison between heuristics and metaheuristics is then performed.

Keywords: flowshop scheduling problem, blocking constraints, heuristic, metaheuristics,

makespan.

1. INTRODUCTION

In order to obtain higher profits, modern production companies usually try to maximize their

productivity. The latter goal, among others, can be achieved by optimal or almost optimal jobs

scheduling in the production process while reducing storage capacity and even to remove it

whenever possible. Storage capacity reduction between machines can lead to situations that are

known in literature as blocking situations. Scheduling models differ depending on the technology

used and constraints applied in the system. The most common scheduling problem is classical

flowshop where buffer space capacity between machines is considered unlimited. Other problems

are characterized by only classical blocking constraint RSb (Release when Starting Blocking: a

machine remains blocked by a job until this job starts on the next machine in routing) and some

others by specific blocking constraints RCb or RCb* (Release when Completing Blocking: a

machine will be available to treat its next operation after its job is finished on the following

machine in the process). In this paper, a general case is presented where successive machines can

be subject to different types of blocking constraints, considering makespan as optimization

criterion. This problem is likely to better approach industry-derived cases, which can already be

seen as flowshop problems.

The first article dealing with a flowshop problem was published over fifty years ago (Johnson,

1954). Since then, many authors have focused on different aspects of this problem. We can cite a

few articles: (Bellman and Gross, 1954) and (Bellman et al., 1982) for classical flowshop problem

with two machines and (Nawaz et al., 1983) and (Carlier and Rebaï, 1996) for general case with

multiple machines. For greater sized problems, some heuristics and metaheuristics have been

proposed, such as (Iyer and Saxena, 2004) and (Siarry and Michalewicz, 2007).

For problems with classical blocking constraint (RSb), Sawik (1993, 1995) proposed a heuristic for

multi-stage flowshop problem both respectively with and without storage capacity. In (Wang et

al., 2006), authors developed a hybrid genetic algorithm for flowshop scheduling with limited

buffers. Other papers dealing with flowshop problems with RSb constraint, such as (Carraffa et al.,

2001) and (Ronconi, 2005), can also be cited.

Regarding RCb constraint, an Integer Linear Programming (I.L.P) model, lower bounds and a

metaheuristic are presented in (Martinez, 2005) for flowshop and hybrid flowshop cases. These

problems have been solved in (Yuan and Sauer, 2007) and (Yuan et al., 2009) by a metaheuristic

"Electromagnetism-like Mechanism". A new blocking constraint called RCb* has been proposed

in (Trabelsi et al., 2010) which is an RCb constraint variant. In this work, authors propose

heuristics to solve jobshop problems with RCb and RCb* constraints.

Finally, for articles that have dealt with different types of constraints mixed in a production

system, we can cite (Martinez et al., 2006) who studied complexity issues with RSb and RCb

constraints. We can also cite works by (Grabowski and Pempera, 2000) which consider a real-life

problem of scheduling clients’ orders of concrete blocks in a factory of building industry modeled

as a hybrid flowshop scheduling problem with mixed no-wait/no-store constraints and mixed

bottleneck/non-bottleneck machines. To our knowledge, no other author was interested in solving

flowshop problems simultaneously subjected to different types of blocking constraints on

successive machines in a process.

In this paper, we describe different flowshop cases with one or more blocking constraints. We

present a mathematical model, propose a heuristic method to solve mixed flowshop problems, and

compare it with NEH heuristic. We also use some improvement methods for both algorithms.

Then, genetic algorithms are used to improve found solutions. In the last part, a comparison

between heuristics and metaheuristics is performed.

2. PROBLEM DESCRIPTION

In flowshop scheduling problem, a set of n jobs, J = {J1, J2, …, Jn}, must be executed on a set of m

machines, M = {M1, M2, …, Mm}. All jobs Ji require the same operation order, Oi = {Oi1, Oi2, …,

Oim}, that must be executed according to the same manufacturing process. Operation Oij needs an

execution time Pij on machine Mj  M. Each machine can only execute one job at any time. Pre-

emptive operation is not authorized in presented work. Objective function consists in determining

best scheduling in order to reduce makespan, i.e. time when all operations are completed.

In the following, we present different cases of flowshop problem: classical flowshop problem

without blocking constraint (Fig. 1), a flowshop scheduling problem with only one blocking

constraint present between all machines (Fig. 2, 3, and 4) and an example in which different

blocking constraints are mixed (Fig. 5). To illustrate these different cases, we consider an example

with five jobs and five machines.

The following execution time matrix Pij, has list of machines Mj in columns and the list of jobs Ji

in lines.

 5..,,1,

12122

11122

12211

12231

21211

, 























 jiP ji

In classical flowshop problem, buffer space capacity is considered to be unlimited. Therefore,

there is no blocking situation and the system can be called Wb (Without blocking): a machine will

be immediately available to execute the next operation after its operation in process is finished. In

the example presented in Fig. 1, machine M1 is available to treat job J4 as soon as job J3 on

machine M1 will be finished.

J1

J1

J1

J1

J1

J2

J2

 J2

J2

 J2

J3

J3

J3

J3

 J3

J4

J4

J4

J4

J4

J5

J5

J5

J5

J5

M1

M2

M3

M4

M5

Time

Fig. 1. Classical flowshop problem (Wb case)

For flowshop problem with a classical blocking constraint RSb (Release when Starting Blocking),

a machine remains blocked by a job until this job starts on next machine in routing. This constraint

is met in industrial problems where there is no intermediate storage between machines. In our

example presented in Fig. 2, job J3 remains blocked on machine M1 as long as the following

machine M2 is not available.

J1

J1

J1

J1

J1

J2

J2

 J2

J2

 J2

J3

J3

J3

J3

 J3

J4

J4

J4

J4

J4

J5

J5

J5

J5

J5

M1

M2

M3

M4

M5

Time

Blocking time

Idle time

Fig. 2. Flowshop problem with classical blocking RSb

In specific blocking RCb* (Release when Completing Blocking*), a machine will be immediately

available to treat its next operation after its job on the following machine in process is finished

without regard to whether or not it leaves the machine. In the example presented in Fig. 3, specific

blocking RCb* differs from classical blocking RSb by the fact that machine M1 remains blocked

by job J3 until its operation on machine M2 is finished. This constraint was introduced for the first

time by (Trabelsi et al., 2010).

J1

J1

J1

J1

J1

J2

J2

J2

J2

 J2

J3

J3

J3

J3

 J3

J4

J4

J4

J4

J4

J5

J5

 J5

J5

J5

M1

M2

M3

M4

M5

Time

Blocking time

Idle time

Fig. 3. Flowshop problem with specific blocking RCb*

We come across this kind of constraint in production lines when two successive machines are

depending on same resource (tool or operator…), so they cannot process at same time.

In the case of particular blocking constraint RCb, a machine will be immediately available to treat

its next operation after the operation of its job on the following machine in process is finished and

it has left this machine. This constraint was introduced for the first time by (Dauzère-Pérès et al.,

2000).

J1

J1

J1

J1

J1

J2

J2

J2

J2

 J2

J3

J3

J3

J3

 J3

J4

J4

J4

J4

J4

J5

J5

 J5

J5

J5

M1

M2

M3

M4

M5

Time

Blocking time

Idle time

Fig. 4. Flowshop problem with specific blocking RCb

RCb constraint is useful in some industrial environments, such as waste treatment industry and

aeronautics parts fabrication (Martinez, 2005). For cider brewing applications for example, one

cannot melt apples of different customers. In a first step, apples are poured in a bath and then

pressed to make apple juice. New customer apples cannot be poured in bath before all of the first

customer’s apples have been pressed.

The difference between RCb and RCb* blocking is underlined by job J3 (Fig. 3 and 4): in an RCb*

blocking problem, machine M1 remains blocked by job J3 until its following operation on machine

M2 is finished, whereas in RCb problem, blocking time is bigger since machine M1 will only be

available when its following operation on M2 is completed and job J3 leaves machine M2. This date

corresponds to further following operation on machine M3 beginning.

In a large production line, we can encounter different types of blocking constraints which depend

on intermediate storage between machines, characteristics of machines and technical constraints.

To describe a flowshop problem where different blocking constraints are mixed, we introduce a

vector V that contains blocking constraints between machines. Element Vj is blocking constraint

between machines Mj and Mj+1. This vector has m-1 elements (as many elements as the number of

transitions between machines). In the previous example, if V = (RCb, RSb, RCb*, Wb), then RCb is

the blocking constraint between machines M1 and M2. Thereby, we construct Gantt diagram as

follows (Fig. 5):

J1

J1

J1

J1

J2

J2

J2

J2

 J2

J3

J3

J3

J3

 J3

J4

J4

J4

J4

J4

J5

J5

 J5

J5

J5

M1

M2

M3

M4

M5

Time

RCb

RSb

RCb*

Wb

J1

Blocking time

Idle time

Fig. 5. Flowshop problem with mixed blocking constraints

3. MATHEMATICAL MODEL

In this section, we present a mathematical model for a flowshop problem subject to different

blocking constraints. This model is detailed in (Trabelsi et al., 2011) in order to minimize

makespan of a flowshop with mixed blocking constraint. Since jobs sequence is identical on all

machines, we have to determine jobs permutation G that minimizes scheduling completion time

or makespan. This model was solved by Xpress-MP optimization software and run on a PC

with a 3.16 GHz Core 2 Duo' CPU.

3.1. Parameters

Parameters used in this model are as follows:

- n: Number of jobs.

- m: Number of machines.

- Pi, j: Job Ji execution time on machine Mj.

- Bh,j = 1 if there is an h blocking constraint between machine Mj and machine Mj+1 and 0

otherwise. With:

h = 1: if there is Wb, i.e. no blocking constraint between machine Mj and machine Mj+1.

h = 2: if there is an RSb constraint between machine Mj and machine Mj+1.

h = 3: if there is an RCb* constraint between machine Mj and machine Mj+1.

h = 4: if there is an RCb constraint between machine Mj and machine Mj+1.

3.2. Variables

Variables used in this model are as follows:

- Sk, j : Starting time of job at position k in sequence G on machine Mj.

- Ck, j : Completion time of job at position k in sequence G on machine Mj.

- Gi,k = 1 if job Ji is at position k in sequence G and 0 otherwise.

 3.3. Model

Developed mathematical model is as follows:

maxMin C (1)

With following constraints:

 n , .., i C C i, m 1max  (2)

  m , .., j ,n , .., k , GP + S S
n

i

i, ki, j-k, j-k, j 21 .
1

11  


 (3)

  m-, .., j ,n , .., k

 B.+ S B. + CB. + S . B C S , j, j+k-, j, j+k-, j, j+k-, j, jk-k, j

2 1 2

 42131121111




 (4)

 n , .., k , B+ CB + S B C S , m-, mk-, m-, mk-, m-, m-k-k, m- 2. .. 13112111111  (5)

 n , .., k C S , mk-k, m 21  (6)

  m , .., j ,n , .., k , GP + S C
n

i

i, ki, jk, jk, j 11 .
1

 


 (7)

 n , .., k , G
n

i

i, k 11
1




 (8)

 n , .., i , G
n

k

i, k 11
1




 (9)

   n , .., k , n , .., i , , Gi, k 1110  (10)

  m , .., j ,n , .., k , Sk, j 110  (11)

  m , .., j ,n , .., k , Ck, j 110  (12)

3.4. Equations meaning

Each model constraint is described as follows:

- Equation (1): Objective function of our problem: minimize total completion time of scheduling.

- Equation (2): Makespan value must be greater than or equal to completion time of all jobs on

the last machine.

- Equation (3): Represents precedence constraint between the same job on successive operations:

to start its operation on a downstream machine, a job must first finish its operation on the upstream

machine.

- Equation (4): This equation models different blocking constraints represented by parameter Bh,j.

For example, if there is an RSb constraint between machine Mj and machine Mj+1, equation (4)

becomes:
11, j+k-k, j S S 

 - Equation (5): This is a special case of the above equation which only deals with the penultimate

machine. There is no blocking RCb at this stage because it depends on the two following

machines.

- Equation (6): This is a special case of (4). It only deals with last machine, which can only be

without blocking.

- Equation (7): This constraint calculates the completing time of jobs: i.e. last machine operations

completion time.

- Equation (8): Each job Ji is placed at only one position k in sequence G.

- Equation (9): At each position k of sequence G is only assigned one job Ji.

- Equation (10): Gi, k is a Boolean variable. It is equal to 1 if job Ji is at position k in sequence G

and 0 otherwise.

- Equation (11): Starting time of jobs cannot be negative.

- Equation (12): Completion time of jobs cannot be negative.

4. HEURISTICS

As presented in (Trabelsi et al., 2011), it is not possible to obtain an exact solution for big-sized

problems in a reasonable time. Therefore, it is necessary to develop approached methods and

estimate their mean error with optimal solution (when it is computable) or lower bounds.

In this paper, we propose some heuristics with some local improvements in order to quickly obtain

a feasible solution (in a polynomial time), but not necessarily an optimal one. In this section, we

review the NEH method and present a new heuristic. We also use some improvement methods for

both algorithms.

4. 1. NEH heuristic presentation

NEH heuristic is one of the most famous heuristics known for flowshop scheduling (Nawaz,

Enscore and Ham, 1983). This heuristic is not only efficient, but also very simple to compute. It is

a constructive algorithm that selects the longest job not yet sequenced and tries to place it at all

possible positions of the partial sequence under construction. Selected position minimizes partial

makespan. A lot of references took this heuristic as a reference to compare their results (Zobolas,

Tarantilis and Ioannou, 2009), (Ruiz and Stützle, 2007). A pedagogical comparative study of some

heuristics is performed in (Ruiz and Maroto, 2005).

Algorithm 1

Let J = (J1, J2, .., Jn) a list of jobs ordered by decreasing total processing time

For i = 1 to n

Select job Ji from J

Cpmax = ∞

For k = 1 to i

Place job Ji at position k in partial sequence without changing relative position of other

jobs already sequenced

Calculate Cmax of associated partial scheduling

If Cmax < Cpmax then

Bestk = k

Cpmax = Cmax

End if

End for

Place job Ji at position Bestk in partial sequence

End for

Adaptation of this heuristic to our problem is merely respect different blocking constraints

between all machines when we calculate the corresponding makespan.

4. 2. TSS heuristic presentation

Proposed heuristic is based on a construction method. This proposal is inspired by an algorithm

developed in (Trabelsi et al., 2010) for jobshop problem with RCb and RCb* blocking. From a

partial solution, it is necessary to choose which job must be placed next. For that, we chose a

criterion that combines three parameters:

- Cpmax: Partial Makespan: i.e. completion time of a new placed job.

- SomTpsIn: Sum of inactive times: i.e. the time during which machines are inactive, including

idle times and blocking times.

- SomTpsEx: Sum of execution times of placed operations in partial schedule.

To have a best possible scheduling, we trend on one hand to minimize inactive times of machines

and completion time, and on the other hand to maximize machine use, which is depicted in the

following criterion:

Cr = min (Cpmax + SomTpsIn – SomTpsEx).

Then, n possibilities of schedule are constructed by switching jobs to place at first position and

finally we choose the one that gives smallest final makespan Cmax.

General structure of the proposed algorithm to solve flowshop problems with mixed constraints is

given below.

Algorithm 2

Introduce problem data (jobs number, machines number, operations execution time and blocking

constraints between machines)

For i = 1 to n (we calculate all possibilities by switching job to place at first position)

We place as first job Ji

As long as it still remains jobs to place, do

For t = 1 to [n - (number of already placed jobs)]

Calculate Cpmax, SomTpsIn, SomTpsEx

Calculate Crt (Criterion after placing a job Jt)

End for

Place job that has the smallest Crt

End while

Calculate Cmax,i (final makespan while placing job Ji at first)

End for

Choose scheduling that gives the smallest final makespan Cmax,i

Example: Let be a flowshop scheduling problem with four jobs and three machines.

Operations execution times are as follows:

   3..,,1,4..,,1

122

211

321

211

, 





















 jiP ji

Blocking constraints vector:

V = (RCb, RSb) , i.e. RCb is blocking constraint between machines M1 and M2, and RSb is

blocking constraint between machines M2 and M3.

Let be J1 the job placed at first position. We have then three possibilities to place a following job:

J2, J3 or J4 (Figure 6). We use choice criterion between these three cases to choose the job that

gives the smallest criterion.

A

J1

J1

J2

J2

J2

M1

M2

M3

Time

RCb

RSb

J1

8

B

J1

J1

J3

J3

J3

M1

M2

M3

Time

RCb

RSb

J1

6

C

J1

J1

J4

J4

J4

M1

M2

M3

Time

RCb

RSb

J1

7

Figure 6: Three possible scheduling cases

We will explain how we calculated these different parameters through first case i.e. when job J2 is

placed (Figure 6-A):

- SomTpsEx = 


3

1

,

2

1 j

ji

i

P = 10 ut. We placed two first jobs and we calculate its operations

execution times.

- SomTpsIn = 1+1+1+2 = 5 ut. It is the sum of inactive times with two time units as idle times

(intervals [2-3] on machine M1 and [4-5] on machine M2) and three time units as blocking time

due to RCb constraint between machines M1 on M2.

- Cpmax = 8 ut. This partial makespan represents minimal date from which all machines will be

available.

Then, Cr(A) = 8 + 5 - 10 = 3 ut.

The results of each possibility (J2, J3 or J4) are given in Table 1. In this example, job J3 is placed as

second job in partial sequence because criterion Cr is minimal with job J3.

 Execution time

« SomTpsEx » (ut)

Idle time + Blocking time

« SomTpsIn » (ut)

Partial makespan

« Cpmax » (ut)
Cr

A 10 2 + 3 8 3

B 8 1 + 2 6 1

C 9 4 + 3 7 5

Table 1: Choice criterion used to place next operation

Final solution given by above presented algorithm for this F3|Mixed|Cmax example is presented by

the Gantt diagram (Figure 7).

J1

J1

J3

J3

J3

M1

M2

M3

Time

RCb

RSb

J1

12

J2

J2

J2

J4

J4

J4

Figure 7: Complete scheduling for F3|Mixed|Cmax

4. 3. NEH local improvement

This local improvement is based on the iterative NEH method. In fact, we start with the scheduling

order obtained by initial heuristic and then we use the iterative part of NEH algorithm, as long as

we notice a solution improvement.

Algorithm 3

Let J = (J1, J2, .., Jn) a jobs order obtained by initial heuristic

For i = 1 to n

Select job Ji from J

Cpmax = ∞

For k = 1 to n

Place job Ji at position k in partial sequence without changing relative position of other

jobs already sequenced

Calculate Cmax of associated partial scheduling

If Cmax < Cpmax then

Bestk = k

Cpmax = Cmax

End if

End for

Place job Ji at position Bestk in partial sequence

End for

4. 4. TSS local improvement

In regard to classical flowshop problems, RCb blocking induces supplementary blocking time,

which is defined as differential blocking time. In (Sauvey and Sauer, 2010), the authors give two

definitions of differential blocking time depending on whether it comes before occurrence of job Ji

on machine Mj, or after.

Differential blocking time “before” job Ji on machine Mj is due to insufficient execution time of

job Ji on machine Mj-1 in front of the execution time of the preceding job in the routing on machine

Mj+1. Differential blocking time “after” job Ji on machine Mj is due to insufficient execution time

of the preceding job in the routing on machine Mj+2. (Figure 8)

Ji

Ji

Ji

Ji

Jj

Jj

Jj

Jj

Jk

Jk

Jk

Jk

M1

M2

M3

M4

Time

Blocking time

Idle time

Differential blocking time before job

Differential blocking time after job

Fig. 8. Four machines problem with RCb blocking constraint

TSS local improvement is based on the fact that, in an obtained sequence, a job with greater

differential blocking time is permuted with all other jobs of sequence and the best solution is

chosen. We continue as long as permutations improve makespan.

4. 5. Experimental results

Presented works had been performed to see the effect of different improvements on obtained

results by heuristics solving.

To determine whether our heuristic TSS would give good results, we compared it with the NEH

algorithm in step (a), and then for both algorithms we added an NEH local improvement in step (b)

and a TSS local improvement in step (c). At the end, the best solution is kept as the better

makespan (d).

For each problem with fixed dimension, we generated 100 different instances (20 instances for

problems bigger than 11 jobs / 10 machines) for which we know optimal solutions, obtained in

works of (Trabelsi et al., 2011). For each of these instances, execution times were generated

uniformly in interval [0, 99]. All heuristics processes are programmed in the "C++" language and

run on a PC with a 3.16 GHz Core 2 Duo' CPU.

Table 2 presents the mean error between optimal solutions Opt and makespan Cmax. Error

percentage is calculated as follows:

100% max 



Opt

OptC
err

mach

jobs heuristic TSS NEH TSS NEH TSS NEH TSS NEH TSS NEH TSS NEH TSS NEH TSS NEH

a 4,46% 3,75% 3,39% 4,61% 3,94% 3,72% 2,86% 4,25% 2,55% 3,42% 1,76% 3,70% 1,20% 2,55% 0,86% 1,73%

5 b 0,48% 0,38% 0,21% 0,17% 0,29% 0,29% 0,40% 0,32% 0,44% 0,34% 0,39% 0,22% 0,36% 0,27% 0,20% 0,12%

c 0,45% 0,23% 0,19% 0,15% 0,23% 0,19% 0,38% 0,13% 0,38% 0,25% 0,35% 0,15% 0,32% 0,17% 0,19% 0,08%

d

a 4,15% 4,02% 4,25% 3,97% 5,37% 4,58% 4,14% 3,98% 4,35% 3,82% 2,91% 4,09% 1,78% 2,56% 1,12% 1,84%

6 b 0,41% 0,74% 0,38% 0,33% 0,61% 0,43% 0,39% 0,54% 0,86% 0,81% 0,73% 0,50% 0,58% 0,24% 0,39% 0,21%

c 0,35% 0,59% 0,37% 0,32% 0,53% 0,30% 0,36% 0,45% 0,76% 0,71% 0,67% 0,43% 0,55% 0,19% 0,35% 0,18%

d

a 5,21% 4,07% 4,87% 3,72% 5,68% 4,24% 4,92% 4,02% 4,58% 3,84% 3,95% 4,01% 2,46% 2,65% 1,72% 2,07%

7 b 0,50% 0,87% 0,46% 0,46% 0,78% 0,89% 0,82% 0,68% 0,93% 0,73% 0,84% 0,58% 0,88% 0,37% 0,53% 0,26%

c 0,48% 0,69% 0,46% 0,44% 0,66% 0,75% 0,69% 0,57% 0,84% 0,59% 0,75% 0,49% 0,85% 0,34% 0,48% 0,23%

d

a 5,35% 3,87% 5,21% 3,26% 6,42% 3,77% 5,90% 3,95% 5,80% 4,10% 4,36% 3,95% 3,09% 2,82% 2,16% 2,18%

8 b 0,82% 0,95% 0,54% 0,52% 0,94% 0,79% 1,13% 1,03% 1,23% 1,00% 1,09% 0,76% 0,96% 0,52% 0,64% 0,42%

c 0,75% 0,79% 0,50% 0,48% 0,84% 0,63% 1,02% 0,84% 1,14% 0,75% 1,01% 0,68% 0,93% 0,48% 0,61% 0,40%

d

a 5,33% 3,67% 6,10% 3,45% 6,35% 4,01% 6,27% 4,12% 5,74% 4,17% 5,19% 4,25% 3,33% 3,37% 2,43% 2,42%

9 b 0,57% 0,85% 0,80% 0,73% 1,25% 1,23% 1,53% 1,05% 1,49% 1,26% 1,18% 0,87% 1,26% 0,73% 0,92% 0,62%

c 0,53% 0,76% 0,75% 0,59% 1,14% 1,02% 1,49% 0,85% 1,41% 1,14% 1,11% 0,80% 1,13% 0,72% 0,82% 0,61%

d

a 5,51% 3,72% 5,57% 3,17% 6,33% 4,02% 6,86% 4,54% 6,77% 4,56% 5,67% 4,86% 3,95% 3,20% 2,94% 2,57%

10 b 0,81% 0,94% 0,74% 0,81% 1,46% 1,27% 1,31% 1,25% 2,16% 1,63% 1,51% 1,32% 1,60% 0,92% 1,08% 0,63%

c 0,72% 0,87% 0,68% 0,71% 1,31% 1,16% 1,22% 1,14% 2,10% 1,49% 1,43% 1,18% 1,51% 0,87% 1,01% 0,58%

d

a 5,52% 3,33% 6,21% 3,19% 7,20% 4,23% 7,03% 4,39% 7,16% 5,74% 6,03% 3,89% 4,32% 3,87% 3,43% 2,56%

11 b 0,75% 0,96% 1,04% 0,95% 1,57% 1,52% 1,49% 1,30% 1,67% 1,90% 1,97% 1,44% 1,44% 1,11% 1,07% 0,72%

c 0,65% 0,87% 0,97% 0,82% 1,44% 1,43% 1,32% 1,18% 1,57% 1,83% 1,95% 1,44% 1,43% 1,05% 1,01% 0,67%

d

a 5,47% 3,31% 5,27% 3,21% 7,15% 4,07% 7,58% 5,12% 7,85% 5,57% 6,41% 4,84% 4,80% 3,64% 3,49% 2,50%

12 b 0,77% 0,81% 0,96% 0,88% 1,34% 1,46% 2,00% 1,70% 2,33% 2,02% 1,67% 1,49% 1,56% 1,11% 1,12% 0,86%

c 0,75% 0,79% 0,94% 0,81% 1,24% 1,30% 1,85% 1,69% 2,22% 1,87% 1,46% 1,43% 1,56% 1,01% 1,06% 0,82%

d

50 100

0,11% 0,17% 0,17% 0,22%

15 20

0,07% 0,10%

0,45% 0,28%

5 6 7 10

0,08% 0,08% 0,11% 0,08% 0,08% 0,06%

0,31% 0,32% 0,22% 0,17%

0,12% 0,11%

0,24% 0,25% 0,35% 0,31%

0,47% 0,28% 0,41% 0,57%

0,39% 0,38% 0,78% 0,65%

1,17% 0,89%0,41% 0,39% 0,82% 0,74%

0,36% 0,28%

0,80% 0,59% 0,52% 0,46%

0,53% 0,44%

0,75% 0,47%

0,45% 0,53% 0,97% 0,80% 1,09% 1,13% 0,94% 0,52%

0,84% 0,58%0,51% 0,52% 0,90% 1,15% 1,61% 0,98%

Table 2 : Error percentages between optimal solutions and makespan by using different heuristics

Results presented in Table 2 prove that for small-sized problems (with 5 to 8 jobs), NEH and TSS

have a very close error percentage (TSS is often better for problems with big number of machines),

while for problems of larger sizes, NEH is often much better than TSS. (Table 2, lines a)

By adding an NEH local improvement on previous results, we note that error percentage becomes

significantly smaller and comparable for both proposed heuristics. We also note that with TSS as a

first heuristic, we only obtained best results for problems with 5 machines and some other

problems (6/10, 7/7, 10/6...). (Table 2, lines b)

Since NEH local improvement gives good results, and as computing time is negligible, we can add

other improvements. We added TSS local improvement, and that still improves results for both

types of heuristics (Table2, lines c).

Finally, after adding different improvements to TSS and NEH heuristics, the best solution is kept

for both cases (Table2, lines d) and we can note that error percentage is improving again, which

means that the best solutions found with NEH or TSS heuristic taken first are often different.

We can notice the interest of varying both heuristics and local improvements:

- It gives us the possibility of tackling problems from different angles. Obtained solutions

are rather different, which allows us to choose the best one.

- As computing time of problems solved by heuristics and local improvement methods is

negligible, we can mix them together to improve again solutions.

We also notice that maximum error percentage by using our methods is obtained for about 15

machines.

5. META HEURISTICS

5. 1. Genetic algorithms

In order to further improve solutions obtained by heuristic methods, we propose to use genetic

algorithms which have proven their efficiency on discrete optimization problems since 1962.

Holland’s works on adaptive problems (Holland, 1962) and its fields of application have widely

spread (Holger and Stützle, 2005), (Siarry and Michalewicz, 2007).

Results obtained by genetic algorithm for flowshop scheduling problems with RCb blocking

constraint proposed in works of (Sauvey and Sauer, 2010) encouraged us to perform this method

on mixed blocking flowshop problems. We used this metaheuristic to consider different blocking

constraints simultaneously.

This genetic algorithm runs with two main phases: selection and evaluation (Figure 8). An initial

population is randomly generated and directly evaluated. Evaluation consists in our problem to

calculate each individual’s makespan in order to sort them. Then, a selection is operated on

individuals in order to determine those likely to give the best results. Our selection includes

crossing, mutation, and addition of new individuals at each new operation.

Fig. 8. Genetic algorithm presentation

In our genetic algorithm, we can impose best individuals keeping percentage (pc_best), new

randomly generated people introduction percentage (pc_new), and crossing percentage (pc_cross).

Individuals selected for crossing are taken among the preceding generation’s best individuals and

new randomly generated people. The remaining percentage of the created generation is created by

mutation. Mutation is a random alteration of an individual’s genes. In our algorithm, we select for

mutation among best-kept individuals in order to see whether they further improve their good

results.

As represented on Fig. 8, the loop composed of steps 2 and 3 is repeated as long as it is allowed by

step 4. To perform our simulations, we chose to stop when the population no longer evolves

quickly enough or stops evolving altogether. Population is then homogeneous and we can hope

that it is near to optimum. The criteria we have retained to stop our simulations is the number of

times when the best value was identical (ctbvi). It is very easy to put a loop counter to count the

number of times loop 2-3-4 is performed. At each loop iteration, we hope that the evaluation of the

new population will give a better individuate than best individuate evaluated up to time. Then, if

the best individuate of the new current population improves the algorithm solution, it is

memorized as the algorithm temporary solution and a loop counter is initialized to 0. If the

algorithm temporary solution is not improved by the current loop population, this loop counter is

incremented up to a maximum value defined by the parameter ctbvi. The returned algorithm

solution is a temporary solution which has not evolved since ctbvi algorithm loops.

5. 2. Experimental results

Percentages of crossing, mutation, and new individuals are adjustable. To perform work presented

in this paper, we set for our experiments these percentages as follows: (pc_best : 0,1 ; pc_new : 0,1

; pc_cross : 0.65). The criteria we have retained to stop our simulations is the number of times

when the best value was identical (ctbvi = 500). The genetic algorithms processes are also

programmed in the "C++" language and run on a PC with a 3.16 GHz Core 2 Duo' CPU.

In table 3, we can see at first (lines a) mean error between optimal solutions and makespan

obtained by using genetic algorithm with 50 individuals. We add local improvements (lines b) to

TSS and NEH. Then, in (lines c) we take best solution that gives the better makespan between the

last genetic algorithm with local improvements (b) and another genetic algorithm with 100

individuals. Computing time of (c) is then presented.

Table 3 : Error percentages between optimal solutions and makespan obtained with different

metaheuristics

We note that genetic algorithms are very efficient: 0% error for problems up to 8 jobs with a

computing time that is almost negligible, and remains inferior to 0.64% error for all other

problems up to 12 jobs and 100 machines with a reasonable computing time.

If we detail further results, we find that there is not much improvement of results in (b) when

adding NEH and TSS local improvements. On the contrary, in (c), we see a marked improvement

on obtained solutions, allowing us to note that tackling a problem from different angles (i.e. use of

two genetic algorithms or more) is better than adding local improvements to obtained schedules.

6. CONCLUSION AND PERSPECTIVES

In this paper, we focused on flowshop scheduling problem with mixed blocking constraints and its

solving with heuristic and metaheuristic methods. Among the most effective heuristic methods,

NEH has been taken to be locally improved and compared with our proposed heuristic TSS. We

have tackled this problem with NEH and TSS heuristics successively, with two local

improvements. First one is based on the iterative NEH method. Second is based on the

permutation of the job that has the greatest differential blocking time in the sequence with all other

jobs of this sequence. The best solution of the two heuristics with both improving methods is then

chosen.

Our methods, when combined, improves significantly and very quickly our solutions: less than

1.61% error between optimal solutions and makespan in a time less than a second for a tested

range of problems. Using metaheuristics, we further improved the results (highest error percentage

is 0.34%), but it can be considerably more time consuming: up to 11.15s per problem on realized

tests.

In our future works, we intend to further improve the efficiency of these methods, especially in

computation time for the genetic algorithm. Then, we will try to adapt our methods on hybrid

flowshop problems in order to obtain comparable results.

REFERENCES

Bellman, R. and O. Gross, (1954). Some combinatorial problems arising in the theory of multi-

stage processes, pp. 175-183. Journal of Society of Industrial and Applied Mathematics 2.

Bellman, R., A.O. Esogbue and I. Nabeshima, (1982). Mathematical Aspects of Scheduling and

Applications. Pergamon Press, New York.

Caraffa, V., S. Ianes, T.P. Bagchi and C. Sriskandarajah, (2001). Minimizing makespan in a

blocking flow-shop using genetic algorithms, vol. 70, pp. 101-115. International Journal

Production Economics.

Carlier, J. and I. Rebaï, (1996). Two branch and bound algorithms for the permutation flow, vol.

90, pp. 238-251. European Journal of Operational Research.

Dauzère-Pérès S., C. Pavageau and N. Sauer, (2000). Modélisation et résolution par PLNE d’un

problème réel d’ordonnancement avec contraintes de blocage, pp. 216-217. 3ème congrès

ROADEF, Nantes.

Grabowski, J. and J. Pempera, (2000). Sequencing of jobs in some production systems, vol. 125,

pp. 535-550. European Journal of Operational Research.

Holger H.H. and T. Stützle, (2005). Stochastic Local Search: Foundations and Applications,

Morgan Kaufmann, San Francisco, CA, USA.

Holland, J. H. (1962). Outline for logical theory of adaptive systems, vol. 3, pp. 297-314. Journal

of the association of computing machinery.

Iyer, S. K. and B. Saxena, (2004). Improved genetic algorithm for the permutation flow-shop

scheduling problem, vol. 31, pp. 593–606. Computers and Operations Research.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times

included, vol. 1, pp. 61-68. Naval Research Logistics Quarterly.

Martinez, S., S. Dauzière-Pérès, C. Guèret, Y. Mati and N. Sauer, (2006). Complexity of flowshop

scheduling problems with a new blocking constraint, vol. 169(3), pp. 855-864. European Journal

of Operational Research.

Martinez., S. (2005). Ordonnancement de systèmes de production avec contraintes de blocage,

Ph.D thesis, IRCCyN, Nantes, France.

Nawaz, M., Enscore, E. and Ham I. (1983). A heuristic algorithm for the m-machine, n-job

flowshop sequencing problem, vol. 11 (1), 91-95. OMEGA, The International Journal of

Management Science.

Ronconi, D.P. (2005). A Branch-and-Bound Algorithm to Minimize the Makespan in a Flow-shop

with Blocking, pp. 53-65. Annals of Operations Research.

Ruiz, R. and C. Marotto, (2005). A comprehensive review and evaluation of permutation flowshop

heuristics, vol. 165, pp. 479-494. European Journal of Operational Research.

Ruiz, R., and T. Stützle, (2007). A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem, vol. 177, pp. 2033-2049. European Journal of

Operational Research.

Siarry, P. and Z. Michalewicz, (2007). Advances in Metaheuristics for Hard Optimization,

Springer-Natural Computing Series.

Sauvey, C. and N. Sauer, (2010). A genetic algorithm with genes-association recognition for

flowshop scheduling problems, Journal of Intelligent Manufacturing.

Sawik, T.J. (1993). A schedule algorithm for flexible flow lines with limited intermediate buffers,

vol. 9, pp. 127-138. Applied Stochastic Models and Data Analysis.

Sawik, T.J. (1995). Scheduling flexible flow lines with no in-process buffers, vol. 33, pp. 1357-

1367. Int. J. Prod. Res.

Trabelsi, W., C. Sauvey and N. Sauer, (2010). Heuristic methods for problems with blocking

constraints solving jobshop scheduling. MOSIM'2010, 8th International Conference on Modelling

and Simulation, Hammamet, Tunisia.

Trabelsi, W., C. Sauvey and N. Sauer, (2011). Mathematical Model and Lower Bound for

Flowshop Problem With Mixed Blocking Constraints. IESM'2011, International Conference on

Industrial Engineering and Systems Management, Metz, France.

Wang, L., L. Zhang and D.Zheng, (2006). An effective hybrid genetic algorithm for flowshop

scheduling with limited buffers. Computers and Operations Research. Vol. 33(10), pp.2960–71.

Yuan, K. and N. Sauer, (2007). Application of EM algorithm to flow-shop scheduling problems

with a special blocking. ISEM.

Yuan, K., N. Sauer and C.Sauvey, (2009). Application of EM algorithm to hybrid flow shop

scheduling problems with a special blocking. Emerging Technologies and Factory Automation.

IEEE International Conference.

Zobolas, G. I., Tarantilis, C. D. and G. Ioannou, (2009). Minimizing makespan in permutation

flow shop scheduling problems using a hybrid metaheuristic algorithm, vol. 36, pp. 1249-1267.

Computers and Operations Research.

