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Storage or buffer capacities between successive machines in flowshop problems may be unlimited, limited or null. The last two cases can lead to blocking situations. In flowshop scheduling literature, many studies have been performed about classical flowshop problems and also about some problems with only one blocking situation between all machines. This paper deals with makespan minimization in flowshop scheduling problems where mixed blocking constraints are considered. After a problem description and definitions of different blocking constraints, a mathematical model is presented and heuristics are developed to propose quick solutions to these kinds of problems. Then, metaheuristics are used to improve found solutions. A comparison between heuristics and metaheuristics is then performed.

INTRODUCTION

In order to obtain higher profits, modern production companies usually try to maximize their productivity. The latter goal, among others, can be achieved by optimal or almost optimal jobs scheduling in the production process while reducing storage capacity and even to remove it whenever possible. Storage capacity reduction between machines can lead to situations that are known in literature as blocking situations. Scheduling models differ depending on the technology used and constraints applied in the system. The most common scheduling problem is classical flowshop where buffer space capacity between machines is considered unlimited. Other problems are characterized by only classical blocking constraint RSb (Release when Starting Blocking: a machine remains blocked by a job until this job starts on the next machine in routing) and some others by specific blocking constraints RCb or RCb* (Release when Completing Blocking: a machine will be available to treat its next operation after its job is finished on the following machine in the process). In this paper, a general case is presented where successive machines can be subject to different types of blocking constraints, considering makespan as optimization criterion. This problem is likely to better approach industry-derived cases, which can already be seen as flowshop problems.

The first article dealing with a flowshop problem was published over fifty years ago [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF]. Since then, many authors have focused on different aspects of this problem. We can cite a few articles: [START_REF] Bellman | Some combinatorial problems arising in the theory of multistage processes[END_REF] and [START_REF] Bellman | Mathematical Aspects of Scheduling and Applications[END_REF] for classical flowshop problem with two machines and [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flowshop sequencing problem[END_REF] and [START_REF] Carlier | Two branch and bound algorithms for the permutation flow[END_REF] for general case with multiple machines. For greater sized problems, some heuristics and metaheuristics have been proposed, such as [START_REF] Iyer | Improved genetic algorithm for the permutation flow-shop scheduling problem[END_REF] and [START_REF] Siarry | Advances in Metaheuristics for Hard Optimization[END_REF].

For problems with classical blocking constraint (RSb), [START_REF] Sawik | A schedule algorithm for flexible flow lines with limited intermediate buffers[END_REF][START_REF] Sawik | Scheduling flexible flow lines with no in-process buffers[END_REF] proposed a heuristic for multi-stage flowshop problem both respectively with and without storage capacity. In [START_REF] Wang | An effective hybrid genetic algorithm for flowshop scheduling with limited buffers[END_REF], authors developed a hybrid genetic algorithm for flowshop scheduling with limited buffers. Other papers dealing with flowshop problems with RSb constraint, such as (Carraffa et al., 2001) and [START_REF] Ronconi | A Branch-and-Bound Algorithm to Minimize the Makespan in a Flow-shop with Blocking[END_REF], can also be cited.

Regarding RCb constraint, an Integer Linear Programming (I.L.P) model, lower bounds and a metaheuristic are presented in [START_REF] Martinez | Ordonnancement de systèmes de production avec contraintes de blocage[END_REF] for flowshop and hybrid flowshop cases. These problems have been solved in [START_REF] Yuan | Application of EM algorithm to flow-shop scheduling problems with a special blocking[END_REF] and [START_REF] Yuan | Application of EM algorithm to hybrid flow shop scheduling problems with a special blocking[END_REF]) by a metaheuristic "Electromagnetism-like Mechanism". A new blocking constraint called RCb* has been proposed in [START_REF] Trabelsi | Heuristic methods for problems with blocking constraints solving jobshop scheduling[END_REF] which is an RCb constraint variant. In this work, authors propose heuristics to solve jobshop problems with RCb and RCb* constraints.

Finally, for articles that have dealt with different types of constraints mixed in a production system, we can cite [START_REF] Martinez | Complexity of flowshop scheduling problems with a new blocking constraint[END_REF] who studied complexity issues with RSb and RCb constraints. We can also cite works by [START_REF] Grabowski | Sequencing of jobs in some production systems[END_REF] which consider a real-life problem of scheduling clients' orders of concrete blocks in a factory of building industry modeled as a hybrid flowshop scheduling problem with mixed no-wait/no-store constraints and mixed bottleneck/non-bottleneck machines. To our knowledge, no other author was interested in solving flowshop problems simultaneously subjected to different types of blocking constraints on successive machines in a process.

In this paper, we describe different flowshop cases with one or more blocking constraints. We present a mathematical model, propose a heuristic method to solve mixed flowshop problems, and compare it with NEH heuristic. We also use some improvement methods for both algorithms. Then, genetic algorithms are used to improve found solutions. In the last part, a comparison between heuristics and metaheuristics is performed.

PROBLEM DESCRIPTION

In flowshop scheduling problem, a set of n jobs, J = {J 1 , J 2 , …, J n }, must be executed on a set of m machines, M = {M 1 , M 2 , …, M m }. All jobs J i require the same operation order, O i = {O i1 , O i2 , …, O im }, that must be executed according to the same manufacturing process. Operation O ij needs an execution time P ij on machine M j  M. Each machine can only execute one job at any time. Preemptive operation is not authorized in presented work. Objective function consists in determining best scheduling in order to reduce makespan, i.e. time when all operations are completed.

In the following, we present different cases of flowshop problem: classical flowshop problem without blocking constraint (Fig. 1), a flowshop scheduling problem with only one blocking constraint present between all machines (Fig. 2, 3, and 4) and an example in which different blocking constraints are mixed (Fig. 5). To illustrate these different cases, we consider an example with five jobs and five machines.

The following execution time matrix P ij , has list of machines M j in columns and the list of jobs J i in lines.
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In classical flowshop problem, buffer space capacity is considered to be unlimited. Therefore, there is no blocking situation and the system can be called Wb (Without blocking): a machine will be immediately available to execute the next operation after its operation in process is finished. In the example presented in Fig. 1, machine M 1 is available to treat job J 4 as soon as job J 3 on machine M 1 will be finished. For flowshop problem with a classical blocking constraint RSb (Release when Starting Blocking), a machine remains blocked by a job until this job starts on next machine in routing. This constraint is met in industrial problems where there is no intermediate storage between machines. In our example presented in Fig. 2, job J 3 remains blocked on machine M 1 as long as the following machine M 2 is not available. 

Fig. 2. Flowshop problem with classical blocking RSb

In specific blocking RCb* (Release when Completing Blocking*), a machine will be immediately available to treat its next operation after its job on the following machine in process is finished without regard to whether or not it leaves the machine. In the example presented in Fig. 3, specific blocking RCb* differs from classical blocking RSb by the fact that machine M 1 remains blocked by job J 3 until its operation on machine M 2 is finished. This constraint was introduced for the first time by [START_REF] Trabelsi | Heuristic methods for problems with blocking constraints solving jobshop scheduling[END_REF]. We come across this kind of constraint in production lines when two successive machines are depending on same resource (tool or operator…), so they cannot process at same time.

In the case of particular blocking constraint RCb, a machine will be immediately available to treat its next operation after the operation of its job on the following machine in process is finished and it has left this machine. This constraint was introduced for the first time by [START_REF] Dauzère-Pérès | Modélisation et résolution par PLNE d'un problème réel d'ordonnancement avec contraintes de blocage[END_REF]. RCb constraint is useful in some industrial environments, such as waste treatment industry and aeronautics parts fabrication [START_REF] Martinez | Ordonnancement de systèmes de production avec contraintes de blocage[END_REF]. For cider brewing applications for example, one cannot melt apples of different customers. In a first step, apples are poured in a bath and then pressed to make apple juice. New customer apples cannot be poured in bath before all of the first customer's apples have been pressed.

The difference between RCb and RCb* blocking is underlined by job J 3 (Fig. 3 and4): in an RCb* blocking problem, machine M 1 remains blocked by job J 3 until its following operation on machine M 2 is finished, whereas in RCb problem, blocking time is bigger since machine M 1 will only be available when its following operation on M 2 is completed and job J 3 leaves machine M 2 . This date corresponds to further following operation on machine M 3 beginning.

In a large production line, we can encounter different types of blocking constraints which depend on intermediate storage between machines, characteristics of machines and technical constraints.

To describe a flowshop problem where different blocking constraints are mixed, we introduce a vector V that contains blocking constraints between machines. Element V j is blocking constraint between machines M j and M j+1 . This vector has m-1 elements (as many elements as the number of transitions between machines). In the previous example, if V = (RCb, RSb, RCb*, Wb), then RCb is the blocking constraint between machines M 1 and M 2 . Thereby, we construct Gantt diagram as follows (Fig. 5): 

MATHEMATICAL MODEL

In this section, we present a mathematical model for a flowshop problem subject to different blocking constraints. This model is detailed in [START_REF] Trabelsi | Mathematical Model and Lower Bound for Flowshop Problem With Mixed Blocking Constraints[END_REF] in order to minimize makespan of a flowshop with mixed blocking constraint. Since jobs sequence is identical on all machines, we have to determine jobs permutation G that minimizes scheduling completion time or makespan. This model was solved by Xpress-MP optimization software and run on a PC with a 3.16 GHz Core 2 Duo' CPU.

Parameters

Parameters used in this model are as follows:

-n: Number of jobs.

-m: Number of machines.

-Pi, j: Job Ji execution time on machine Mj.

-Bh,j = 1 if there is an h blocking constraint between machine Mj and machine Mj+1 and 0 otherwise. With: h = 1: if there is Wb, i.e. no blocking constraint between machine Mj and machine Mj+1. h = 2: if there is an RSb constraint between machine Mj and machine Mj+1. h = 3: if there is an RCb* constraint between machine Mj and machine Mj+1. h = 4: if there is an RCb constraint between machine Mj and machine Mj+1.

Variables

Variables used in this model are as follows:

-Sk, j : Starting time of job at position k in sequence G on machine Mj.

-Ck, j : Completion time of job at position k in sequence G on machine Mj.

-Gi,k = 1 if job Ji is at position k in sequence G and 0 otherwise.

Model

Developed mathematical model is as follows:

max Min C (1)
With following constraints:
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Equations meaning

Each model constraint is described as follows:

-Equation ( 1): Objective function of our problem: minimize total completion time of scheduling.

-Equation ( 2): Makespan value must be greater than or equal to completion time of all jobs on the last machine.

-Equation (3): Represents precedence constraint between the same job on successive operations: to start its operation on a downstream machine, a job must first finish its operation on the upstream machine.

-Equation ( 4): This equation models different blocking constraints represented by parameter Bh,j. For example, if there is an RSb constraint between machine Mj and machine Mj+1, equation ( 4) becomes:

1 1, j+ k- k, j S S 
-Equation ( 5): This is a special case of the above equation which only deals with the penultimate machine. There is no blocking RCb at this stage because it depends on the two following machines.

-Equation ( 6): This is a special case of (4). It only deals with last machine, which can only be without blocking.

-Equation ( 7): This constraint calculates the completing time of jobs: i.e. last machine operations completion time.

-Equation ( 8 

HEURISTICS

As presented in [START_REF] Trabelsi | Mathematical Model and Lower Bound for Flowshop Problem With Mixed Blocking Constraints[END_REF], it is not possible to obtain an exact solution for big-sized problems in a reasonable time. Therefore, it is necessary to develop approached methods and estimate their mean error with optimal solution (when it is computable) or lower bounds.

In this paper, we propose some heuristics with some local improvements in order to quickly obtain a feasible solution (in a polynomial time), but not necessarily an optimal one. In this section, we review the NEH method and present a new heuristic. We also use some improvement methods for both algorithms.

1. NEH heuristic presentation

NEH heuristic is one of the most famous heuristics known for flowshop scheduling [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flowshop sequencing problem[END_REF]. This heuristic is not only efficient, but also very simple to compute. It is a constructive algorithm that selects the longest job not yet sequenced and tries to place it at all possible positions of the partial sequence under construction. Selected position minimizes partial makespan. A lot of references took this heuristic as a reference to compare their results [START_REF] Zobolas | Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm[END_REF], [START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF]. A pedagogical comparative study of some heuristics is performed in (Ruiz and Maroto, 2005). Adaptation of this heuristic to our problem is merely respect different blocking constraints between all machines when we calculate the corresponding makespan.

Algorithm 1 Let J = (J1, J2, ..,

2. TSS heuristic presentation

Proposed heuristic is based on a construction method. This proposal is inspired by an algorithm developed in [START_REF] Trabelsi | Heuristic methods for problems with blocking constraints solving jobshop scheduling[END_REF] for jobshop problem with RCb and RCb* blocking. From a partial solution, it is necessary to choose which job must be placed next. For that, we chose a criterion that combines three parameters:

-Cpmax: Partial Makespan: i.e. completion time of a new placed job.

-SomTpsIn: Sum of inactive times: i.e. the time during which machines are inactive, including idle times and blocking times.

-SomTpsEx: Sum of execution times of placed operations in partial schedule.

To have a best possible scheduling, we trend on one hand to minimize inactive times of machines and completion time, and on the other hand to maximize machine use, which is depicted in the following criterion:

Cr = min (Cpmax + SomTpsIn -SomTpsEx).
Then, n possibilities of schedule are constructed by switching jobs to place at first position and finally we choose the one that gives smallest final makespan Cmax.

General structure of the proposed algorithm to solve flowshop problems with mixed constraints is given below.

Algorithm 2

Introduce problem data (jobs number, machines number, operations execution time and blocking constraints between machines) For i = 1 to n (we calculate all possibilities by switching job to place at first position)

We Example: Let be a flowshop scheduling problem with four jobs and three machines.

Operations execution times are as follows:
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Blocking constraints vector: V = (RCb, RSb) , i.e. RCb is blocking constraint between machines M 1 and M 2 , and RSb is blocking constraint between machines M 2 and M 3 . Let be J 1 the job placed at first position. We have then three possibilities to place a following job: J 2 , J 3 or J 4 (Figure 6). We use choice criterion between these three cases to choose the job that gives the smallest criterion. We will explain how we calculated these different parameters through first case i.e. when job J 2 is placed (Figure 6-A [4][5] on machine M 2 ) and three time units as blocking time due to RCb constraint between machines M 1 on M 2 . -Cpmax = 8 ut. This partial makespan represents minimal date from which all machines will be available.

Then, Cr(A) = 8 + 5 -10 = 3 ut.

The results of each possibility (J 2 , J 3 or J 4 ) are given in Table 1. In this example, job J 3 is placed as second job in partial sequence because criterion Cr is minimal with job J 3 . Final solution given by above presented algorithm for this F3|Mixed|C max example is presented by the Gantt diagram (Figure 7). Fig. 8. Four machines problem with RCb blocking constraint TSS local improvement is based on the fact that, in an obtained sequence, a job with greater differential blocking time is permuted with all other jobs of sequence and the best solution is chosen. We continue as long as permutations improve makespan.

5. Experimental results

Presented works had been performed to see the effect of different improvements on obtained results by heuristics solving.

To determine whether our heuristic TSS would give good results, we compared it with the NEH algorithm in step (a), and then for both algorithms we added an NEH local improvement in step (b) and a TSS local improvement in step (c). At the end, the best solution is kept as the better makespan (d).
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Table 2 : Error percentages between optimal solutions and makespan by using different heuristics Results presented in Table 2 prove that for small-sized problems (with 5 to 8 jobs), NEH and TSS have a very close error percentage (TSS is often better for problems with big number of machines), while for problems of larger sizes, NEH is often much better than TSS. (Table 2, lines a)

By adding an NEH local improvement on previous results, we note that error percentage becomes significantly smaller and comparable for both proposed heuristics. We also note that with TSS as a first heuristic, we only obtained best results for problems with 5 machines and some other problems (6/10, 7/7, 10/6...). (Table 2, lines b)

Since NEH local improvement gives good results, and as computing time is negligible, we can add other improvements. We added TSS local improvement, and that still improves results for both types of heuristics (Table2, lines c).

Finally, after adding different improvements to TSS and NEH heuristics, the best solution is kept for both cases (Table2, lines d) and we can note that error percentage is improving again, which means that the best solutions found with NEH or TSS heuristic taken first are often different.

We can notice the interest of varying both heuristics and local improvements:

-It gives us the possibility of tackling problems from different angles. Obtained solutions are rather different, which allows us to choose the best one. -As computing time of problems solved by heuristics and local improvement methods is negligible, we can mix them together to improve again solutions. We also notice that maximum error percentage by using our methods is obtained for about 15 machines.

META HEURISTICS 1. Genetic algorithms

In order to further improve solutions obtained by heuristic methods, we propose to use genetic algorithms which have proven their efficiency on discrete optimization problems since 1962. Holland's works on adaptive problems [START_REF] Holland | Outline for logical theory of adaptive systems[END_REF] and its fields of application have widely spread [START_REF] Holger | Stochastic Local Search: Foundations and Applications[END_REF], [START_REF] Siarry | Advances in Metaheuristics for Hard Optimization[END_REF].

Results obtained by genetic algorithm for flowshop scheduling problems with RCb blocking constraint proposed in works of [START_REF] Sauvey | A genetic algorithm with genes-association recognition for flowshop scheduling problems[END_REF] encouraged us to perform this method on mixed blocking flowshop problems. We used this metaheuristic to consider different blocking constraints simultaneously. This genetic algorithm runs with two main phases: selection and evaluation (Figure 8). An initial population is randomly generated and directly evaluated. Evaluation consists in our problem to calculate each individual's makespan in order to sort them. Then, a selection is operated on individuals in order to determine those likely to give the best results. Our selection includes crossing, mutation, and addition of new individuals at each new operation.

Fig. 8. Genetic algorithm presentation

In our genetic algorithm, we can impose best individuals keeping percentage (pc_best), new randomly generated people introduction percentage (pc_new), and crossing percentage (pc_cross). Individuals selected for crossing are taken among the preceding generation's best individuals and new randomly generated people. The remaining percentage of the created generation is created by mutation. Mutation is a random alteration of an individual's genes. In our algorithm, we select for mutation among best-kept individuals in order to see whether they further improve their good results.

As represented on Fig. 8, the loop composed of steps 2 and 3 is repeated as long as it is allowed by step 4. To perform our simulations, we chose to stop when the population no longer evolves quickly enough or stops evolving altogether. Population is then homogeneous and we can hope that it is near to optimum. The criteria we have retained to stop our simulations is the number of times when the best value was identical (ctbvi). It is very easy to put a loop counter to count the number of times loop 2-3-4 is performed. At each loop iteration, we hope that the evaluation of the new population will give a better individuate than best individuate evaluated up to time. Then, if the best individuate of the new current population improves the algorithm solution, it is memorized as the algorithm temporary solution and a loop counter is initialized to 0. If the algorithm temporary solution is not improved by the current loop population, this loop counter is incremented up to a maximum value defined by the parameter ctbvi. The returned algorithm solution is a temporary solution which has not evolved since ctbvi algorithm loops.

2. Experimental results

Percentages of crossing, mutation, and new individuals are adjustable. To perform work presented in this paper, we set for our experiments these percentages as follows: (pc_best : 0,1 ; pc_new : 0,1 ; pc_cross : 0.65). The criteria we have retained to stop our simulations is the number of times when the best value was identical (ctbvi = 500). The genetic algorithms processes are also programmed in the "C++" language and run on a PC with a 3.16 GHz Core 2 Duo' CPU.

In table 3, we can see at first (lines a) mean error between optimal solutions and makespan obtained by using genetic algorithm with 50 individuals. We add local improvements (lines b) to TSS and NEH. Then, in (lines c) we take best solution that gives the better makespan between the last genetic algorithm with local improvements (b) and another genetic algorithm with 100 individuals. Computing time of (c) is then presented.

Table 3 : Error percentages between optimal solutions and makespan obtained with different metaheuristics We note that genetic algorithms are very efficient: 0% error for problems up to 8 jobs with a computing time that is almost negligible, and remains inferior to 0.64% error for all other problems up to 12 jobs and 100 machines with a reasonable computing time.

If we detail further results, we find that there is not much improvement of results in (b) when adding NEH and TSS local improvements. On the contrary, in (c), we see a marked improvement on obtained solutions, allowing us to note that tackling a problem from different angles (i.e. use of two genetic algorithms or more) is better than adding local improvements to obtained schedules.

CONCLUSION AND PERSPECTIVES

In this paper, we focused on flowshop scheduling problem with mixed blocking constraints and its solving with heuristic and metaheuristic methods. Among the most effective heuristic methods, NEH has been taken to be locally improved and compared with our proposed heuristic TSS. We have tackled this problem with NEH and TSS heuristics successively, with two local improvements. First one is based on the iterative NEH method. Second is based on the permutation of the job that has the greatest differential blocking time in the sequence with all other jobs of this sequence. The best solution of the two heuristics with both improving methods is then chosen.

Our methods, when combined, improves significantly and very quickly our solutions: less than 1.61% error between optimal solutions and makespan in a time less than a second for a tested range of problems. Using metaheuristics, we further improved the results (highest error percentage is 0.34%), but it can be considerably more time consuming: up to 11.15s per problem on realized tests.

In our future works, we intend to further improve the efficiency of these methods, especially in computation time for the genetic algorithm. Then, we will try to adapt our methods on hybrid flowshop problems in order to obtain comparable results.
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  ): Each job Ji is placed at only one position k in sequence G. -Equation (9): At each position k of sequence G is only assigned one job Ji. -Equation (10): Gi, k is a Boolean variable. It is equal to 1 if job Ji is at position k in sequence G and 0 otherwise. -Equation (11): Starting time of jobs cannot be negative. -Equation (12): Completion time of jobs cannot be negative.
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 6 Figure 6: Three possible scheduling cases

  ut. We placed two first jobs and we calculate its operations execution times.-SomTpsIn = 1+1+1+2 = 5 ut. It is the sum of inactive times with two time units as idle times (intervals [2-3] on machine M 1 and

  

  

  Jn) a list of jobs ordered by decreasing total processing time For i = 1 to n Select job Ji from J

	Cpmax = ∞
	For k = 1 to i
	Place job Ji at position k in partial sequence without changing relative position of other
	jobs already sequenced
	Calculate Cmax of associated partial scheduling
	If Cmax < Cpmax then
	Bestk = k
	Cpmax = Cmax
	End if
	End for
	Place job Ji at position Bestk in partial sequence
	End for

Table 1 :

 1 Choice criterion used to place next operation

		Execution time « SomTpsEx » (ut)	Idle time + Blocking time « SomTpsIn » (ut)	Partial makespan « Cpmax » (ut)	Cr
	A	10	2 + 3	8	3
	B	8	1 + 2	6	1
	C	9	4 + 3	7	5

Table 2

 2 presents the mean error between optimal solutions Opt and makespan C max . Error percentage is calculated as follows:

	%	err		C	max Opt  Opt		100

3. NEH local improvement

This local improvement is based on the iterative NEH method. In fact, we start with the scheduling order obtained by initial heuristic and then we use the iterative part of NEH algorithm, as long as we notice a solution improvement.

Algorithm 3

Let J = (J1, J2, .., Jn) a jobs order obtained by initial heuristic 

TSS local improvement

In regard to classical flowshop problems, RCb blocking induces supplementary blocking time, which is defined as differential blocking time. In [START_REF] Sauvey | A genetic algorithm with genes-association recognition for flowshop scheduling problems[END_REF], the authors give two definitions of differential blocking time depending on whether it comes before occurrence of job J i on machine M j , or after. Differential blocking time "before" job J i on machine M j is due to insufficient execution time of job J i on machine M j-1 in front of the execution time of the preceding job in the routing on machine M j+1 . Differential blocking time "after" job J i on machine M j is due to insufficient execution time of the preceding job in the routing on machine M j+2 . (Figure 8)