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COMBINING MEASUREMENTS OR DATES USING HIERARCHICAL
BAYESIAN STATISTICS: THE EVENT MODEL.

PHILIPPE LANOS1 AND ANNE PHILIPPE2

Abstract

The most widely used methods for measurements or dates combination are the weighted
mean and the central age model which are based on maximum likelihood (ML) estima-
tion. However, these techniques do not take into account errors occurring between mea-
surements or dates and the ML estimation does not operate when considering individual
errors. This article proposes a new approach for combining measurements or dates through
the Event model which is based on Bayesian statistics. This approach allows the estima-
tion of a mean (mean of measurements or date of an Event from different datings) by
introducing individual errors on each observation in addition to the experimental errors
made during laboratory experiments. In particular, Event model implies that dates are
coming from assumed contemporaneous artefacts. A prior information on these individual
errors is introduced using the shrinkage density. This modelling provides a very simple
way to automatically penalize outlying data with minimal assumptions about Bayesian
parameters. The mathematical formulation is explained in details and many application
examples are exhibited in different archaeological situations involving radiocarbon, lumi-
nescence and archaeomagnetic results. This new combination procedure is also applied
to the wiggle-matching process in dendrochronological dating. Calculations are based on
MCMC numerical techniques and can be performed using ChronoModel software which is
freeware and multiplatform.
Keywords : Measurement combination, Event model, Bayesian statistics, individual
errors, outlier penalization, MCMC methods, Chronomodel software

Date: June 9, 2015
1 CNRS IRAMAT-CRPAA, Université Bordeaux-Montaigne and Géosciences-Rennes, Université Rennes 1.
2 Laboratoire de mathématiques Jean Leray, Unversité Nantes.
This project is supported by the grant ANR-11-MONU-007 Chronomodel.

1



2 LANOS ET PHILIPPE

1. Introduction

The issue of combining measurements or dates currently occurs in physics and dating
methods. The idea is to get a unique value with a confidence interval which summarizes a
set of observations. The most widely used methods for measurements or dates combination
are the weighted mean and the "central age model" which are based on maximum likelihood
(ML) estimation. We make an overview of these techniques in this introduction. Thus, we
consider the problem of combining measurements of the same unknown parameter when
each measurement has its own uncertainty.

This question appears for determining a physical parameter from measurements which
are done for example

• on a same object by several laboratories
• on different objects having the same physical parameter of interest.

In archeology this question arises for estimating the date of an event from a sample
of n measurements done on contemporaneous artifacts by different dating methods. The
measurement represents for instance:

• a 14C age in radiocarbon,
• a paleodose measurement in luminescence (TL/OSL)
• an inclination, a declination or an intensity of the geomagnetic field in archaeomag-
netism (AM)

They are converted into calendar dates using a calibration curve (see Section 3.1 for a de-
scription). This application plays an important role to constructing chronologies in arche-
ology with software as BCal Buck (2004) or OxCal Ramsey and Lee (2013) Bronk Ramsey
(2009a).

The statistical model is defined as n independent measurements M1, . . . ,Mn for which
we assume that they have the same unknown mean µ. This is the parameter of interest.
We denote s2i the experimental variance on the measurementMi, that are supposed known
and evaluated by the laboratory during the measurement process. To summarize, we write

Mi = µ+ siεi, ∀ i = 1, ..., n (1)

where ε1, ..., εn are n independent identically distributed Gaussian random variables with
zero mean and variance 1. The variances s2i , i = 1, ..., n. are supposed known and represent
the measurement error.

As the measurements have different uncertainties, the empirical mean is not the right
thing to calculate. Indeed, the estimator commonly used is the following weighted mean
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(see Ward and Wilson (1978))

µ̂n =

n∑
i=1

Mi

s2i
n∑
i=1

1

s2i

(2)

Dating having high variances s2i are thus penalized by the inverse of the variance when
calculating the mean. Variance of estimator (2) is given by :

var(µ̂n) =
1

n∑
i=1

1

s2i

The estimator µ̂n is the maximum likelihood estimate under the assumption that ε1, ..., εn
are Gaussian random variables. In this case µ̂n is an efficient estimate. (see Appendix 5.1
for detail). This model is named "common age model" in Galbraith et al. (1999) for
combining paleodose in luminescence dating method. This method is also implemented in
Oxcal for combining 14C ages. (voir Bronk Ramsey, 2009a).

To take into account individual effect, we can add a random effect on the parameter µ.
The model is then defined by

Mi = µi + siεi (3)

µi = µ+ σλi

where λ1, ..., λn, ε1, ..., εn are 2n independent identically distributed Gaussian random vari-
ables with zero mean and variance 1. Error σλi represents the uncertainty between dating
and the Event µ due to sampling (representativeness) problems of unknown origin which
are not related to the measurement process itself in the laboratory. This model is named
"central Age model" in Galbraith et al. (1999) and could be named here as “central mea-
surement model”. An explicit form of the likelihood estimate is not available. Consequently,
numerical methods are required to approximate this estimate. See Appendix 5.2 for details.

Alternatively, a Bayesian approach can be adopted to estimate the parameters µ and σ2

of this hierarchical model. It is thus necessary to choose a prior distribution on (µ, σ2).
This choice is discussed for instance in Congdon (2010) or Spiegelhalter et al. (2004) in
the particular case of the meta-analysis. We decide not to discuss this approach of the
Bayesian central model in this paper because the choice of the prior can be viewed as a
particular case of our model studied in Section 2 and 3. Indeed, we propose an extension of
model (3) by including individual effects on the variance of λi. This approach is motivated
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by the fact that each measurement can be affected by errors which can come from different
sources (Christen (1994)) as:

(1) the way to ensure that the samples studied can realistically provide results for the
events that we wish to characterize (measurement or date)

(2) the care in sampling in the field, the care in sample handling and preparation in
the laboratory

(3) other non-controllable random factors that can appear during the process.

Estimation of the mean using unknown individual variances σ2
i is achieved according to

data nature: measurements alone or measurements calibrated into dates. For this model
the ML estimate does not exist (See 5.3 for details). This is the reason why we propose a
Bayesian approach described in Section 2 and Section 3.

The paper is organized as follows : Section 2 is devoted to Bayesian combinaison of mea-
surements. We describe a hierarchical Bayesian model, which extend the age model. Two
applications illustrate its performances. In section 3, we adapt our model for combining
measurements to dating problems. We then define the so-called Event model to estimate
a date from dating methods done on contemporary artefacts. In this case a calibration
process is required to convert the measurements into dates. Our combinaison model is
modified by adding a new stage in the hierarchical model.

Remark 1. Throughout this article we define each Bayesian model using directed acyclic
graph (DAG). This graph describes the dependencies in the joint distribution of the prob-
abilistic model. Each random variable of the model (that is an observation or a param-
eter) appears as a node in the graph. Any node is conditionally independent of its non-
descendents given its parents. Hereafter the circle correspond to all the random variables
of the model. With the color of the circles, we distinguish between observations (red) and
parameters (blue).

2. Combining measurements using Bayesian approach

2.1. The Model. We want to estimate a parameter µ from n measurements (M1, ...,Mn),
which are modelled by random variables with mean value µ.

We propose in this section an extension of the central age model defined in (3), which
includes individual effects on the variance. We describe now our hierarchical Bayesian
model. At the first stage we introduce latent variables µi to take into account unknown
individual errors affecting the measurements :

Mi = µi + siεi
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µ

i = 1 to N

σ2
i

µi

s2i

Mi

Figure 1. DAG of the Bayesian model for combining measurements.

where ε1, ..., εn are n independent identically distributed Gaussian random variables with
zero mean and variance 1.

On the latent variables µi, i = 1, ..., n we assume that

µi = µ+ σiλi (4)

where λ1, ..., λn are n independent identically distributed Gaussian random variables with
zero mean and variance 1. The individual effects occur through the individual variances
σ2
i which are supposed unknown. Their prior distributions is defined in Section 2.2.
The hierarchical Bayesian model for combining measurements is summarized by the

DAG in Figure 1. According to this diagram the joint density is of the form

p(M1, ...,Mn, µ1, ..., µn, σ
2
1, ..., σ

2
n, µ) =

n∏
i=1

p(Mi|µi)
n∏
i=1

p(µi|σ2
i , µ)

n∏
i=1

p(σ2
i )p(µ) (5)

where, for all i = 1, ..., n1

Mi|µi ∼ N (µi, s
2
i )

µi|µ, σ2
i ∼ N (µ, σ2

i ).

We discuss now the choice of the prior distributions on the parameter of interest µ and the
individual variances σ2

i .

1The notation X|Y is used for the conditional distribution of X given Y .
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2.2. Choice of the prior on σ2
i and µ. The parameter of interest µ is assumed to be

uniformly distributed on an interval T = [tm, tM ]. The length of this interval depends on
the prior information available.

For the hyperparameters σ2
i in the third stage of the hierarchical model, the choice of a

diffuse noninformative prior may be problematic as improper priors may induce improper
posteriors.

This problem appears, for example, if we apply the Jeffreys prior (obtained for Gaussian
observations) 1/σ2

i to variances of our model with individual random effects. The choice
of diffuse priors in such models raises particular issues, discussed for instance in Congdon
(2010) (see page 33 and 90).

It is always possible to choose a proper probability distribution which approximates the
diffuse prior as for instance

• a density proportional to the Jeffreys prior truncated on a compact set in ]0,∞[,
• an inverse Gamma distribution with small scale and shape parameters.

However, such priors may cause identifiability problems as the posteriors are close to being
empirically improper. Moreover the inference about the parameter of interest is very
sensitive to choice of parameters of the proper prior distribution.

Among many alternatives proposed in the literature, we choose the uniform shrinkage
distribution introduced by Daniels (1999). This probability distribution admits a density,
given by

p(σ2
i ) =

s20
(s20 + σ2

i )
2
. (6)

where the parameter s20 must be fixed. Note that this form of density implies that the
random variable s20/(σ2 + s20) is uniformly distributed on [0, 1]. The variance and mean of
this distribution are infinite, so it can be considered as weakly informative.

In the particular case of the central age model, Spiegelhalter et al. (2004) suggests the
following choice of parameter :

1

s20
=

1

n

n∑
i=1

1

s2i

Hereafter we take this choice of parameter for the different numerical examples.

Remark 2. It is possible to extend the uniform shrinkage by taking

p(σ2
i ) =

as2a0
(s20 + σ2

i )
a+1

.
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In this cas σ2
i = u − s20 where u is distributed according to the Pareto distribution with

parameters (a, s0), that is P (σ2 > t) = (t/s20)
−a for all t > s20. When a tends to zero, we

obtain the Jeffreys prior.

2.3. MCMC algorithm. The posterior distribution of the parameter of interest µ can
not be obtained explicitly. It is required to implement an MCMC algorithm to approximate
the posterior distribution, its quantiles, the Bayes estimates and the HPD regions.

As all the full conditionals cannot be simulated by standard random generators, we adopt
the Metropolis-within-Gibbs strategy. For each parameter, the full conditional distribution
is proportional to (5).

(1) For the parameter of interest µ and the latent variables µi, we identify a truncated
Gaussian distribution on the study period T . Such a distribution can be simulated
using rejection sampling. Different choices of proposal are possible as the Gaussian
distribution or the truncated Laplace (double exponential) distribution on T . It is
also possible to use an adaptive random walk MH with a Gaussian proposal.

(2) The density of the full conditional distribution of σ2
i is explicitly computable up to

an unknown multiplicative constant, but it is not a standard distribution. Therefore
it is simulated using an adaptive random walk MH with a Gaussian proposal on
the variable log(σ2

i ).

These algorithms are implemented in Chronomodel software, which is freeware and mul-
tiplatform. It can be downloaded on the following website http://www.chronomodel.fr. See
Chronomodel Software (2015); Vibet et al. (2015) for details. In the applications discussed
below, the graphics summarizing the numerical results are performed using ChronoModel
software. We represent the marginal densities of

• the parameter of interest µ (on gray background)
• the individual measurements µi (on white background)
• the individual standard deviations σi

For each density, the bar above the density represents the shorter 95% posterior probability
interval. The vertical lines, delimiting the colored area under the density curve, indicate
the endpoints of the 95% highest posterior density (HPD) region. For unimodal posterior
density, both 95% posterior probability regions coincide.

2.4. Application to sample of measurements.

Example 1. Mean paleodose calculation in OSL dating
As a first illustration, Figures 2-3 show an example (denoted Yem-11) of a mean paleo-

dose calculated from 18 individual aliquots for sample SD1-08OSL11 of Shi Bat Dihya 1,

http://http://www.chronomodel.fr


8 LANOS ET PHILIPPE

in Wadi Surdud middle paleolithic site complex (Yemen) (see Sitzia et al. (2012)). Deter-
minations are based on Analyst software and measurement unit is in Gy/ka. Results here
are presented in Age obtained by dividing the equivalent aliquot paleodoses by the dose
rate (see table II, p. 477 Sitzia et al., 2012).

Application of the finite Mixture Model (Galbraith and Green (1990)) leads to an equiv-
alent dose of 56 ± 5, that is [46, 66] at 95%. Alternatively, the ML estimate given by (2)
is equal to µ̂n = 42.8 and the frequentist confidence interval is [40.6, 45.1]. This approach
seems to provide accurate estimation however, there is a lack of robusteness. Indeed, if we
delete the observation yem-11_9 , the ML estimate is 57.05 and the confidence interval
is [54.7, 59.4] at 95%. So, the results are very sensitive to this value, which seems to be an
outlier. However, looking at Figure 2, it is difficult to decide which aliquots can be deleted
for the estimation.

The Bayesian model doesn’t need to select data or penalize some of them. Taking all
the aliquots, it provides the HPD interval [50, 59] at 95% confidence level, which is much
more precise than the one obtained with the finite mixture.

Example 2. Mean intensity calculation in archaeomagnetic dating
The second example in Figure 4 and 5 deals with the mean of a set of intensities in ar-

chaeomagnetic dating. Archaeo-intensities have been determined from 17 different bricks
coming from Notre-Dame-sous-Terre (NDST) church in Mont-Saint-Michel abbey (Nor-
mandy, France), building state 1 (Sapin et al., 2008, see table D page 107). The ML
estimate given by (2) is equal to µ̂n = 68.5 and the frequentist confidence interval is
[68, 69.2]. The Event model provides the HPD interval [68, 71] for the parameter µ at 95%
confidence level. In this case, the Bayesian approach leads to a wider HPD interval than
the frequentist one because it takes into account the scattering of the dates.
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Figure 2. Yemen, Ex. 1. Posterior densities of µi, i = 1, ..., 18 (white
background) and µ (gray background) for the Paleodose estimation on the
sample Yem-11.

Figure 3. Yemen, Ex. 1 (cont.). Posterior densities obtained for the stan-
dard deviations σi, i = 1, ...n.
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Figure 4. NDST, Ex 2. Posterior densities of µi, i = 1, ..., 18 (white
background) and µ (gray background) for the archeo-intensity

Figure 5. NDST, Ex 2 (cont.). Posterior densities obtained for the stan-
dard deviations σi, i = 1, ...n.
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3. Event model for dating combination with calibration

At the begining of this section, we recall some Bayesian models implemented in Oxcal,
that are the individual calibration and the combinaison of 14C dates.

3.1. Individual calibration. The simplest problem is the calibration of a measurement
M in calendar time t. The measure M has a Gaussian distribution with mean µ and
unknown variance s2. This is a hierarchical model, the variable µ has also a Gaussian
distribution with mean g(t) and variance σ2

g(t) where g is a function called "calibration
curve" linking the measurement to calendar time t. Every dating method has its own
calibration curve. For instance, the curve IntCal09 converts a radiocarbon Age in calendar
date for the mainland samples. This is the dendrochronological calibration of 14C ages.
Ramsey and Lee (2013); Manning and Kromer (2011); Bronk Ramsey (2009a); Buck (2004);
Buck et al. (1996); Litton and Buck (1995).

In archaeomagnetism the secular variation curves of the Earth’s magnetic field are used
to convert a inclination, declination or intensity measurement to calendar date. In the
case of an age M provided by Luminescence (TL or OSL), the calibration function is just
a linear function g(t) = (t− t0) where t0 is the determination year of the age measurement
M in the laboratory.
The Bayesian model for ’calibration’ or conversion of a measure M to calendar date t is
described below . The model on the measurement M is given by

M = µ+ sε

where µ is the true value of the measurement, and where s2 is the known variance. The
distribution of ε is the standard Gaussian distribution.

The calibration step converts µ to a calendar date t, using the relation

µ = g(t) + σg(t)ρ

where both functions g and σg are supposed known, and where ρ is a standard Gaussian
random variable.

Let T be the range of study. We choose the uniform distribution on T as prior distribu-
tion on the parameter t,

p(t) ∝ 1T (t) (7)

If we integrate the posterior distribution of (t, µ) with respect to latent variable µ, we
get the posterior distribution of t (up to a multiplicative constant) :

p(t|M) ∝ 1

S(t)
exp

(
−1

2S2(t)
(M − g(t))2

)
1T (t) (8)
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where

S(t)2 = s2 + σ2
g(t) (9)

Figure 6. Conversion of a 14C age ( A = 1000 ± 30 BP) in calendar date
via the calibration curve IntCal13

Figure 7. Conversion of a TL age (A = 900±50 ) in calendar date through
the linear transformation g(t) = (2000− t)

3.2. Calibration from multiple measurements (R-Combine in Oxcal). We observe
m independent measurementsMk performed on a same object. This appears for example in
the case of radiocarbon dating when the same object is analyzed by different laboratories.
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Figure 8. Conversion of an inclination measurement (I = 59±1) in calendar
date via the calibration curve of archaeomagnetic field in France (Paris)
during the last two millennia.

In this case, measurements have to be combined before calibration (see Ward and Wilson
(1978) and Bronk Ramsey (2009a)). This approach requires that all the measurements have
the same calibration curve.

According to the DAG given in Figure 9, the Bayesian model is defined by the following
distributions :

Mi|µ ∼ N (µ , s2i ) ∀ i = 1, ..., n

µ|t ∼ N (g(t) , σ2
g(t))

t ∼ Unif(T ).

One can easily get the marginale posterior density of t, which is given by

p(t|M1, ...,Mm) ∝ 1

S̃m(t)
exp

(
−1

2S̃m(t)2
(M − g(t))2

)
1T (t)

where

S̃m(t)2 = s2 + σ2
g (t) with

1

s2
=

m∑
k=1

1

s2k

and where

M =
m∑
k=1

Mk

s2k
/

m∑
k=1

1

s2i
.

The R-combine model is equivalent to the individual calibration of the observation (M, s2)

using the process described in Section 3.1.
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t

µ

i = 1 to N

s2i

Mi

Figure 9. DAG of the R-Combine model.

3.3. Calibrated Event. In the general case we observe n measurements Mi such that
each measurement provides a dating through a calibration step defined by a calibration
function gi and its error σgi . The R-comine model is not longer valid in this case since it
requires a common calibration curve (i.e. gi = g for all i = 1, ..., n). Our idea is to adapt
the Bayesian combinaison of measurements to estimate the date of an archaeological event
from individual datings of contemporaneous artefacts.

3.3.1. The model. We describe the so-called Event model to estimate a date θ from n mea-
surements Mi provided by different dating methods. We assume that each measurement
Mi is related to an individual date ti through a calibration curve gi. Here this curve is
supposed known with some known uncertainty. The main assumption in our Event model
is the contemporaneity of the dates ti, i = 1..., n with the event date θ.

In this context the model with random effect given by (3) can be rewritten as follows

Mi = µi + siεi

µi = gi(ti) + σgi(t)ρi

ti = θ + σiλi (10)

where (ε1, ...εn, ρ1, ..., ρn, λ1, ..., λn) are independent identically distributed Gaussian ran-
dom variables with zero mean and variance 1.
The random variables (λi)i and (εi)i are independent and satisfy the following properties :

• σiλi represents the error between ti and θ due to sampling problems external to the
laboratory (see Section 1).
• siεi + σgi(t)ρi represents the experimental error provided by the laboratory and the
calibration error
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θ

i = 1 to N

σ2
i

ti

µis2i

Mi

Figure 10. DAG for the hierarchical Event model applied to dating com-
bination with calibration.

According to the DAG defining the event model (see Figure 10) the joint distribution of
the probabilistic model can be write of the form

p(M1, ...,Mn, µ1, ..., µn, t1, ..., tn, σ
2
1, ..., σ

2
n, θ) = p(θ)

n∏
i=1

p(Mi|µi)p(µi|ti)p(ti|σ2
i , θ)p(σ

2
i ),

(11)
where the conditional distributions, that appear in the decomposition are given by

Mi|µi ∼ N (µi , s
2
i )

µi|ti ∼ N (gi(ti) , σgi(ti)
2)

ti|σ2
i , θ ∼ N (θ σ2

i ) (12)

σ2
i ∼ Shrink(s20) (13)

θ ∼ Unif(T ) (14)

The density of the shrinkage distribution with parameter s20, that appears in (13), is given
by (6).

With calibrated measurements, the parameter s20 cannot be calculated directly from
the variances s2i as explained in Section 2.2. Indeed the measurement errors si are not
necessarily homogeneous units (see for instance the case of archaeomagnetism combined
with 14C).

We proceed in the following way, for each i = 1, ..., n :
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(1) an individual calibration step is done for each measurements Mi

(a) we compute the posterior distribution of ti (using (8))
(b) we approximate the posterior variance ŝ2i = var(ti|Mi)

(2) We take as shrinkage parameter s0 :

1

s20
=

1

n

n∑
i=1

1

ŝ2i

3.3.2. Typo-chronological information or Reference chronological information. This is the
case of dating provided by the study of objects recovered during excavations. The datings
are often expressed in the form of time intervals [tim, tiM ]. Thus, the observations are both
dates (tim, tiM). They correspond to an interval which contains the unknown date ti which
does not come from measurement.

In this special case a possible choice of model is the following : we assume that condi-
tionnaly to ti, the random variables (tim, tiM) are independent

p(tim, tiM |ti) = p(tim|ti)p(tiM |ti)

and they are distributed from truncated exponential distribution with parameter λ > 0.
The supports are respectively ]−∞, ti] and [ti,+∞[. The resulting density is of the form

p(tim, tiM |ti) = λ2e−λ(tim−tiM )1tim≤ti≤tiM

Remark 3. The parameter λ does not appear in the posterior distribution. So it can be
fixed arbitrarily equal to 1.

For the other parameters of the event model, we keep the same distribution as defiend
in (12),(13) and (14).

3.4. MCMC algorithm. We keep the same algorithm as that described in Section 2.3
except for the latent variables ti. The full distribution of ti, i = 1, ..., n, is proportional to

1

Si(ti)
exp

{
−1

2S2
i (ti)

(Mi − gi(ti)
}

exp

{
−1

2σ2
i

(ti − θ)
}

1T (ti)

where Si(ti) is defined in (9). We can choose an adaptive random walk MH with a Gaussian
proposal. But the random walk solution is not necessarily the most efficient choice because
the target distribution can be multimodal. We are frequently confronted to this problem
with the dating results. See for instance the results given by Archaeomagnetic dating in Ex.
5 and Ex. 6 In this context, an alternative is to choose an independent Metropolis-Hastings
algorithm with the individual calibration density as proposal. This ensures that all the
possible values of ti can be visited when the calibrated date distribution is multimodal.
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3.5. Applications.

Example 3. Shroud of Turin (Italy)
As a first example of Event model applied to dating combination with calibration, we

consider the shroud of Turin dated by radiocarbon (see Damon (1989)). Twelve radiocar-
bon datings have been performed on a strip cut from the shroud and divided into three
samples sent to Arizona, Oxford and Zurich AMS laboratories. Four, three and five deter-
minations were made respectively. Christen (see page 498-499 Christen, 1994) calculated
a combination (R-combine procedure) with outlier detection. Removing determinations
A1.1 and O1.1, the HPD interval obtained by Christen is [1267, 1313] AD at 95%. In this
case, the Event model (Fig. 11 ) taking into account all the dates without rejection, gives
a very close HPD interval equal to [1265 ; 1315] at 95%.

Example 4. Mont-Saint-Michel (Normandy, France), Notre-Dame-sous-Terre Church.
Here we take dates of building state 1 from the carolingian church Notre-Dame-sous-

Terre (NDST) in Mont-Saint-Michel (Normandy, France) (see pages 110-116 Sapin et al.,
2008). Dating is based on 3 charcoals (14C dating) and 8 bricks (TL dating) (Fig. 13).
Event model gives a HPD interval equal to [898 ; 987] at 95% probability level. Posterior
densities for standard deviations σ2

i remain concentrated onto small ranges [0, 200] at 95%
(Fig. 14), which are of the same order as errors on individual dates themselves. This is a
consequence of original coherence between dates.

Example 5. Lezoux (Auvergne, France). Medieval poter’s kiln
In the case of a medieval poter’s kiln from Lezoux (Auvergne, France), Maison-de-

Retraite-Publique site Mennessier-Jouannet et al. (1995), the Event model dates the last
firing of the kiln from baked clay (AM and TL dating) and from charcoals (14C dating).
More precisely, dating is based on 3 TL datings (CLER 202a, 202b, 203), 2 AM datings
(inclination and declination) and 1 radiocarbon dating (Ly-5212) (Fig. 15). Posterior
densities ti (in color) are very shrinked compared to calibrated densities, especially for
archaeomagnetic and TL dates (in black line). Event model gives a HPD interval equal to
[575, 864] AD at 95% probability level. Posterior densities for standard deviations σi (Fig.
16) are much spread than in the previous example. This comes from the multimodality of
AM calibrated dates.

Example 6. Cuers (Provence, France), medieval or modern lime kiln
Last firing date of lime kiln of Cuers (Provence, France), Pas-Redon site (Vaschalde et al.

(2014)), has been determined using walls baked clay (AM dating) and charcoals (14C dat-
ing). The dating is based on 3 AM datings (inclination, declination and intensity) and on
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Figure 11. Shroud of Turin, Ex. 3. [white background ] Posterior densities
of ti and individual posterior calibrated densities (black line) obtained for 12
14C dates. [gray background] posterior density of the event θ.

2 radiocarbon datings (Poz-42876 and Ly-16086) (Fig. 17). Like in the previous example,
posterior densities ti (in color) are much more shrinked than calibrated densities. Event
model gives a double HPD interval [1388, 1548] and [1556, 1616] AD at 95% probability
level: we are then in a case of dating indecision. Posterior densities for standard deviations
σi (Fig. 18) clearly show high values corresponding to AM dating.
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Figure 12. Turin, Ex. 3 (Cont.) Posterior densities obtained for standard
deviations σi.

Figure 13. Mont-Saint-Michel, Ex. 4. [white background ] Posterior den-
sities of ti and individual posterior calibrated densities (black line) obtained
for TL dates and for 14C dates. [gray background] posterior density of the
event θ.
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Figure 14. Mont-Saint-Michel, Ex. 4 (Cont.). Posterior densities ob-
tained for standard deviations σi.

Figure 15. Lezoux Ex. 5. [white background ] Posterior densities of ti and
individual posterior calibrated densities (black line) obtained for TL dates,
for 14C dates and for AM dates. [gray background ] Posterior density for
Event θ

3.6. Outliers. In radiocarbon dating, several Bayesian methods have been proposed to
deal with the presence of outliers. The first approach introduced in Christen (1994) incor-
porates a possible random shift on the measurement Mi. The model with random effect is
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Figure 16. Lezoux, Example 5 (Cont.). Posterior densities obtained for
standard deviations σi.

Figure 17. Cuers, Ex. 6. [white background] Posterior densities ti with
individual posterior calibrated densities (black). [gray background] posterior
density for Event θ.

of the form

Mi = g(t) + Φiδi + Siεi (15)

where
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Figure 18. Cuers, Ex 6 (Cont.) Posterior densities obtained for standard
deviations σi.

• the prior for Φi is the Bernoulli distribution with parameter pi. Φi takes the value 1
if the measurement requires a shift and 0 otherwise. In practice pi must be chosen
and the recommended value is 0.1 or 0.05.
• δi is the lag, the prior for δi is the uniform distribution on T .
• εi is normally distributed with zero mean and variance 1 and S2

i = s2i + σ2
g(t).

t

µ

i = 1 to N

Φiδi
s2i

Mi

Figure 19. DAG of the outlier model given in Christen (1994)

Bronk Ramsey (2009b) proposes different extensions of this model which can be sum-
marized by the following hierarchical Bayesian models :

M1 : s-type outlier model : a shift on the measurement Mi

Mi = g(t) + siΦiδi10u + εi (16)

Note that r,d-type outlier models are similar.
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M2 : Outlier t-type : a shift on the time t :

Mi = g(t+ Φiδi10u) + εi (17)

where

• Φi et εi are defined as in Christen (1994).
• the distribution of δi is a Student’s t-distribution with chosen degrees of freedom
or a Gaussian distribution.
• u is a scale parameter distributed uniformly on [0, 4]

In practice it is difficult to choose between these models because this requires to know
if the observation is an outlier in time or an outlier in measurement error.

In the Event model, we assume that the origin of the outlier is unknown, leading ulti-
mately to an offset on the date ti. Therefore the parameter λi in (10) has a role similar to
Φiδi in the t-type outlier model (M2).

The variance σ2
i indicates if the observation is an outlier. Indeed if one measurement

Mi gives an off-trend calibrated date ti compared to other calibrated dating, the posterior
distribution of σi will have a large mean, and thus inducing an automatic penalization of
the date ti contributing to the event.

Example 7. Synthetic data with outlier
In order to illustrate these properties, we consider a synthetic Event example composed

of four measurements Gaussian distributed around 800, 850, 900 and 1500 with standard
deviation 30, and calibrated using the simple linear transformation M = g(t) = t. This
example (Fig. 20 ) shows that an outlying date (here 1500) has always no influence onto
Event result. The HPD interval obtained with the four data is [795, 914] AD at 95% while
HPD obtained with the three well grouped data is [791, 909] at 95%. Three of the posterior
distributions of the standard deviations σi (i=1,..,3) remain near zero while the stabdar
deviation of data 1500 is high because of its outlying position. This behaviour already
observed in the first examples (see posterior standard deviation densities in figures 3, 5,
12, 14, 16 and 18 demonstrates that Event model appears to be a robust statistics for
calculating posterior mean of the date θ with very weak assumption on prior densities.

Example 8. Tell Qasile, context X
Here robustness and ease of implementation is tested on eleven radiocarbon dates de-

termined for context X of Tell Qasile and modelled in (Bronk Ramsey, 2009b, table 2, p.
1028 and 1029). Oxcal calculation used R-combine function with s-type outlier detection
option and provided two HPD intervals equal to [−1054;−970] and [−962;−934] at 95%.
Event model (Fig. 21a) gives a mono-modal posterior density and a single HPD interval
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Figure 20. Synthetic data, Ex 7. [left] Posterior densities ti (white back-
ground) and posterior density for Event θ (gray background). The individual
posterior calibrated densities are superimposed in black. [right] Posterior
densities of the standard deviations σi.

equal to [−1050;−951] at 95% which is very similar to the two merged Oxcal intervals.
Posterior densities for standard deviations σi are very similar (Fig. 21) except for samples
QS1 and QS6 which show higher posterior values and thus appears as outliers (these were
also detected by Oxcal treatment).
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Figure 21. Tell Qasile, Ex. 8. [left] Posterior densities ti for 14C dates and
posterior density for Event θ (gray background). . The individual posterior
calibrated densities are superimposed in black. [right] Posterior densities
obtained for standard deviations σi.
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3.7. Calibrated Event for wiggle-matching. The "wiggle-matching" model combines
radiocarbon dating and dendrochronology. The 14C datings are carried out on tree-ring
samples separated by a known number of tree-rings (see Manning et al., 2010; Galimberti
and Ramsey, 2004; Christen and Litton, 1995, for instance).

In this case, the calibrated dates ti should be shifted in order to be contemporaneous to
the event date θ. So we adapt our event model to wiggle-matching as follows. We consider
that the event date θ corresponds to the date of a chosen reference tree-ring (for instance
the oldest tree-ring, see Example 9).

We denote by δi the number of years corresponding to this lag in time. We convert the
number of estimated tree-rings into years, assuming that one tree-ring is equal to one year.
By convention, δi is positive (resp. negative) when ti is older (resp. younger) than θ.

We rewrite equation (10) as follows

ti = θ − δi + σiλi (18)

Moreover it is easy to take into account some cases with unknown δi. It is necessary to
build a prior distribution for (δ1, ..., δn). The information available on the parameter δi is
often expressed of the form δi ∈]δmin, δmax[. So the prior distribution can be chosen uniform
on this interval. To relax the constraint on the support we can also choose a Gaussian prior
with mean 1

2
(δmin + δmax) and variance 1

12
(δmax − δmin)2.

θ

i = 1 to N

or δiδiσ2
i

ti

µis2i

Mi

Figure 22. DAG for the wiggle matching model. The shifts δi can be known
or estimated
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Example 9. Gordion juniper dendrochronology (Central Anatolia)
An application of the Event wiggle-matching model is presented here in the case of the

Gordion juniper dendrochronology (See Manning and Kromer, 2011, table 1). 35 samples
of this sequence, from relative tree-rings centered at 776.5-1025.5 have been dated in the
Heidelberg radiocarbon Laboratory. The samples are calibrated with IntCal04.14c curve
(Reimer et al. (2004)) and are separated with known gaps taking values between 1 and
19 years over a range of 249 years. δi is the gap between dated tree-ring and reference.
According to Manning and Kromer (2011), we fix the oldest tree-ring as reference (it
means that δ1 = 0). The Event model gives a HPD interval equal to [-1744, -1719] at 95%
probability level. In comparison, the model implemented in Oxcal, by using D-Sequence
and Gap functions with Outlier-Model("SSimple",N(0,2),0,"s"), gives a HDP interval equal
to [-1734, -1724] at 95%.

The event model provides an estimation less accurate than the model considered in
Manning and Kromer (2011). The difference on the length of the HPD region is due to
the event structure which increases the variance of the posterior distribution. However
our approach brings robustness. As an illustration, we modify artificially the dataset by
adding outliers :

Figure 23 gives the estimation obtained by the event model for both samples :

• the original Gordion dataset analyzed in Manning and Kromer (2011),
• the same dataset contaminated with 11 outliers. We modify the 14C ages as de-
scribed in the table below. We keep the same experimental variances on the 14C
ages.

sample number modified 14C age (BP)
with Manning and Kromer (2011) notations

20144, 27605 3100
20137, 25792,20155 3600

20157,20141,20147,25793,20153,27612 3700

Figure 23 shows that the posterior distribution of the event date is not sensitive to the
presence of these outliers.

On original dataset, the HPD interval for θ is equal to [-1744, -1719] at 95%. This result
is very close to the one obtained with Oxcal (v.4.1) using sequence model with s-type
outlier detection : [-1734,-1724] at 95%.

On the contaminated sample, the model considered in Manning and Kromer (2011)
cannot be estimated with Oxcal software. It does not return estimations because of poor
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agreement indices. The event model gives an HPD interval for θ equal to [-1749 , -1717]
at 95%.
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Figure 23. Gordion juniper dendrochronology (Central Anatolia). Poste-
rior densities of the dates ti (white background) and the Event date θ (gray
background) obtained on original Gordion dataset (blue) and on a contami-
nated version with 11 outliers (red)
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4. Conclusion

The Bayesian model we propose to combine measurements or dates in order to get
respectively a mean of measurements or the date of an event is very simple. It allows to
automatically penalise outliers. In chronological problems, the Event model assumes that
the dated artefacts are contemporaneous and consequently dates can be combined whatever
the dating method is (chronometric methods, typo-chronology, history). Moreover, in
the Chronomodel software, the event model appears as the first fundamental stone on
which stratigraphic constraints and phasing can be put on inside much more complicated
chronological models.

5. Appendix

5.1. Construction of ML estimate given by (2). The likelihood function of the model
is

L =
n∏
i=1

p(Mi|µ, s2i ) =
n∏
i=1

1

si
√

2π
e

−1

2s2
i

(Mi−µ)2
.

The derivative of this function with respect to µ is equal to zero when

µ =
n∑
i=1

1

s2i
Mi

(
n∑
i=1

1

s2i

)−1
This is a maximum, and so the MLE estimate is

µ̂n =

n∑
i=1

Mi

s2i
n∑
i=1

1

s2i

(see Ward and Wilson (1978)).

5.2. Estimation of µ with random effect. The likelihood function is given by

LH =
n∏
i=1

p(Mi|µi)p(µi|µ, σ2) (19)

where
p(Mi|µi) =

1

si
√

2π
e

−1

2s2
i

(Mi−µi)2

and
p(µi|µ, σ2) =

1

σ
√

2π
e

−1

2σ2
(µi−µ)2



31

We integrate with respect to the hyper parameters µi (i= 1,...,n) to obtain the conditional
density :

p(Mi|µ, σ2) =
1√

2π(s2i + σ2)
exp

{
−1

2(s2i + σ2)
(Mi − µ)2

}
(20)

According to the independence of Mi, i = 1, .., n, the likelihood function is

L =
n∏
i=1

√
Wi

2π
exp

{
−1

2

n∑
i=1

Wi(Mi − µ)2

}
(21)

where
Wi =

1

s2i + σ2
(22)

By canceling the partial derivatives of ln(L) with respect to σ and µ we get the following
system of equations 

µ = 1
W

∑n
i=1WiMi

n∑
i=1

Wi −
n∑
i=1

W 2
i (Mi − µ)2 = 0

(23)

where W =
∑n

i=1Wi. This system leads to an equation in σ2, which does not admit an
explicit solution. if there is a strictly positive solution denoted σ̂2

n, then we can use a
numerical method, e.g. bisection Method, to approximate the solution.

By substituting in the equation (23-1), we estimate the parameter µ by

µ̃n =
n∑
i=1

Mi

s2i + σ̂2
n

(
n∑
i=1

1

s2i + σ̂2
n

)−1
.

The existence problem is illustrated in the particular case s2i = s2 for i = 1, ..., n. In
this case we get an explicit solution for the system (23). The estimate of µ is the empirical
mean

µ̃n =
1

n

n∑
i=1

Mi = M̄n

and the variance σ2 is estimated by

σ̂2
n =

 1
n

∑n
i=1(Mi − µ̃n)2 − s2 if s2 < 1

n

∑n
i=1(Mi − µ̃n)2

0 otherwise

If s2 = 0 then the estimate of σ2 is the empirical variance :

σ̂2
n =

1

n

n∑
i=1

(Mi − M̄n)2
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This situation corresponds to strong assumptions on the variances. Indeed the exper-
imental variance on the measurements s2i are nul and the individual variances σ2

i are set
equal to σ2. Therefore it is a very restrictive choice which does not reflect errors carried
by measurements or dating.

5.3. Nonexistence of the Maximum Likelihood Estimate when σ2
i 6= 0. According

to the independence of Mi, i = 1, .., n, the likelihood function is

L(µ, σ1, ..., σn) =
n∏
i=1

√
Wi

2π
exp

{
−1

2

n∑
i=1

Wi(Mi − µ)2

}
(24)

where

Wi =
1

s2i + σ2
i

.

If the ML estimate of µ exists, then the variances σ2
i are solution of the following system

µ =
n∑
i=1

1

s2i + σ2
i

Mi

(
n∑
i=1

1

s2i + σ2
i

)−1
σ2
i = (Mi − µ)2 − s2i pour tout i = 1, ..., n

(25)

By substituting the expression of σ2
i in (24), we get :

L̃(µ) =
n∑
i=1

1

|Mi − µ|

M1, ...Mn are the singular points of the function L̃ (in the sense that limµ→Mi
L̃µ) = +∞

for all i). Therefore the ML estimate is not defined. This difficulty can be overcome using
the Bayesian approach.
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