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Abstract—The unreduced dynamic complexity of modern
computer, production, communication and control systems has
become essential and cannot be efficiently simulated any more
by traditional, basically regular models. We propose the universal
concept of dynamic complexity and chaoticity of any real inter-
action process based on the unreduced solution of the many-body
problem by the generalised effective potential method. We show
then how the obtained mathematically exact novelties of system
behaviour can be applied to the development of qualitatively new,
complex-dynamical kind of computer and control systems.

I. INTRODUCTION

The construction of intelligent production, control, com-
puter and communication systems (e. g. [1]–[5]) has now
entered into a qualitatively new stage, with the effective inten-
sity of interactions involved having crossed the “complexity
threshold”, after which none of multiple interaction links in
a versatile system can be neglected without essential loss
to the system dynamics [6], [7]. Under these conditions the
rigorously defined unreduced dynamic complexity of intelli-
gent system behaviour, including strong dynamic randomness,
becomes essential and cannot be efficiently simulated by usual,
basically regular dynamics of control and computer systems.

In this report we describe the rigorous framework of
the unreduced dynamic complexity of any real many-body
system with ubiquitous interaction [6]–[12] (section II) and
then review its application to modern computer systems of
intelligent control and communication, leading to what we call
“complexity revolution” in their design and use (section III).

II. UNREDUCED DYNAMIC COMPLEXITY, EMERGENCE
AND RANDOMNESS IN A MANY-BODY SYSTEM WITH

ARBITRARY INTERACTION

A. Interaction Problem Solution by the Generalised Effective
Potential Method

We describe the unreduced dynamics of a real system with
arbitrary interacting entities starting from the “existence equa-
tion”, which is a universal, Hamiltonian (and nonintegrable)
expression of a closed system configuration [6]–[12]:{

N∑
k=0

[
hk (qk) +

N∑
l>k

Vkl (qk, ql)

]}
Ψ (Q) = EΨ (Q) , (1)

where hk (qk) is the “generalised Hamiltonian” (later spec-
ified as a complexity measure) for the isolated k-th system
component, qk stands for the k-th component degree(s) of

freedom, Vkl (qk, ql) is the arbitrary interaction potential for
the k-th and l-th components, Q ≡ {q0, q1, ..., qN}, Ψ (Q) is
the system state-function expressing its configuration, E is the
generalised Hamiltonian eigenvalue (energy), and summations
are performed over all (N ) system components. This dynamic
equation covers also (after the standard transformation) the less
fundamental case of time-dependent formalism.

We then separate in (1) some “common” degree(s) of free-
dom, q0 ≡ ξ, describing e. g. system’s spatial configuration:

{h0 (ξ) +
N∑
k=1

[hk (qk) + V0k (ξ, qk)+

+
N∑
l>k

Vkl (qk, ql)]}Ψ (ξ,Q) = EΨ (ξ,Q) ,

(2)

where now Q ≡ {q1, ..., qN} and k, l ≥ 1. This form is
convenient for the standard problem expression in terms of
the known eigen-solutions for the free system components:

hk (qk)ϕknk (qk) = εnkϕknk (qk) , (3)

Ψ (ξ,Q) =
∑
n
ψn (ξ)ϕ1n1 (q1) ...ϕNnN (qN ) ≡

≡
∑
n
ψn (ξ)Φn (Q) ,

(4)

where {ϕknk (qk), εnk} is the complete set of orthonormal
eigenfunctions and eigenvalues of the k-th component Hamil-
tonian hk (qk), n ≡ {n1, ..., nN} runs through all eigenstate
combinations, and Φn (Q) ≡ ϕ1n1

(q1) ...ϕNnN (qN ).

Substituting expansion (4) into (2) we obtain the system of
equations for {ψn (ξ)} in a standard way [6], [8], [10], [11]:

[h0 (ξ) + V00 (ξ)]ψ0 (ξ) +
∑
n
V0n (ξ)ψn (ξ) = ηψ0 (ξ)

[h0 (ξ) + Vnn (ξ)]ψn (ξ) +
∑
n′ 6=n

Vnn′ (ξ)ψn′ (ξ) =

= ηnψn (ξ)− Vn0 (ξ)ψ0 (ξ) ,
(5)

where n, n′ 6= 0, η ≡ η0 = E−ε0, ηn = E−εn, εn =
∑
k

εnk ,

Vnn′ (ξ) =
∑
k

[
V nn

′

k0 (ξ) +
∑
l>k

V nn
′

kl

]
, (6)

V nn
′

k0 (ξ) =

∫
ΩQ

dQΦ∗n (Q)Vk0 (qk, ξ) Φn′ (Q) , (7)

V nn
′

kl (ξ) =

∫
ΩQ

dQΦ∗n (Q)Vkl (qk, ql) Φn′ (Q) , (8)



and we have isolated the equation for the generalised “ground
state” ψ0 (ξ) (with minimum complexity defined below). The
obtained system of equations (5) is equivalent to the starting
existence equation (1)–(2) and as well “nonintegrable”.

We now try to solve this nonintegrable system of equations
(5) with the help of the generalised effective, or optical, po-
tential method [13], [14], where one expresses ψn (ξ) through
ψ0 (ξ) from the equations for ψn (ξ) in (5) using the standard
Green function technique and then inserts the result into the
equation for ψ0 (ξ), obtaining thus the externally “integrable”
effective existence equation [6], [8], [10]–[12]:

h0 (ξ)ψ0 (ξ) + Veff (ξ; η)ψ0 (ξ) = ηψ0 (ξ) , (9)

with the effective potential (EP) operator Veff (ξ; η) given by

Veff (ξ; η) = V00 (ξ) + V̂ (ξ; η) ,

V̂ (ξ; η)ψ0 (ξ) =
∫

Ωξ

dξ′V (ξ, ξ′; η)ψ0 (ξ′) , (10)

V (ξ, ξ′; η) =
∑
n,i

V0n (ξ)ψ0
ni (ξ)Vn0 (ξ′)ψ0∗

ni (ξ′)

η − η0
ni − εn0

, (11)

where εn0 ≡ εn − ε0 and
{
ψ0
ni (ξ), η0

ni

}
is the complete set

of eigen-solutions of a truncated system of equations:

[h0 (ξ) + Vnn (ξ)]ψn (ξ) +
∑
n′ 6=n

Vnn′ (ξ)ψn′ (ξ) = ηnψn (ξ) .

(12)

The eigenfunctions, {ψ0i (ξ)}, and eigenvalues, {ηi}, of the
effective equation (9) are used to obtain other state-function
components:

ψni (ξ) = ĝni (ξ)ψ0i (ξ) ≡
∫
Ωξ

dξ′gni (ξ, ξ′)ψ0i (ξ′) , (13)

gni (ξ, ξ′) = Vn0 (ξ′)
∑
i′

ψ0
ni′ (ξ)ψ

0∗
ni′ (ξ

′)

ηi − η0
ni′ − εn0

, (14)

and the total system state-function Ψ (ξ,Q) (see (4)):

Ψ (ξ,Q) =
∑
i

ci

[
Φ0 (Q) +

∑
n

Φn (Q) ĝni (ξ)

]
ψ0i (ξ) ,

(15)
where coefficients ci are determined by the state-function
matching conditions at the boundary where interaction van-
ishes. The measured system density ρ (ξ,Q) is obtained as
state-function squared modulus, ρ (ξ,Q) = |Ψ (ξ,Q)|2 (for
“wave-like” levels), or as state-function itself, ρ (ξ,Q) =
Ψ (ξ,Q) (for “particle-like” structures) [8], [10], [11].

Although the EP problem formulation, (9)–(11), remains
as nonintegrable as the initial formulation, (1), (2), (5), the
interaction dynamical links in the EP version reveal the qual-
itatively new properties of unreduced the problem solution,
leading to its full, correctly adjustable form [6]–[12], [14].

The key property of any real interaction result (9)–(15)
is its dynamic multivaluedness, or redundance, meaning that
one has a redundant number of individually complete and
therefore mutually incompatible solutions describing equally
real system configurations, or realisations. This major property
of system realisation (solution) plurality, underlying the new

mathematics of complexity [8], [10], [11], [15]–[17] and
the imminent complexity revolution in modern computer and
control systems (section III), is due to the nonlinear and self-
consistent dependence of the unreduced EP, (9)–(11), on the
solutions to be found, which leads to the growth of the highest
power of the characteristic equation determining the eigen-
solution number and reflects the physically obvious plurality
of interacting eigen-mode combinations [6]–[12], [14]–[16].

If Nξ and Nq are the numbers of terms in sums over i and
n in (11), then the total eigenvalue number of equation (9) is
Nmax = Nξ(NξNq + 1) = (Nξ)

2Nq + Nξ, giving the Nξ-
fold redundance of the usual “complete” set of NξNq eigen-
solutions of equations (5) plus an additional, “incomplete” set
of Nξ solutions. It means that the number of “regular”, locally
complete realisations is N< = Nξ, while the additional set
of Nξ solutions forms a special, “intermediate” realisation
serving as the transitional state in system jumps between
regular realisations and provides the universal, causally com-
plete extension of the quantum-mechanical wavefunction and
classical (probability) distribution function [8], [10]–[12], [16].

In a simplified scheme of pair-wise attraction between two
objects with N modes/elements each [16], the total number
of direct “interaction links”, N2, reflects the number of all
“eigen-solutions”, while we still have only N “accessible
places” for any emerging configuration. The system is forced
to permanently “switch” between its N< = N2/N = N
incompatible realisations with N elements each. This provides
an estimate for the realisation number N< as being equal
to the number N of system elements/eigenmodes, while in
more complicated cases it is determined by the number of
combinations of system interaction links, N ! (see section III).

The same property of fundamental dynamic multivalued-
ness of any real interaction is confirmed by the straightforward
graphical analysis of the EP equation [8], [14], [18].

The fundamental dynamic multivaluedness thus rigorously
derived for any real interaction process implies the intrinsic
property of causal, or dynamic, randomness within any real
system, in the form of its permanently changing realisations,
which are forced (by the same driving interaction) to replace
each other in truly random (unpredictable, undecidable, non-
computable) order thus naturally defined. This omnipresent
randomness in any, even externally regular system behaviour
provides the universal, consistent version of (dynamical) chaos,
which is essentially different from any its version in usual,
dynamically single-valued, exact-solution, or unitary, descrip-
tion inevitably reduced to “involved regularity”, including
incorrectly assumed “exponential amplification of deviations”
(as a result of invalid extension of a perturbation theory
approximation) [8].

It means that the complete general solution of arbitrary
interaction problem is given by the dynamically probabilistic
sum of system density values for separate realisations:

ρ (ξ,Q) =

N<∑
r=1

⊕
ρr (ξ,Q), (16)

where the summation is performed over all system realisations,
N< is their number, and the ⊕ sign designates the special,
dynamically probabilistic meaning of the sum. It implies that



any measured quantity (16) is intrinsically unstable (even for a
totally isolated system) and its current value will unpredictably
change to that of another, randomly chosen realisation. Such
kind of permanently unstable dynamics is readily observed in
nature and underlies the phenomenon of life itself [8], [10]–
[12], [15], but is avoided in unitary theory and traditional
technological/control systems, where it is associated with
linear “noncomputability” (e. g. [19]) and technical failure.
The omnipresent dynamic multivaluedness from the unreduced
interaction problem solution forms thus the unique basis for the
truly consistent, causally complete understanding of biological
and artificial “bio-inspired” and “intelligent” systems, where
causal randomness can now be transformed from an obstacle
to the key advantage (section III).

Thus obtained causal randomness of the unreduced prob-
lem solution (9)–(16) is accompanied by the dynamic proba-
bility definition. As elementary system realisations are equal
in their “right to emerge”, the dynamically derived, a priori
probability of r-th realisation emergence, αr, is given by

αr =
1

N<
,
∑
r

αr = 1 . (17)

Actual observations often deal with “self-organised” groups of
similar, practically indiscernible elementary realisations (see
section II-B). The dynamic probability of such r-th compound
realisation is naturally determined by the number, Nr, of
elementary realisations it contains:

αr (Nr) =
Nr
N<

(
Nr = 1, ..., N<;

∑
r

Nr = N<

)
. (18)

The stationary expectation value, ρexp (ξ,Q), is directly ob-
tained from (16)–(18) for statistically large event numbers:

ρexp (ξ,Q) =
∑
r

αrρr (ξ,Q) . (19)

However, contrary to usual theory, our dynamically derived
randomness and probability (16)–(18) remain valid for any
single event of realisation emergence and even before it
happens. The dynamic realisation probability distribution is
obtained also from the Born probability rule for the gener-
alised wavefunction (section II-B) [8], [11], [12], [15], [16].

Another major property of any real interaction process is
the dynamic entanglement of system components (degrees of
freedom) in each realisation, described by the dynamically
weighted eigenfunction products with different degrees of
freedom (ξ,Q) in the state-function expression (15). It provides
the well-specified meaning of “interaction” itself and the
mathematically exact version of the tangible quality, or texture,
of the emerging system structure, which is absent in unitary
models dealing with abstract, “immaterial” entities.

The obtained dynamically multivalued entanglement of the
unreduced interaction result describes a living structure, perma-
nently changing, developing and probabilistically adapting its
tangible configuration, thus providing the rigorous definition of
(structure) emergence and a well-specified basis for biomedical
and bio-inspired technology applications (section III). The
properties of dynamically multivalued entanglement and adapt-
ability are further amplified due to the complex-dynamical,
probabilistic fractality of the unreduced general solution [8],

[10]–[12], [15] obtained by application of the same EP method
to solution of the truncated system of equations (12) from the
first-level EP expression (11) (see section II-B).

Now we can universally define dynamic complexity, C, of
any real system or interaction process as a growing function
of the number of its explicitly obtained realisations, or rate of
their change, equal to zero for the (unrealistic) case of only
one realisation [6]–[8], [10]–[12], [15], [16], [18]:

C = C(N<) , dC/dN< > 0 , C(1) = 0 . (20)

Dynamic complexity examples are provided by C (N<) =
C0 lnN<, C (N<) = C0 (N< − 1), generalised energy/mass
(temporal rate of realisation change) and momentum (spatial
rate of realisation emergence) (section II-B). It becomes clear
that the entire dynamically single-valued paradigm of usual
theory (including its versions of “complexity”, “chaos” and im-
itations of “multi-stability” in abstract “spaces”) corresponds
to exactly zero value of unreduced complexity equivalent to ef-
fectively zero-dimensional, point-like projection of reality. The
proposed universal concept of complexity and its applications
appear thus as the explicit and causally complete extension
of usual theory to the unreduced, dynamically multivalued
picture of reality. In particular, the above unified definition
of dynamical randomness shows that the unreduced dynamic
chaoticity and complexity are closely related and practically
synonymous features of any real interaction process.

Thus universally defined complex behaviour involves es-
sential, or dynamic, nonlinearity. It is provided by feedback
links of developing interaction as they are expressed by the
EP dependence on the problem solutions (see (9)–(11)). It is
the dynamically emerging nonlinearity, since it appears even
for a formally “linear” initial problem expression (1)–(2), (5),
whereas usual, mechanistic “nonlinearity” is but a perturbative
reduction of this essential nonlinearity of the unreduced EP
formalism (see also section II-B). Essential nonlinearity leads
to irreducible dynamic instability of any system state: both are
determined by the same interaction feedback mechanism.

B. Probabilistic dynamic fractality, unified dynamic regimes
and the symmetry of complexity

A more involved feature of dynamically multivalued, or
probabilistic, fractal (of emerging system structure) appears
as a result of partial incompleteness of the first-level solution
(9)–(19) relying upon the yet unknown solutions of the trun-
cated system of equations (12). We can now apply the same
unreduced EP method to solution of this truncated problem,
which gives the second-level effective equation resembling the
first-level equation (9):

[h0 (ξ) + V neff (ξ; ηn)]ψn (ξ) = ηnψn (ξ) , (21)

where the second-level EP V neff (ξ; ηn) is similar to its first-
level version (10)–(11):

V neff (ξ; ηn)ψn (ξ) = Vnn (ξ)ψn (ξ) +

+
∑
n′ 6=n,i

Vnn′ (ξ)ψ
0n
n′i (ξ)

∫
Ωξ

dξ′ψ0n∗
n′i (ξ′)Vn′n (ξ′)ψn (ξ′)

ηn − η0n
n′i + εn0 − εn′0

,

(22)



and
{
ψ0n
n′i (ξ) , η0n

n′i

}
is the complete eigen-solution set of the

second-level truncated system:

h0 (ξ)ψn′ (ξ) +
∑
n′′ 6=n′

Vn′n′′ (ξ)ψn′′ (ξ) = ηn′ψn′ (ξ) , (23)

with n′ 6= n, 0. Similar to the first-level EP (10)–(12),
its second-level version also splits into many incompatible
realisations (numbered by index r′) due to the self-consistent
dependence on the eigen-solutions to be found, leading to
respective splitting of the first-level truncated system solutions:{

ψ0
ni (ξ) , η0

ni

}
→
{
ψ0r′

ni (ξ) , η0r′

ni

}
. (24)

This hierarchical dynamical splitting of emerging system
structure progresses with ever more truncated auxiliary systems
of equations till the last, exactly solvable system (of two
equations). Substituting the dynamically multivalued solutions
of each truncated system to the previous-level EP, we get the
dynamically probabilistic fractal of the now truly complete
problem solution in the form of multilevel hierarchy of prob-
abilistically changing realisations:

ρ (ξ,Q) =

N<∑
r,r′,r′′...

⊕ ρrr′r′′... (ξ,Q) , (25)

where indexes r, r′, r′′, ... enumerate realisations at consecu-
tive levels of dynamically probabilistic fractality. Similar to
the dynamic probabilities of realisation emergence events of
the first level, (17)–(18), we obtain the hierarchy of causal re-
alisation probabilities {αrr′r′′...} for all levels of dynamically
multivalued fractal:

αrr′r′′... =
Nrr′r′′...
N<

,
∑

rr′r′′...

Nrr′r′′... = N< . (26)

The expectation value of the dynamically probabilistic fractal
density of the complete problem solution is obtained as:

ρexp (ξ,Q) =

N<∑
r,r′,r′′...

αrr′r′′...ρrr′r′′... (ξ,Q) . (27)

The dynamically probabilistic fractal is the essential ex-
tension of conventional fractals: the latter are not solutions to
any real interaction problems and show the simplified “scale
symmetry” and basic regularity. By contrast, our dynamically
multivalued fractal in general does not possess the scale in-
variance (with approximate exceptions for limited scale ranges)
and realises instead the much deeper law of the universal sym-
metry of complexity (see below). It is also different from any
approximate (and usually diverging) “series expansion”: the
possibly long, but finite sums of the dynamically probabilistic
fractal solution (25), (27) provide the exact version of the real
multilevel system structure.

The universality of our analysis shows that the entire world
structure emerges as a single, physically unified dynamical
fractal of the underlying simplest interaction between two
primal entities (“protofields”), with all the observed properties
and laws at all levels of the world structure rigorously derived
as emergent features of that unified fractal dynamics [6]–[12],
[14]–[18] (see also below). Among those properties one may

note especially the dynamic adaptability related to the interac-
tive dynamic origin of probabilistic realisation change of the
multilevel fractal structure (absent in any unitary description).
The high power of the related process of “sensible search”
of the optimal structure creation underlie, in particular, the
“magic” properties of life and intelligence expressed by the
huge exponential growth of the fractal realisation number N<
and complexity (20), which is of special interest to the complex
computer and control systems (section III).

The multivalued fractal dynamics also unifies all possible
dynamic regimes in one classification, from strong chaoticity
to external regularity [8]–[11], [15], [20]. One limiting case
called uniform, or global, chaos is obtained from the main
EP formalism (9)–(15) in the form of essentially different
realisations with a quasi-homogeneous probability distribution,
i.e. Nr ≈ 1 and αr ≈ 1/N< for all r in (18). It emerges when
energy level separations or frequencies of intra-component
and inter-component motions are close to each other, which
leads to a strong “conflict of interest” and the resulting “huge
disorder”, without any dominating regular-motion component.

The opposite extreme regime of multivalued self-
organisation or self-organised criticality (SOC) emerges for
sufficiently different interaction frequencies, so that, as follows
from (10), (15), one or few rigid, low-frequency compo-
nents “enslave” a great number of high-frequency and rapidly
changing, but configurationally similar realisations (i.e. the
realisation probability distribution is highly inhomogeneous,
Nr ∼ N<), while the EP (9)–(10) and state-function (15)
operators approach local functions [8]–[11], [20]. However, the
difference of that extended, multivalued SOC from usual self-
organisation and SOC is important: despite the quasi-regular
external system shape in this regime, it confines an intense
“internal life” and chaos of changing “enslaved” realisations
(which are not superposable unitary “modes”). This is the
unique key to consistent solution of the well-known entropy-
growth problems, in particular for living and bio-inspired
systems (see also below). Another important advance is that
this real, multivalued SOC unifies the extended versions of a
whole variety of separated unitary “models”, including usual
“self-organisation” (or “synergetics”), SOC, “synchronisation”,
“control of chaos”, “attractors”, and “mode locking”.

All occurring dynamic regimes fall between these limiting
cases of uniform chaos and multivalued SOC (including their
multi-level combinations), and they emerge at respective inter-
mediate parameter values. The point of transition to the global
chaos regime is given by the universal criterion of global chaos
onset derived from the unreduced EP formalism (9)–(15):

κ ≡ ∆ηi
∆ηn

=
ωξ
ωq
∼= 1 , (28)

where κ is the chaoticity parameter, ∆ηi, ωξ and ∆ηn ∼
∆ε, ωq are energy-level separations and frequencies for the
inter-component and intra-component motions, respectively.
At κ � 1 one has the externally regular multivalued SOC
regime, which degenerates into global chaos as κ grows from
0 to 1, and the maximum irregularity at κ ≈ 1 is again
transformed to a SOC kind of structure at κ � 1 (with
the “inverse” system configuration). One can compare the
unified and physically transparent criterion of chaos onset
of equation (28) with various nonuniversal and contradictory



criteria and definitions of chaoticity from unitary theory, such
as “overlapping resonances”, “positive Lyapunov exponents”,
“multistability”, “coexisting attractors”, or “unstable periodic
orbits”, all of them referring to the dynamically single-valued
and thus basically regular problem description (see [8], [11] for
more details). In particular, our criterion (28) remains valid for
the case of quantum chaos, where it describes the emergence
of genuine quantum dynamic randomness, in agreement with
the quantum-classical correspondence principle [8], [11], [18],
whereas usual theory fails to find any true quantum chaos.

The obtained unified criterion of chaos (28) provides also
the extended meaning of the phenomenon of resonance as
the condition of strong chaoticity of system dynamics (absent
in unitary understanding of resonance). The same analysis of
the unreduced EP equations reveals a similar role of higher
resonances as “sources of increased chaoticity”, so that when
chaoticity κ grows from 0 (quasi-regularity) to 1 (global
chaos), the degree of randomness makes a higher jump each
time κ passes through a higher resonance, κ = m/n , with
integer n > m [8], [11], [18], [20]. As those ever higher (and
weaker) resonances form a dense network of rational values of
κ, we obtain a well-specified version of the “fractal structure
of chaos”, here in the system parameter space. This chaos-
inducing role of resonance expressed by (28) is important for
computer and control system applications (section III).

The dynamically multivalued fractal is thus the unified
structure of the world or any its part exactly described by
the unreduced interaction problem solution (9)–(27) and con-
taining various dynamic regimes between global chaos and
multivalued SOC. There is also the single, unifying law of
dynamic existence and development of this world structure,
the universal complexity conservation law. It originates in
the fact that the system realisation number underlying its
dynamic complexity according to (20) is determined by the
initial system structure (its number of component eigenmode
combinations) and therefore remains unchanged during any
further system evolution.

However, while the total dynamic complexity does not
change, a related quality should change in the process of struc-
ture development. It is easy to see that as branches and levels
of the dynamical fractal emerge in this process, the potential
form of interaction complexity, or dynamic information I , is
transformed to its realised, unfolded form of dynamic entropy
S, so that their sum, the total dynamic complexity C = I + S
remains unchanged, ∆C = 0, ∆I = −∆S < 0 [8], [10], [11],
[15], [16], [20], [21]. Both complexity forms are measured, of
course, in the same way, by suitable functions of realisation
number (equation (20) and below). Their change only reflects
progressive system structure emergence and development.

Contrary to unitary conservation laws, here the dynamic
symmetry between changing realisations and their number
conservation mean the same, so that there is no difference any
more between a “symmetry” and the respective “conservation
law” (cf. “Noether’s theorem”), and we obtain the universal
symmetry of complexity implying complexity conservation by
transformation from dynamic information to dynamic entropy.
Another difference from unitary symmetries is that the latter
reflect abstract and “ideal” (regular) structure transformations
and therefore often become “broken” in real world, while the
universal symmetry of complexity does the opposite by relating

quite irregular realisation structures within the absolutely exact
symmetry of complexity, which is thus never violated (as
it should be for a genuine symmetry law). It also unifies
the extended, complex-dynamical versions of all (correct)
symmetries and laws (see below) separated in usual theory.

In order to obtain a useful dynamic expression of the
universal symmetry of complexity, we introduce the unified
definition of elementary complexity forms known as time and
space, now explicitly emerging in interaction process [8], [10],
[11], [15], [16], [20], [21]. The space element, or elementary
size, ∆x, is given by the eigenvalue separation of the unre-
duced EP formalism (9)–(12), ∆x = ∆ηri , where the separa-
tion of eigenvalues within the same realisation (numbered by
i) provides the space point size, r0 ' ∆xi = ∆iη

r
i , while

the separation of eigenvalues from neighbouring realisations
(numbered by r) gives the elementary length (smallest distance
between points), λ ' ∆xr = ∆rη

r
i . The elementary time

interval, ∆t, is obtained as intensity, specified as frequency, ν,
of universally defined events of realisation change, ∆t = τ =
1/ν. Because of unstoppable realisation change in dynamically
random order, the resulting time flow is also unstoppable and
irreversible, ∆t > 0. Whereas the events and time flow result
from the dynamic multivaluedness of real interaction, a useful
expression for ∆t = τ is based on the above elementary length
λ = ∆xr and the (known) velocity v0 of signal propagation
in the interaction component material, τ = λ/v0.

As the emergent time and space intervals characterise the
realisation change process, while dynamic complexity (20) is
a growing function of realisation number, it becomes clear that
a fundamental complexity measure is provided by the simplest
combination of space and time variables, known as action,
A, which acquires now the extended, universal and complex-
dynamical meaning [8], [10], [11], [15], [16], [20], [21]:

∆A = p∆x− E∆t , (29)

where the coefficients p and E are recognised as (now ex-
tended) momentum and (total) energy:

p =
∆A
∆x

∣∣∣∣t=const '
A0

λ
, (30)

E = −∆A
∆t

∣∣∣∣x=const '
A0

τ
, (31)

A0 being the characteristic action magnitude at the considered
complexity level, and the evident vector versions of all rela-
tions are implied if necessary. We see that the extended action
is a universal integral complexity measure, while momentum
and energy are unified differential complexity measures.

Because of the above irreversible time flow (∆t > 0) and
positive total energy (E > 0), action can only decrease with
time, ∆A < 0 (see (31)). Due to the dynamically random
realisation choice, it measures a consumable, irreversibly de-
creasing complexity form coinciding thus with the dynamic
information I from the above symmetry of complexity, A = I
(we shall also call it complexity-action). Conservation of total
complexity C = I + S can now be expressed as

∆C = ∆A+ ∆S = 0 , ∆S = −∆A > 0 , (32)

where the dynamic entropy, or complexity-entropy, S can only
grow, at the expense of complexity-action A, thus specifying



the time arrow direction and providing the extended, universal
versions of the second law of thermodynamics (energy degra-
dation principle) and the least-action principle, applicable now
to any system dynamics [8], [10], [11], [15], [16], [20], [21].

We can now obtain the desired dynamic expression of the
symmetry of complexity (32) by dividing it by ∆t |x=const :

∆A
∆t
|x=const +H

(
x,

∆A
∆x
|t=const, t

)
= 0, H = E > 0,

(33)
where the generalised Hamiltonian, H = H(x, p, t), consid-
ered as a function of emerging space coordinates x, momentum
p = (∆A/∆x) |t=const (see (30)) and time t, expresses
the unfolded, entropy-like form of differential complexity,
H = (∆S/∆t) |x=const , while the last inequality reflects
the generalised second law (or the time arrow direction), in
agreement with energy definition (31). We obtain thus the
differential dynamic expression of the symmetry of complexity
in the form of generalised, universally applicable Hamilton-
Jacobi equation revealing its true, complex-dynamical origin.
The finite-increment form of (33) reflects the natural discrete-
ness of multivalued interaction dynamics and will tend to the
continuous limit in suitable cases. The generalised Hamilton-
Jacobi equation takes a simpler form for conservative (closed)
systems with time-independent Hamiltonians:

H

(
x,

∆A
∆x
|t=const

)
= E , (34)

with the conserved total energy E defined by equation (31).

The dynamic entropy growth law constituting an integral
part of the universal symmetry of complexity (32)–(33) can be
amplified with the help of generalised Lagrangian, L, defined
as the total (discrete) time derivative of complexity-action A:

L =
∆A
∆t

=
∆A
∆t
|x=const +

∆A
∆x
|t=const

∆x

∆t
= pv −H,

(35)
where v = ∆x/∆t is the velocity of global system motion as
a whole. Irreducible dynamic randomness of realisation choice
at every step of system dynamics implies permanent decrease
of dynamic information, or complexity-action, equivalent to
dynamic entropy growth, (32), meaning that

L < 0 , E,H (x, p, t) > pv ≥ 0 . (36)

As noted above, it is important that now this “generalised sec-
ond law” refers to both externally chaotic and externally reg-
ular structure emergence thus solving the respective entropy-
growth problems of usual unitary theory.

The generalised Hamilton-Jacobi equation (33)–(34) de-
scribing the evolution and behaviour of the ensemble of
“regular” system realisations has an important complement
dealing with the dynamics of special, “intermediate” realisation
revealed in the unreduced EP formalism (section II-A) and
forming the transitional state of briefly disentangled, quasi-free
system components before they take the next regular, prop-
erly entangled realisation. This intermediate realisation and
state, the generalised wavefunction Ψ (x), is the realistic and
universal extension of the quantum-mechanical wavefunction
and various distribution functions from unitary theory. It has a
chaotically fluctuating structure due to the dynamically random
emergence of regular realisations whose dynamic probability

obeys both the main rule of the unreduced EP formalism (17)–
(18) and the generalised Born rule causally following from this
transitional role of the generalised wavefunction and rigorously
obtained from the above matching conditions for the state-
function coefficients ci in (15) [8], [10], [11], [16], [20]:

αr = α (xr) = |Ψ (xr)|2 , (37)

where xr is the r-th realisation configuration and for particle-
like complexity levels one should imply the generalised dis-
tribution function itself at the right-hand side (instead of its
modulus squared for wave-like complexity levels).

Now, in order to find the dynamic equation for Ψ (x)
similar to the Hamilton-Jacobi equation (33)–(34) for regular
realisations, we can use the causal quantisation condition
following from the symmetry of complexity applied now to
one cycle of transition from the wavefunction to a regular
realisation and back [8], [10]–[12], [16], [20]:

∆ (AΨ) = 0 , ∆A = −A0
∆Ψ

Ψ
, (38)

where A0 is a characteristic complexity-action magnitude that
here may contain a numerical constant reflecting specific fea-
tures of the considered complexity sublevels (thus at quantum
sublevels A0 = i~, where ~ = h/2π is Planck’s constant).
Using relation (38) in the Hamilton-Jacobi equation (33), we
obtain the causally derived universal Schrödinger equation for
the realistically interpreted generalised wavefunction at any
complexity level (starting from the lowest, quantum levels, now
liberated from all postulated “mysteries” [8], [11], [16], [20]):

A0
∆Ψ

∆t
|x=const = Ĥ (x, p̂, t) Ψ (x, t) , (39)

p̂ = −A0
∆

∆x
|t=const ,

where the momentum operator p̂ and the Hamiltonian operator,
Ĥ (x, p̂, t), are obtained from momentum p and the Hamilto-
nian function H = H(x, p, t) of (30), (33) by the same causal
quantisation (38). For the closed system case we similarly
obtain from (34) the stationary Schrödinger equation:

Ĥ (x, p̂) Ψ (x) = EΨ (x) . (40)

This causally derived and now complete dynamic expres-
sion of the universal symmetry of complexity, the universal
Hamilton-Schrödinger formalism (33)–(40) does apply, to-
gether with the initial expression (32), to any system dynamics
(thus justifying the Hamiltonian form of the initial existence
equation (1)) and therefore underlies any (correct) law, “prin-
ciple” and equation from unitary theory (usually postulated
in a semi-empirical way). For a direct demonstration, we can
expand the Hamiltonian Ĥ (x, p̂, t) in (39) in a power series of
p̂ (and Ψ), which gives (for the continuous-derivative notation):

∂Ψ
∂t +

∞∑
m=0
n=1

hmn (x, t) [Ψ (x, t)]
m ∂nΨ

∂xn +

+
∞∑
m=0

hm0 (x, t) [Ψ (x, t)]
m+1

= 0 ,

(41)

where hmn (x, t) are arbitrary functions and the dependence
on Ψ may arise from the EP. We see that various usual model
equations are but particular cases of (41) providing thus their



true, causally specified origin, including the complex-dynamic
origin of any, usually postulated nonlinearity (with similar
results for a series expansion in (33), (34) and (40)). Details
for quantum, relativistic and other laws can be found elsewhere
[8]–[12], [15], [16], [20], [21].

III. COMPLEXITY TRANSITION AND THE MAIN
PRINCIPLES OF INTELLIGENT PRODUCTION, COMPUTER

AND CONTROL SYSTEMS OPERATION AND DESIGN

As shown in the previous section, any real system with
multiple interacting objects possesses the irreducible dynamic
complexity appearing as a fractally structured hierarchy of
permanently and chaotically changing realisations. Usual en-
gineering approach to the operation and design of complex
production, computer, communication and control systems
tries to treat their dynamics semi-empirically and find “or-
der in chaos” by actually using the unreduced complexity
of human designer and operator brain involved. However,
with today’s critically growing complexity and intensity of
the whole system dynamics (one could call it “generalised
globalisation”), one cannot rely any more on human factors
and must ask for the adequately complex, or “intelligent”,
autonomous dynamics of controlling systems. We call this
important change complexity transition, or revolution, and shall
specify its content and perspectives in this section based on
the above rigorous framework of the universal science of
complexity.

Mathematically, the complexity transition is expressed by
the main features of the unreduced interaction process from
section II, including (1) the fundamental dynamic multival-
uedness (i. e. non-uniqueness) of any real problem solution,
(2) the related omnipresent and genuine dynamic random-
ness, even within externally regular processes and structures,
providing consistent understanding of usually vague notions
of nonintegrability, nonseparability, noncomputability, uncer-
tainty (indeterminacy), undecidability, stochasticity, broken
symmetry, free will, etc. (cf. e. g. [19]), (3) the absence of
usually assumed self-identity, A = A, for any structure A,
leading to irreversible change (time flow), (4) fractally struc-
tured multivalued dynamic entanglement of interacting system
components determining the perceived quality of emerging
structures, and (5) dynamic discreteness, or causal quantisa-
tion, of the unreduced interaction results and dynamics (due
eventually to its holistic character), giving rise to qualitatively
inhomogeneous, nonunitary system evolution.

The obtained qualitatively new mathematics of complexity
[8], [10], [15]–[17] is summarised by the dynamically prob-
abilistic fractal (25)–(27) as its single, dynamically unified
structure and the universal symmetry of complexity (32)–(40)
as the unique law determining this structure evolution and
dynamics (including all the observed local dynamic regimes
and laws, now properly classified). In fact, this qualitatively
new structure and symmetry constitute the main guiding prin-
ciple of complex-dynamic system engineering, underlying all
its particular principles and laws.

More applied aspects of the necessary intelligent, complex-
dynamical operation and design of production, computer, com-
munication and control systems are provided by the following
major principles specifying the universal symmetry of com-
plexity [6], [7], [10]–[12], [22]:

(I) The complexity correspondence principle implies effi-
cient or sensible interaction mainly between systems of compa-
rable dynamic complexity. This direct corollary to the universal
symmetry of complexity means, in particular, that a system of
certain complexity can be efficiently designed and controlled
only by systems and techniques of higher, but not lower,
dynamic complexity, with various important applications to
intelligent system design and related sustainability problems
[6], [7], [10]–[12], [22], [23]. In fact, this principle underlies
the general, now rigorously substantiated necessity of the
above complexity revolution in both technological and social
development practices.

(II) The complex-dynamical control principle is based on
the complexity-transformation aspect of the universal sym-
metry of complexity (section II-B) and states that any truly
efficient and sustainable control implies suitable complexity
development (of both controlled and controlling systems), with
inevitable partially random change, in contrast to “limiting” or
“fixing” approach of usual, unitary control theory (including its
formally complex-dynamical aspects, such as “chaos control”).
Proper control leading to genuine system sustainability is
reduced thus to design and monitoring of optimal interaction
complexity development (rather than its maximum restriction
in usual approach), emphasizing intrinsic creativity aspects of
unreduced complex dynamics. It is stability through (suitable)
development (including the necessary chaotic deviations), in-
stead of traditional regularity limitation.

(III) The unreduced (free) interaction principle refers to
the exponentially huge power and efficiency of natural, mul-
ticomponent system interaction processes, as opposed to their
only power-law efficiency considered within the conventional
unitary-model projection [6], [7], [10]–[12], [15], [16], [22].
Referring to the self-developing dynamically multivalued frac-
tal of unreduced interaction process (section II-B), one can
easily understand that its maximum operation power Preal,
determined by the total (fractal) realisation number N< (pro-
portional to the unreduced complexity C), can be estimated as
the number of system link combinations:

Preal ∝ N< = L!→
√

2πL

(
L

e

)L
∼ LL �� L , (42)

where the number of system links L can already be a very
large number, essentially exceeding the number of interacting
system components N (thus for both human brain and genome
N > 1010, L > 1014 � N ). The obtained exponentially huge
power of unreduced complex dynamics Preal, dramatically
exceeding its unitary-model estimates, Preg ∝ Lβ , β ∼ 1,
Preal/Preg ∼ LL−β →∞, provides the origin of the “miracu-
lous” properties of life, intelligence and consciousness, which
now should and can be reproduced in artificial “bio-inspired”
computer, production and control systems. In particular, the
genuine artificial intelligence and machine consciousness be-
come indispensable to modern technological system control
and can only be realised using these principles of unreduced
complex dynamics [6], [7], [11], [12].

Technical realisation of major principles I–III of complex
artificial system dynamics and other manifestations of the
universal symmetry of complexity (section II and items (1)-
(5) above) will include such important features as (a) qual-
itatively new, teleological, or purposeful, programming, (b)



creative intermittency of chaoticity and self-organisation, and
(c) genuine, autonomous sustainability in system operation
and development, which reproduce the respective features of
natural system dynamics in their unreduced efficiency:

(a) Teleological (purposeful) programming relies on the
complexity transformation from dynamic information to dy-
namic entropy as the unique realisation of the universal
symmetry of complexity and the intrinsic purpose of system
development (section II-B). Therefore, instead of regular-
sequence programming of usual computer and control systems,
in teleological programming one will impose a hierarchy of
suitable purposes to achieve while letting the system itself
to choose optimal ways of their fulfilment with the help of
complex-dynamic adaptability of unreduced interaction pro-
cesses. One can profit here from the exponentially huge power
of the probabilistic fractal dynamics (item (III) above).

(b) Creative intermittency of chaoticity and self-
organisation is based on the controlled use of the unified
criterion (28) of strong chaoticity onset around system
resonances, where one can ensure the efficient chaotic search
for the desired self-organised states (including system purposes
from (a)), with the optimal intermittency of such strongly
chaotic and quasi-regular stages of structure development.

(c) Autonomous sustainability of system development im-
plies realisation of the huge power of intelligent complex
dynamics (42) for maintenance of failure-proof and unlimited,
in principle, technological system development taking into
account e. g. adaptable ageing effects.

Further applications of these features and principles (1)–
(5), I–III, (a)–(c) will eventually include the entire, inevitably
unified techno-human process of truly sustainable, noosphere
civilisation and intelligence development, where one can em-
phasize the mentioned cases of complex-dynamic ecology,
biomedical and bio-inspired ICT technologies, artificial intel-
ligence and consciousness systems, with the urgent need for
the complexity transition based on the suitable fundamental
framework [6], [7], [10]–[12], [22], [23].
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