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A B S T R A C T

Well-aligned, open-ended carbon nanotubes (CNTs), free of catalyst and other carbon prod-

ucts, were synthesized inside the pores of an anodic aluminium oxide (AO) template with-

out using any metallic catalyst. The CNTs and the CNT/AO composites were characterized

by scanning and transmission electron microscopy, thermogravimetric analysis, Raman

spectroscopy and X-ray diffraction. Particular care was devoted to the reactor design, syn-

thesis conditions, the catalytic role of the templating alumina surface and the preservation

of the alumina structure. The transport properties (sorption, diffusion and permeability) to

water vapor were evaluated for both the alumina template and the CNT/AO composite

membrane. The measured effective electrical volume conductivity of the CNT/AO compos-

ite was found ranging from a few up to 10 kS/m, in line with the recent literature. The esti-

mated averaged values of the CNTs-wall conductivity was around 50 kS/m.

1. Introduction

The continuous miniaturization of electrical and electronic

devices, together with the high integration level and the in-

crease of the working frequencies and power density, is push-

ing towards innovative solutions for the realization of on chip

interconnections and vias in order to avoid in the near future

a technological bottleneck [1]. Innovative materials like car-

bon nanotubes (CNTs) and graphene nanoribbons are being

studied as replacements for copper in next-generation

high-speed interconnects [2–6].

However, there are several limitations to the practical

exploitation of CNT-technology in nanoelectronics, such as

the difficulties in controlling the growth process of CNTs hav-

ing well defined microstructural characteristics and the need

of electron beam lithography (EBL) for CNT growth. A possible

solution to the aforementioned problems relays in the use of

a template-based chemical vapor deposition (CVD) technique

[7–9] to fabricate CNT based nano-interconnects components.

In this case, the diameter, length and inter-axes distance of

the CNTs are controlled by the template morphology, whereas

the nanotube wall thickness is dependent directly on the syn-

thesis parameters. The use of metallic catalyst is not needed,

and the template growth does not require electron beam

lithography (EBL). The resulting process is cost-effective and

can be easily implemented at industrial scale. It is also impor-

tant to notice that the morphological characteristics of the

CNT/AO composite membrane combined with the thermal

and mechanical properties of the CNTs, enable the use of

these materials in application such as heat sinker and strain

sensor.

The template-based CVD technique does not require the

use of metallic catalyst. Moreover, an additional advantage

is that, since the external template surfaces (top, bottom
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and edges) are covered by a thin carbon layer all CNTs of the

array are electrically connected and bonding with a metal

contact become straightforward.

The electrical conductivity of graphitic carbon varies by or-

ders of magnitude, from 102 to 105 S/m, depending on the

graphitizationdegree. A conductivity of 104 S/mhas beenmea-

sured on a single carbon nanotube grown by a templated-

based CVD in the channels of alumina membrane (AO) [10].

A significant point related to the growth process regards

the proposed catalytic role of the alumina internal structure

for the decomposition of hydrocarbons. In a previous work

[11] we have indirectly proved that the internal surface of alu-

mina plays a role, by comparing the characteristics of the car-

bon produced inside and outside the alumina membrane in

the same operating conditions. However, the mechanism of

CNT formation and the catalytic role of alumina were not def-

initely proved.

Carbon nanotubes membranes grown on macroporous

alumina support have been tested to assess permeability he-

lium, nitrogen and hydrogen [12]. The permeability to water

across the membrane is of considerable technological impor-

tance for many applications, and at the best of our knowledge

it has not been investigated in the literature.

This paper focuses on the synthesis and characterization

of AO membranes and of CNT/AO composites obtained by

template-based CVD without the use of metallic catalyst. Be-

cause alumina during temperature increase is subjected to

bending and curling up to break, particular care has been de-

voted to preserve its flatness, at the macro and consequently

micro-scale. This is a prerequisite for a better integration in

microelectronic devices. In particular, the thermal expansion

coefficient of AO membrane has been investigated and the

differences between the top and down alumina surfaces has

been discussed. The CNT growing parameters such as tem-

perature, reaction time, total feed flow, hydrocarbon partial

pressure, pre-calcination temperature and time, for the first

time, as far as we are aware, have been systematically inves-

tigated with the objective to preserve the membrane struc-

ture. Moreover, specific attention was devoted to the reactor

orientation and positioning of the membrane inside the reac-

tion chamber, to favor good fluid dynamic conditions in the

reactor [13]. On-line continuous analyzers were used to mon-

itor the reactor outlet composition, in order to get a better

knowledge of the mechanism of CNT formation and role of

alumina in the growth process.

CNTs and CNT/AO composites were characterized by scan-

ning electron microscopy (SEM) and transmission electron

microscopy (TEM), thermogravimetric analysis, Raman spec-

troscopy and X-ray diffraction (XRD).

Transport properties (sorption, diffusion and permeability)

to water vapor were evaluated for both the alumina and the

composite membrane for comparison.

Finally, electrical characterization test were performed on

the produced CNT/AO composites were tested in order to esti-

mate the conductivity of the carbon nanotubes grown inside

the alumina pores. First, the sheet resistance of the graphite

layer deposited on both sides of the samples during the nano-

tube synthesis was measured in order to evaluate its contri-

bution to the total resistance of the specimen. Then, the

effective volume conductivity of the composites was mea-

sured, and the average conductivity of the sole CNT was

calculated.

2. Experimental

2.1. Preparation process of the AO membrane

Two different types of AO porous membranes were prepared.

The substrates were always pure aluminium (99.99%), while

all chemical compounds used were analytical grade and

aqueous solutions were obtained using deionized water.

The first type (F1) was a stand-alone AO membrane with

large pores (273 ± 48 nm). The preparation process of the AO

templates with large pores was described elsewhere [11,14].

The aluminium substrate (14 mm in diameter and 2 mm

thick) was prepared first by sanding, then by annealing under

nitrogen atmosphere at 450 °C for 2 h, finally by electropolish-

ing at 25 V for 2 min in a Jacquet mixed solution. Anodization

was performed at 185 V for 4 h by an INVENSYS LAMBDA gen-

erator (300 V – 5A). The electrolyte was made up of an aque-

ous phosphoric acid solution (8 wt.%), while a pure

aluminium plate was used as cathode. The temperature was

regulated at ÿ1.5 °C by a cryostat (HUBER CC2).

After growth of the porous anodic film, the removal of the

compact layer was performed using 30 VAC voltage (Universal

Power Supply EA-4036) in a phosphoric acid solution and then

the substrate was chemically dissolved using a hydrochloric

acid solution (18 wt.%) including copper chloride (0.1 mol/L).

The membrane was then dipped for 5 min in a phosphoric

acid solution and finally rinsed with deionized water.

The second type (F2) was a stand-alone AO membrane

with small pores in the range 30–50 nm. The pre-treatment

of the substrate and the removal of the compact layer were

similar to those performed for the F1 membranes. The main

difference was that anodization was performed for 5 h at

28 V in sulphuric acid solution (0.3 M).

2.2. Process of carbon nanotubes growth

Carbon nanotubes were grown by a template-based ethylene

CVD, in the absence of transition metal catalyst, in a labora-

tory apparatus equippedwith: (i) mass flow controllers to feed

constant gases flow rates in order to have a better process

control, (ii) an electrically heated and temperature controlled

flow microreactor, fed by ethylene-nitrogen gas mixture (see

Figs. 1 and 2 for details), arranged vertically to better control

the fluid dynamics of the reactor forcing the flow to pass

through the membrane, (iii) on-line continuous specific ana-

lyzers for reactor outlet gas products (ABB analysers that per-

mit to measure C2H4, C2H2, CH4 and H2 concentrations in the

effluent stream on line during the reaction). A vertical

arrangement that does not suffer from longitudinal diffusive

limitations along the reactor axes was chosen, permitting the

control of the thickness and concentration homogeneity of

the boundary layer (the stagnant layer established in the stea-

dy state conditions at the membrane interface). One mem-

brane (of both types F1 and F2) was placed on a sintered

support in an isothermal zone of the reactor. Starting from

the results of our previous work [15] (in which we conclude



that carbon order increases by increasing hydrogen concen-

tration and from using different hydrocarbons along the scale

acetylene, propylene, ethylene and methane), and synthesis

temperatures, we chosed to fed ethylene in N2, as a good com-

promise between carbon quality and cost. Ethylene, more

reactive than methane, was fed in N2 and not in the more

expensive H2, also to favor its conversion at temperature of

about 800 °C. For Test 20 (see Table 1) commercial membranes

(Anodisc; sample diameter:13 mm; pore diameter: 0.2 mm)

manufactured by Whatmann (WAOs) were used. In our previ-

ous paper [11] we demonstrated that the TG–DTG profiles of

CNT/AO composites materials obtained by using commercial

and prepared membranes are practically superimposed.

Due to the necessity of maintaining the membrane flat-

ness after synthesis, the effect of the operating conditions

(synthesis time, temperature, ethylene partial pressure in N2

and pretreatment time) was investigated (see Table 1). In par-

ticular, for all the tests the total feed flow was 200 Ncc/min,

the ethylene partial pressure ranged from 10 to 30 v/v.%, the

temperature form 750 to 950 °C.

Carbon nanotubes formed during the synthesis were ob-

tained by treating the CNT/AO composite with 20 ml of

50 wt.% HF aqueous solution for 24 h in order to dissolve the

alumina template and the solid residue was washed in dis-

tilled water, centrifuged and finally dried at 353 K for 12 h.

2.3. Physico-chemical characterization of composite and

recovered carbon

The produced CNT/AO composites and carbon nanotubes

recovered were characterized using various techniques. Scan-

ning Electron Microscopy (SEM) pictures were obtained with a

LEO 1525, while Field Emission Gun Scanning Electron Micro-

scope views were performed by using FEG-SEM JEOL JSM

6700F.

Transmission electron microscopy (TEM) images were ob-

tained with a Jeol 1200 EX2 microscope. The preparation of

samples for TEM observation involved sonication in �1 ml

of ethanol for 2–5 min and deposition on a carbon grid. The

accelerating voltage of the electron beam was 200 kV.

Simultaneous TG–DTG analysis was performed with a

Thermogravimetric Analyser SDTQ 500 TA Instruments. The

measurements were performed in the range 25–900 °C, with

10 °C/min heating rate under flowing air. Raman spectra were

obtained at room temperature with a microRaman spectrom-

eter Renishaw in Via (514 nm excitation wavelength). X-ray

diffraction measurements (XRD) were performed with a Bruc-

ker D8 X-ray diffractometer (equippedwith a continuous scan

attachment and a proportional counter) with Ni-filtered Cu Ka

radiation (k = 1.5405 Å).

2.4. Transport properties of AO membrane and composite

Transport properties to water vapor (sorption, diffusion and

permeability) were evaluated using a microbalance SMS DVS

Fig. 1 – Scheme of the experimental apparatus for carbon nanostructures growth.

Fig. 2 – Details of the microreactor for carbon nanostructures

growth.



Advantage-2 system. This system has a sensitivity of ±1.0 lg,

and allows the measurement of mass changes due to sorption

or desorption of vapor molecules. The tests were conducted

using water vapor in a nitrogen atmosphere at 30 °C on previ-

ously dried samples. The experimental protocol considered

steps of relative humidity in the following sequence: 30% (cor-

responding to a partial pressure of water of 0.013 bar), 60%

(corresponding to a partial pressure of water of 0.026 bar),

30%, 0% (pure dry nitrogen). Each step lasted until mass

stabilization.

2.5. Electrical conductivity measurements

Two different set-ups were used to characterize the electrical

properties of the CNT/AO composites and to extract the dc

electrical conductivity of the CNTs grown inside the mem-

brane pores.

The first test set-up implements the four-point probe

method (ASTM F390–398) to measure the sheet electrical

resistance of the carbon layer deposited over the surface of

alumina membranes at room temperature. The probe head

used for the test is composed by four collinear equally spaced

tungsten carbide tips, and it is secured to the Signatone S301

stand arm. The system is connected to a Keithley 6221 dc/ac

current source and a Keithley 2182a nanovoltmeter. The two

instruments were remotely controlled by a PC station, and

the measurement was performed in delta-mode to compen-

sate for thermoelectric voltages. The nanovoltmeter was trig-

gered to record the voltage drop between the two inner tips of

the probe as the dc current was sourced through the two out-

er tips with alternating polarity. The absolute values of the

readings were then averaged and used to calculate the aver-

age sample resistance. The sheet resistance was calculated

multiplying the average sample resistance by a proper correc-

tion factor, which depends on the specimen and probe geom-

etries. Finally, the bulk conductivity of the film was obtained

as the inverse of the product between its sheet resistance and

thickness.

The dc volume conductivity of the CNT/AO composite

specimens was measured by applying the direct voltmeter-

ammeter method. The test fixture was realized by contacting

the top and bottom faces of the circular-shaped samples, hav-

ing diameter of 10 mm. At first, the bottom face of each spec-

imen was completely covered with highly conducting silver

paint characterized by volume conductivity of nearly 9 kS/

cm. The samples were then baked at 70 °C in oven for

10 min, glued on a Cu electrode using a conducting epoxy

with volume resistivity of about 2 mX cm, and finally exposed

to an additional thermal cycle. Adopting a ring-shaped mask,

the top electrode was attached with conducting epoxy on a

circular area of 5 mm in diameter, precisely in the center of

the specimen top surface. Four-wire resistance measure-

ments were finally performed connecting the electrodes to a

Keithley AC–DC current source and a Keithley nanovoltmeter

as sketched in Fig. 3a. The equivalent electrical circuit of the

test set up is reported in Fig. 3b, in which: Rtop and Rbottom are

the total contact resistance of the top and bottom face of the

membrane, accounting for the external carbon layer, the sil-

ver paint and the silver paste; Rborder is the equivalent resis-

tance of the carbon film surrounding the lateral side of the

membrane; RCNT_tot is the total dc resistance of all CNTs

grown inside the membrane pores and parallel connected.

The effective electrical conductivity aCNT of the CNTs is ob-

tained by the following expression:

rCNT ¼
hm

dpAmp½dCNTð2rÞp ÿ dCNT�RCNTtot
ð1Þ

where dCNT is the average wall thickness of the CNTs, rp is the

pore radius, dp is the pore density, Am and hm are the surface

area and thickness of membrane, respectively.

Table 1 – Operating conditions for CNTs growth.

Tests Sample
name

Calcination
temperature (°C)

Calcination
time (min)

Membrane
family

Reaction
temperature (°C)

Reaction
time (min)

Total feed
flow (Ncc/min)

C2H4

(vol.%)

1 M1 – – F1 950 30 200 10
2 M2 – – F1 900 30 200 10
3 M3 F1 900 5 200 10
4 M4 – – F1 870 30 200 10
5 M5 F1 870 5 200 10
6 M6 – – F1 835 30 200 10
7 M7 F1 835 5 200 10
8 M8 – – F1 800 30 200 10
9 M9 – – F1 800 60 200 20
10 M10 – – F1 750 60 200 30
11 M11 – – F1 750 270 200 30
12 M12 835 30 F1 – – – –
13 M13 835 20 F1 825 10 200 10
14 M14 835 10 F1 825 10 200 10
15 M15 835 10 F1 825 10 200 20
16 M16 F1 825 10 200 20
17 M17 F1 825 10 200 30
18 M18 – – F1 810–820 10 200 30
19 M19 – – F2 810–820 10 200 30
20 M20 – – WAO 850 10 200 30
21 M21 – – WAO 850 40 200 30



3. Results and discussion

3.1. Control of the flatness of CNT/AO membrane

During temperature increase from 25 to 950 °C, i.e. the maxi-

mum value used for the subsequent CNTs growth, the mem-

brane undergoes deformation: bending (Fig. 4a), followed by

curling (Fig. 4b) up to break (Fig. 4c). This bending phenome-

non was previously noted by Fernandez-Romero [16] and by

ourselves [11]. It is likely caused by the conversion from amor-

phous to polycrystalline material [16] and the successive

change of the cell parameters of the alumina crystal struc-

ture, as well as by the change of the thermal expansion coef-

ficient. In particular, an XRD study was effected, in the 700–

1000 °C temperature range, of the well-isolated peak at 42.7

2h (at 900 °C) in order to obtain the coefficient of thermal

expansion (a) of the F1 membrane. From the peak maximum

shift as a function of the temperature, the coefficient of the

membrane was estimated as 16 · 10ÿ6 Kÿ1. This value is in

disagreement with the usual one (5.10ÿ6 Kÿ1 [17]) but in accor-

Rtop

RCNT_totRborder

Rbottom

(a) (b)

Fig. 3 – (a) Sketch of the electrode system for the effective volume conductivity measurements of composites (not to scale). (b)

Equivalent electrical circuit.

Fig. 4 – Photos of: test 7 (a), test 5 (b), test 3 (c), flat CNTs/Family2 membrane (M18) (d) and flat CNTs/Family3 membrane (M19)

(e).



dance with values obtained for unsupported anodic films,

showing tortuous porosity, obtained with sulphuric acid solu-

tions: 14.136 · 10ÿ6 Kÿ1 [18] and 13 · 10ÿ6 Kÿ1 [19].

If the membrane is considered as homogeneous, the bend-

ing effect cannot be explained neither by the sole coefficient

of thermal expansion, nor only by the crystallization phe-

nomena, nor by successive parameter changes within the alu-

mina crystal structure. This phenomenon can also result

from the morphology difference between the two faces of

the AAO membrane [11].

In any case, considering the necessity to keep the mem-

brane flatness after the CNT synthesis, different operating

conditions were investigated (Table 1). We found that only

few minutes at 900 °C were sufficient to produce fragmenta-

tion of the membrane (test 3). At 870 °C membrane curling

was observed (test 5) and at 835 °C bending was evidenced

(test 7). It is also resulted that at 800 °C no CNTs formed, nei-

ther at longer synthesis time, neither increasing the partial

pressure of hydrocarbon in the feed (test 8 and 9).

Trying to preserve the membrane flatness and to deposit

CNTs in its channels, we explored the effect of a calcination

process before the synthesis with the membrane pressed be-

tween two Si wafers, and at temperature of 10 °C higher than

that of the synthesis. For this purpose four membranes were,

one by one, gently pressed between two silicon wafers (the

sandwich wafer/membrane/wafer was held together by a

clamp) and treated at various temperatures in a furnace.

These tests showed that a temperature of 835 °C (test 12)

and an exposure time of 10 min were the minimum condi-

tions to activate the phenomena described above.

To obtain a better control of the calcination step and to

simplify the process, in test 13 the membrane was positioned

between two silicon wafers and on the sintered support in the

reactor, and then the CNTs synthesis was performed at

825 °C. Further experiments were carried out reducing the

calcination time to 10 min (tests 14 and 15), or using the sup-

port itself to form the membrane (tests 16 and 17). We found

that the results of tests 15 and 16 were very similar, and that a

Fig. 5 – Blank test in comparison with the two tests performed in presence of 20 and 40 membranes (10 min at 825 °C,

200 Ncc/min of ethylene 30 v/v.% in N2). (a)TEM image of ananotube from test 21 (b)



slight bending of the membrane was still present in test 16.

Final optimized conditions for CNT growth in flat membrane

(Fig. 4d) were achieved by pressing the membrane between a

Si wafer and the rector sintered support (on the silicon wafer

was put a load of 50 g) and performing the CVD in the temper-

ature range 810–820 °C for 10 min under 200 Ncc/min, ethyl-

ene concentration v/v.% = 30% (test 18). Faster pre-treatment

(15 min to reach 810 °C instead of 20 min for F1 membranes)

allowed to obtain CNTs in type F2 flat membranes (test 19 Ta-

ble 1), as shown in Fig. 4e. The composites materials from

tests 18 and 19 are labeled in the following M18 and M19,

respectively.

3.2. Study of the catalytic role of the alumina channels

surface

Since in the non-catalytic CVD process the carbon precursors

are deposited on the pore walls by hydrocarbon decomposi-

tion, a catalytic role of the template membrane has been sup-

posed [20].

The approach was based on the careful analysis of the

trend of C2H4 and H2 composition, as monitored by the con-

tinuous gas analyzers and of the concentration of C2H2 and

CH4, two of the hydrocarbon fractions most likely formed by

ethylene decomposition [21,22]. A typical profile of C2H4,

C2H2, CH4 and H2 concentration during a blank test (in empty

reactor) in the same conditions of test 20 (see paragraph 2.2) is

shown in Fig. 5.

We can distinguish three time-distinct phases:

• Pre-reaction phase (I): the reaction gas is fed to the analyz-

ers. All concentration profiles are close to zero, except for

the initial ethylene concentration (30 v/v.%).

• Reaction phase (II): the gas flows through the reactor. After

reaching a steady state conditions, the ethylene concen-

tration stabilizes at 9 vol.%. The reduction of ethylene con-

centration is due to the thermal decomposition in the

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

D
e

ri
v
. 
W

e
ig

h
t 

(%
/m

in
)

80

85

90

95

100

105

W
e
ig

h
t 

(%
)

0 200 400 600 800
Temperature (°C)

–––––––   CNT/WAO on the support
–––––––   CNT/WAO on the top

Universal V3.9A TA Instruments

500 1000 1500 2000 2500 3000

 CNT/WAO on the support

 CNT/WAO on the top

In
te

n
s

it
y

  
 (

a
.u

.)

wavenumber  cm
-1

CNT/WAO on the support 
CNT/WAO on the top 

a b 

c 

Fig. 6 – TG–DTG profiles (a), Raman spectra (b) and TEM images (c) of two different membranes, from the test with 40

membranes in the same operating conditions of test 20.

Fig. 7 – FEG-SEM cross sectional view of CNT/AO (sample

M18).



homogeneous phase, leading, in part, to the formation of

hydrogen and carbon. We can observe also the presence

of methane and acetylene in the reactor outlet gas.

• Post-reaction phase (III): the run is stopped and the gas

stream is sent directly to the analyzers (not through the

reactor) to verify that the gas concentrations return to

the values of the pre-reaction phase.

In Fig. 5, the concentrations profiles of the four gases dur-

ing two tests performed in the presence of 20 or 40 mem-

branes, stacked one on top, to highlight the effects detected

by the analyzers, in the same operating conditions of test

20, are also reported. It is observed that the profiles of ethyl-

ene and hydrogen in the presence of membranes do not coin-

cide with those of the blank test, during the first minutes of

the synthesis. The ethylene and hydrogen profiles reached

the blank test plateau after �7 min of synthesis, and before

were shifted (i) to lower values, in the case of ethylene (indi-

cating an increased conversion), (ii) to higher values, in the

case of hydrogen. The shift was more and more evident as

higher was the number of membranes. On the contrary, the

methane and acetylene concentration profiles resulted unal-

tered, and in general overlapped those of the blank test.

Thus, the presence of the membranes determines an in-

crease of the ethylene conversion to C and H2, as indicated

by the H2 profiles and the overlapping of the CH4 and C2H2 sig-

nals. This behavior lasted only the first few minutes, likely

due to the progressive covering of the alumina active sites.

On the contrary, the slower homogeneous thermal ethylene

decomposition continued contributing to the progressive

thickening of the tube walls [23].

Moreover, in Figs. 5b and 6c TEM the images of the CNTs

from the test 21 and of the CNTs from test 20 are shown,

the thickness of the tubes from test 20 is about 25 nm and

about 38 for the CNTs form test 21, much more smaller than

the 100 nm expected after 40 min of synthesis, suggesting

that alumina has a catalytic effect. The most probably expla-

nation was that when alumina surface results completely

covered of carbon a different mechanism no-alumina af-

fected regulates the formation of the residual walls.

3.3. Reactor design and mass transport conditions effect

To obtain the uniformity of the deposited carbon on the

alumina surface (thickness, quantity. . .) it is necessary to

control as much as possible the diffusion phenomena. It

is essential to avoid that geometrical effects and the geom-

etry itself of the CVD chamber play a critical role during the

overall synthesis. Therefore we opted for a vertical reactor

arrangement, to control the uniformity of the mass trans-

port conditions on the membrane surface and choosing a

feed rate that ensured to work as much as possible near

a chemical regime. An evidence supporting the absence of

a concentration gradient in our reactor is the observation

that the amount and quality of deposited carbon is the

same for different reactor heights. In particular, Fig. 6

shows the results of the TG–DTG analysis, the Raman Spec-

tra and TEM images of two different membranes from the

test with 40 membranes in the same operating conditions

of the test 20, stacked in the reactor. The TG–DTG curves

are similar and generally overlap, indicating that the carbon

nanotube masses and quality are uniform, exhibiting a sin-

gle step of weight loss due to the combustion of the carbon

material. The two Raman spectra are practically superim-

posable, confirming the results of the thermogravimetrical

analysis, while the high resolution transmission electron

microscopy images show nanotubes walls with the same

thickness and structural characteristics (see below for a de-

tailed discussion about the results coming from Raman and

TEM characterizations).

Fig. 8 – CNTs after HF alumina removal (sample M18).



3.4. Physico-chemical characterization of composite and

recovered carbon

A complete characterization of the CNT and the composites

material was performed. The FEG-SEM cross sectional view

of the CNT/AO composite shows a highly ordered composite

(Fig. 7), each pore contains a single CNTwith diameter closely

tuned by the pore walls.

In Fig. 8 CNTs of M18, obtained after the alumina removal

by HF solution, are shown. The TEM image of Fig. 9a and b

give evidence of the nanotube morphology of the produced

carbon, showing the hollow core of the tubes. In particular,

it is visible the uniformity of produced nanotubes in terms

of diameters and thickness along the tube axis. The structure

of the CNTwalls is zoomed in Fig. 9(c), which shows twisted

walls in the direction of the nanotube axis [11].

The TG profile of M18 (Fig. 10) shows in the range 25–800 °C

a single step of weight loss due to the combustion of the car-

bon material, indicating the presence of a substantially single

carbon phase in the sample. Residual mass over 800 °C repre-

sents the inorganic fraction (membrane residue).

The Raman spectrum of M18 shown in Fig. 11 (the spec-

trum of M19 not shown here practically overlaps with that

of M18), collected with a 514 nm laser wavelength, exhibits

the typical Raman profile of CNT (D and G not separated

and partially overlapped). The D band is indicative of defect

in the nanotube walls (i.e. carbonaceous impurities with sp3

bonding, broken sp2 bonds in the sidewalls) [24,25]. The ID/IG
intensity ratio, that is a measure of disorder amount, equal

to 0.79, results comparable with literature data [20,27]. The

fact that the two peaks have nearly identical magnitude indi-

cates the presence of nanocrystalline graphite with domain

size less than 10 nm [11].

The XRD pattern in Fig. 12 shows the non crystalline nat-

ure of the membrane in M18 after the CNTs synthesis, par-

tially justifying the absence of macroscopic membrane

deformation. The most intense carbon materials peaks at

about 25° and 43° are also visible.

3.5. Transport properties (sorption, diffusion and

permeability)

The recording of mass evolution with time during the steps of

relative humidity is reported in Fig. 13 for an F2 membrane

and M19. It can be noticed that the composite materials re-

quired a much longer time to reach a mass stabilization.

The carbon–water interaction in the absence of functional

group, such as –COOH [26], is due to van der Waals-like force

[27]. Sample M19 presents a typical sorption curve, with a

gradual increase (during sorption) and decrease (during

desorption) of the mass.

F2 presents a peculiar sorption curve: during the first

humidity step (namely at zero time), a sudden increase of

mass is recorded, followed by a less steep increase at longer

times. Similarly, when the sample is dried again (namely at

the beginning of the last step), this sudden increase is nearly

immediately recovered. This phenomenon deserves further

investigations, but it can be interpreted with a sudden occu-

pation of a portion of free volume by water molecules. This

occupation is then followed by a typical sorption of water in-

side the sample. When the sample is dried again, the men-

tioned portion of free volume is nearly suddenly emptied.

The quantity of water present inside the samples at the

end of each relative humidity step (Mw), namely the equilib-

rium water content, was calculated from the data reported in

Fig. 13 and are reported in Fig. 14 with respect to the mass of

dry sample. It can be noticed that the quantity of water ab-

sorbed by F2 is slightly larger with respect to the other sam-

ple, even if the quantities are surely comparable. Both

samples present a slight hysteresis.

The sorption coefficient S, calculated from the slopes of

the plots reported in Fig. 14 for both samples, was 20.8 g/

(100 g of dry sample)/bar for M19 and 22.9 g/(100 g of dry sam-

Fig. 9 – TEM-HRTEM images of carbon nanotubes (sample

M18).



ple)/bar for F2. By assuming the density of dry samples to be

4 g/cm3 for alumina membrane and 3.6 g/cm3 for M19 (the

mean weight density of the composite, considering for CNTs

a density of 2 g/cm3), the sorption coefficient was 736 cm3

(STP)/(cm3 bar) for M19 and 1140 cm3(STP)/(cm3 bar) for the

starting membrane.

The diffusivity D was calculated by analyzing the mass

changes at each step of relative humidity. The equation used

to evaluate the diffusivity was:

ln
d

dt

MðtÞ ÿM0

M1 ÿM0

� �� �

¼ ln
8D

h2

� �

ÿ
p
2D

h2
t

in whichM(t) is the mass of the sample at each time, M0 is

the value at the beginning of the humidity step, M1 is the va-

lue of the mass at stabilization (equilibrium), h is the thick-

ness of the sample. The previous equation is valid for times

such that the ratio MðtÞÿM0
M1ÿM0

� �

is larger than about 0.4.

Plotting ln(d Mt/dt) vs time, the value of D (cm2/s) is calcu-

lated at each partial pressure from the slope of the curve.
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The results, summarized in Fig. 15, show that M19 gives a

diffusivity larger by about a factor 5 than F2. The average val-

ues of diffusivity were: 6.8 · 10ÿ10 cm2/s for M19 and

1.6 · 10ÿ10 cm2/s for F2. The composite CNT/AO shows an al-

most significant improvement of the water transport proper-

ties, although the internal diameter of the CNTs is about

30 nm, larger in comparison to the size of the water mole-

cules. To achieve enhanced transport properties reported by

previous studies [28] related to the unique low-friction prop-

erties and hydrophobic properties of CNT surface it is crucial

to decrease the size of CNT internal diameter to the size of

transported molecules [29].

Permeability values to water vapor were evaluated as prod-

uct of sorption and diffusion:

P ¼ SD

The results obtained are 5 · 10ÿ7 cm3(STP)/(cm s bar) for

M19, and 1.82 · 10ÿ7 cm3(STP)/(cm s bar) for F2. M19 is fairly

more permeable to water vapor, likely due to an enhanced

hydrophobicity of the sample due to carbon.

3.6. Electrical tests

3.6.1. Surface conductivity of the external carbon layer

The dc resistance of the external carbon layer of CNT/AO

composite samples obtained in the tests 18 and 19 was mea-

sured. The I–V characteristic of the tested samples is reported

in Fig. 16. The dc conductivity of the carbon film deposited

over the surface of samples M18 and M19 was evaluated

assuming an average thickness of the external carbon layer

varying between 15 and 40 nm, as deduced from SEM and

TEM analysis. The obtained results show values in the range

of 40–50 kS/m.

3.6.2. DC conductivity of the CNTs grown inside the

membrane pores

The dc volume conductivity of samples M18 and M19 was

measured using the set-up described in Section 2. Fig. 17

shows that the silver conducting paint is composed by silver

Fig. 13 – Mass evolution with time during the steps of relative humidity.

Fig. 14 – Sorption isotherm for both samples. Squares: F2;

Circles: M19. Empty symbols: sorption. Filled Symbols:

desorption.

Fig. 15 – Diffusivity. Squares: F2; Circles: M19. Empty symbols: sorption. Filled Symbols: desorption. Left: data versus relative

humidity. Right: data versus equilibrium water content.



particles having diameter in the range of several microns, and

it confirms that once deposited on the surface of the porous

substrate silver cannot pass through the holes of the

membrane.

Considering that the silver paint has a conductivity of

900 kS/m and the silver paste of 238 kS/m, it results that the

electrical volume conductivities of the CNTs grown in mem-

branes M18 and M19 is about 52 and 58 kS/m, in the hypoth-

esis that according to TEM analysis the average CNT wall

thickness is of 10 and 7 nm respectively for the two different

samples.

4. Conclusion

CNTs (one nanotube for each channel) were synthesized by

CVD in the channels of well ordered alumina membranes.

The length of the CNTs is coincident with the membrane

thickness, their external diameter is close to the diameter of

the membrane holes, and the CNTwall thickness adjustable

by changing the reactor operating conditions.

The dissolution of the membrane gives bundles of parallel

tubes, opened and aligned without macroscopic defects. The

external diameter of the tubes is uniform and there is no evi-

dence of amorphous carbon. The nanotubes reflect the inter-

nal structure of the membrane channels.

Bending of the CNT/AO sample was observed at the high

temperature used for the CNTs growth. The respective influ-

ences of the thermal expansion coefficient (16 · 10ÿ6 Kÿ1),

the conversion from amorphous to polycrystalline alumina

allotropic phases, the morphology difference between both

faces of the AOmembranes are still in discussion. In any case,

a ‘‘forming process’’, with the membrane between a silicon

wafer and the sintered reactor support, during the synthesis

performed in a temperature range 810–820 °C, successfully

avoid curling of the membranes during heating. Flat mem-

branes were obtained after synthesis. The nanotube shape

of the produced carbon is demonstrated by TEM characteriza-

tion; twisted walls in the direction of the nanotube axis are

visible as well.

The on-line analysis of the reactor outlet gas has given

useful information to better understand the mechanism of

CNTs formation.

The measurement of transport properties to water vapor

showed that diffusivity is much higher for the carbon con-

taining sample, likely due to enhanced hydrophobicity. In

any case, both samples present a measurable permeability

to water vapor.

We found values of the effective electrical volume conduc-

tivity of the composite ranging from a few up to ten kS/m,

comparable with the recent literature. The averaged conduc-

tivity of the CNTs was also calculated showing values around

50 kS/m.
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