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Introduction

Mixed-effects model methodology [START_REF] Pinheiro | Mixed-effect models in S and Splus[END_REF] allows to discriminate between inter-and intra-subjects variabilities which is essential when dealing with longitudinal data. Statistical methods for mixed models are now well established (see references below) but can be time consuming depending on the complexity of the regression functions. Indeed sophisticated mathematical models have been developed to describe precisely biological processes: multi-dimensional ordinary differential equations (ODE) (see [START_REF] Wu | Modeling long-term HIV dynamics and antiretroviral response: effects of drug potency, pharmacokinetics, adherence, and drug resistance[END_REF][START_REF] Guedj | Maximum likelihood estimation in dynamical models of HIV[END_REF][START_REF] Lavielle | Maximum likelihood estimation of long term HIV dynamic models and antiviral response[END_REF][START_REF] Ribba | A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy[END_REF] for modeling viral load decrease in HIV patients or tumor growth) or partial differential equation (PDE) (see [START_REF] Grenier | Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE[END_REF][START_REF] Chatterjee | Mathematical modelling of HCV infection: what can it teach us in the era of direct-acting antiviral agents?[END_REF], for modeling tumor growth or HVC viral kinetic). These mathematical models have no analytical solution and only an approximate solution can be obtained with computationally intensive numerical methods. This induces a huge increase of the computation cost of the estimation method (up to 23 days according to [START_REF] Grenier | Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE[END_REF]. Therefore, there is a crucial need to develop new statistical approaches to reduce the computation time. The significant computation time of mixed models estimation methods is due to their iterative settings, compulsory to sidestep the intractability of the likelihood. This is true for methods based on linearisation [START_REF] Pinheiro | Mixed-effect models in S and Splus[END_REF] or likelihood numerical approximation [START_REF] Davidian | Nonlinear models to repeated measurement data[END_REF][START_REF] Wolfinger | Laplace's approximation for nonlinear mixed models[END_REF] and this is crucial for EM-type methods such as stochastic EM algorithms [START_REF] Wei | Calculating the content and boundary of the highest posterior density region via data augmentation[END_REF][START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF].

Our objective is to propose a way of reducing the computation time of the SAEM-MCMC algorithm [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF] for complex mixed models, together with a theoretical study of the resulting estimator. When the regression function is not analytically available (and we call it also computer model in the rest of the paper), extensions of SAEM have already been proposed. [START_REF] Donnet | Estimation of parameters in incomplete data models defined by dynamical systems[END_REF] deal with the case of an ODE mixed model, approximating the solution with a numerical scheme and studying the influence of this scheme to the properties of the approximate maximum likelihood estimator. But this approach remains time consuming when the ODE is multi-dimensional. For a PDE mixed model, [START_REF] Grenier | Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE[END_REF] propose to approximate the PDE with a numerical scheme on a predefined grid, and then to interpolate the solution of the PDE linearly between two points of the grid. This linear approximation allows substantially reducing the computation time from 23 days to around 30 minutes, but may lead to biased estimates depending on the non linearity of the model.

The keystone of providing an efficient estimation method with good statistical properties is the choice of the procedure approximating the regression function. More accurate surrogates of computer model than linear approximation rely on Gaussian process emulation which consists of modeling the computer model as the realization of a Gaussian process [START_REF] Sacks | Design and analysis of computer experiments[END_REF][START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF][START_REF] Fang | Design and Modeling for Computer Experiments[END_REF]. This technique is also known as Kriging. A cheap approximation of the model, the emulator, is obtained by conditioning the Gaussian process on some evaluations of the model corresponding to inputs of a well-chosen design of numerical experiments. This stochastic modeling of the computer model provides also a measure of uncertainty on the precision of the approximation as a supplementary variance-covariance function which can be integrated in the mixed model. This approach has been already coupled with a Stochastic EM algorithm [START_REF] Barbillon | Nonlinear methods for inverse statistical problems[END_REF] or with a Bayesian procedure [START_REF] Fu | Bayesian inference for inverse problems occurring in uncertainty analysis[END_REF] in regression models without random effects. In this paper, we propose to couple the SAEM algorithm with this Gaussian process emulator, incorporating this new source of uncertainty due to the approximation. Thus, providing a confidence interval of the unknown parameters takes into account the error induced by the approximation. We will refer to this approach as the complete mixed meta-model. However, the supplementary variancecovariance function in the model induces a loss of independence of the observations obtained from the different subjects which increases the computational burdensome of the MCMC scheme. That is why we also propose two simplified versions: the first one (called intermediate) by considering a diagonal variance-covariance function of the approximation error; the second one (called simple) by only using the approximation of the computer model and not incorporating the variance-covariance function. These two last versions allow to assume the independence between the subjects, and to reduce significantly the computational cost.

The Gaussian process emulator can also be interpreted as an approximation of the computer model by kernel interpolation with radial basis function as in [START_REF] Schaback | Error estimates and condition numbers for radial basis function interpolation[END_REF][START_REF] Schaback | Kernel-based meshless methods[END_REF]. In this framework, a point-wise control on the error of approximation is provided. Hence, we are able to guarantee a control on the distance between the maximum likelihood estimates in the approximate mixed meta-models and the maximum likelihood estimates obtained with the exact computer model. This control is decreasing to zero as a function of the space-fillingness of the design of numerical experiments.

The paper is organized as follows. Section 2 introduces the standard non-linear mixed model and Section 3 recalls the principles and the main results of the Gaussian process emulation. Section 4 introduces three mixed models approximated by Gaussian process emulator. In Section 5, three versions of the SAEM algorithm coupled to a Gaussian process emulator are proposed. Theoretical results are given in Section 6. A simulation study illustrates these results (Section 7). Section 8 concludes the paper with some extensions. Proofs are gathered in Appendix.

Mixed model and notations

Let us define y i = t (y i1 , . . . , y ini ) where y ij ∈ R p is the response for individual i at time t ij , i = 1, . . . , N , j = 1, . . . , n i , and let y = (y 1 , . . . , y N ) be the vector of all observations, of size n tot = N i=1 n i . We assume that the individual vectors y i are described by a non-linear mixed model, defined as follows, for j = 1, . . . , n i :

y ij = f (t ij , ψ i ) + σ ε ε ij , ε ij ∼ iid N (0, 1) , (1) 
ψ i ∼ iid N (µ, Ω), where f (•, •) : R × R d → R p is the regression function, ψ i is a d-vector of individual parameters. The ε i = (ε i1 , .
. . , ε ini ) t represents the Gaussian centered residual error, independent of ψ i . The individual parameter ψ i are assumed to be random, Gaussian with expectation µ and d × d covariance matrix Ω. Note that the individual vectors (y i ) i are independent and identically distributed.

The quantities we want to estimate from the observations y are the population parameters θ = (µ, Ω, σ 2 ε ). In the following, we restrict to the case of scalar observations (p = 1) to ease the reading, but the extension to a multidimensional observation with p > 1 is straightforward.

We want to estimate θ by maximum likelihood. The likelihood of model ( 1) is:

p(y, θ) = p(y, ψ ; θ) dψ = N i=1 p(y i |ψ i ; θ)p(ψ i ; θ)dψ i = N i=1 1 (2πσ 2 ε ) ni/2 × exp - 1 2 t (y i -f (t i , ψ i ))(σ 2 ε I ni ) -1 (y i -f (t i , ψ i )) × 1 (2π) d/2 |Ω| 1/2 exp - 1 2 t (ψ i -µ)Ω -1 (ψ i -µ) dψ i ( 2 
)
where t i = (t i1 , . . . , t ini ) and

f (t i , ψ i ) = t (f (t i1 , ψ i ), . . . , f (t ini , ψ i )).
When f is non linear with respect to ψ, the maximum likelihood estimator has no closed form. Any estimation method adapted to non-linear mixed models would require a very large number of evaluations of f , which could be time consuming when the structural function f is a computer model. Therefore, there is a real need to consider approximations of the function f that are simple to evaluate at any point (t, ψ). For that purpose, we introduce the framework of meta-model in the next section.

Meta-model

We start with the point of view of conditioned Gaussian process emulation which has the nice feature of incorporating as a variance-covariance function the additional source of uncertainty due to the approximation. This will naturally lead to a mixed metamodel on which the SAEM-MCMC can be performed. We also link this framework to the kernel interpolation framework since we need the deterministic point-wise control on the approximation to obtain the control between the maximum likelihood estimates corresponding to the exact model and to its approximation.

Conditioned Gaussian process

In this framework, the function f is interpreted as a realization of a Gaussian Process. Let us denote F λ a Gaussian process defined, for any x = (t, ψ), as

F λ (x) = L j=1 β j h j (x) + ζ(x) = t H(x)β + ζ(x) , (3) 
where h 1 , . . . , h L are regression functions, H = (h 1 , . . . , h L ), β = (β 1 , . . . , β L ) is a vector of parameters, ζ is a centered Gaussian process with covariance function

Cov(ζ(x), ζ(x ′ )) = σ 2 K φ (x, x ′ ) ,
where K φ is a correlation function depending on some parameters φ and λ = (β, σ, φ) is the vector of all unknown parameters. For instance, the so-called Gaussian kernel is defined by K φ (x, x ′ ) = exp(-φ xx ′ 2 ) . The regression functions h 1 , . . . , h L are usually linear functions or low degree polynomials. The kernel K φ has to be chosen with respect to the assumed regularity of the function f . Similarly, the regression functions H have to be chosen with respect to the supposed trend in the function f if some insights on the function are available. See [START_REF] Koehler | Computer experiments. In Design and analysis of experiments[END_REF]; [START_REF] Fang | Design and Modeling for Computer Experiments[END_REF] for detailed discussions on the choice of the regression functions and kernels.

We assume that we are able, in a pre-computation step, to evaluate precisely the function f n D times for a given design of numerical experiments, D = {x 1 , . . . x nD }. These "exact" evaluations are denoted z 1 = f (x 1 ), . . . , z n = f (x nD ). The (z k ) are different from the (y ij ) considered in model (1) which are noisy observations of f in some unknown points x = (t, ψ). The design of experiments D is usually chosen with respect to a space-filling criterion [START_REF] Fang | Design and Modeling for Computer Experiments[END_REF] in a bounded domain where the points (t ij , ψ i ) i,j are assumed to be. For a given kernel K, and a given vector H of regression functions, the vector of parameters λ has to be estimated. Usually, λ is estimated by maximizing the log-likelihood ℓ F of the Gaussian process F (3):

ℓ F (λ; z D ) = - 1 2 log((2πσ 2 ) nD |Σ φ DD |) (4) - 1 2 t (z D -H D β)(σ 2 Σ φ DD ) -1 (z D -H D β) ,
where

(Σ φ DD ) 1≤k,j≤nD = (K φ (x k , x j )), (H D ) 1≤k≤nD ,1≤j≤L = h j (x k ).
The Matlab toolbox DACE [START_REF] Lophaven | DACE, a matlab kriging toolbox[END_REF] provides an optimization algorithm to estimate directly λ. We denote by λ = ( β, σ, φ) the estimates. The Gaussian process is chosen to be F = F λ. It corresponds to a plug-in approach since from now, these parameters are considered as known.

Then f is not directly approximated by F , but rather by the conditional process denoted F D , defined as the process F conditionally to F (x 1 ) = z 1 , . . . , F (x nD ) = z nD , in short Z D = z D . The process F D is still a Gaussian process, defined by its mean and covariance functions, which can be exactly computed. Let us introduce the partial functions, for any x ∈ R d+1 , K φ

x : R d+1 → R defined by K φ x (x ′ ) = K φ (x, x ′ ) for any x ′ and the vector

Σ φ xD = K φ x (x k ) 1≤k≤nD
. Then, the mean m D (x) and covariance C D (x, x ′ ) of the process F D are defined, for all x, x ′ as

m D (x) = H(x) t β + t Σ φ xD (Σ φ DD ) -1 (z D -H D β) , (5) 
C D (x, x ′ ) = σ2 (K φ x (x ′ ) -t Σ φ xD (Σ φ DD ) -1 Σ φ x ′ D ) . (6) 
The mean function m D provides an approximation of the function f for any x and the variance function x → C D (x, x) measures the confidence in the accuracy of this approximation. The plug-in approach for λ = (β, σ 2 , φ) may lead to underestimate the uncertainty on the quality of the approximation which is showed to be asymptotically negligible [START_REF] Prasad | The estimation of the mean squared error of small-area estimators[END_REF]. It can be used only for the parameter of the correlation kernel φ. In this case, when the process is not conditioned on ( β, σ), the conditioned process is a Student T-process with still closed-form location and scale [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]. However, we prefer the complete plug-in approach to deal with a Gaussian distribution which is easier to incorporate in the mixed model.

Kernel interpolation

We can interpret the previous meta-model approximation as a kernel interpolation. Indeed, a Reproducing Kernel Hilbert Space (RKHS) can be associated to K φ as soon as the kernel K φ is positive definite. Then the partial functions K φ x defined in Section 3.1 span a pre-Hilbert space with inner product < K φ

x , K φ x ′ >= K φ (x, x ′ ). Aronszajn's theorem states that there exists a unique completion H K of this space with the reproducing property:

∀v ∈ H K , x ∈ R d+1 , v(x) =< v, K φ x > .
The space H K is the RKHS associated to kernel K. Then, we focus on the function g(x) = f (x) -t H(x) β, where β is estimated as before. Note that this function can be seen as the residuals of the linear model (3) of the random variables Z 1 , . . . , Z nD on the design D = {x 1 , . . . x nD }:

Z i = f (x i ) = t H(x i ) β + g(x i ).
We consider the following problem of seeking for the function in H K which interpolates g on points of D with a minimal norm:

min v∈HK v HK g(x k ) = v(x k ), k = 1, . . . n D .
The solution to this problem is the orthogonal projection of g on the subspace spanned by

(K x1 , . . . , K xn D ), denoted s K,D (g). If we assume that the function g = f -t H β belongs to H K , then s K,D (g) is defined as s K,D (g(x)) = t Σ φ xD (Σ φ DD ) -1 (z D -H D β) (7) = t u(x)(z D -H D β) = nD k=1 u k (x)g(x k ) , with t u(x) = t Σ φ xD (Σ φ DD )
-1 (same notations as in Section 3.1). This provides an approximation of f which is the same than the function m D (5). The approximation m D belongs to the RKHS assuming that the regression functions H belong to the RKHS, which is true for linear or low degree polynomial regressors H.

The kernel interpolation framework yields to an upper bound on the point-wise error of this approximation using the reproducing property and a Cauchy-Schwarz inequality. For any x, we have

|f (x) -m D (x)| = |g(x) -s K,D (g(x))| ≤ | < g, K φ x - nD k=1 u k (x)K φ x k > | ≤ g HK • K φ x - nD k=1 u k (x)K φ x k HK =: g HK P D (x) . (8) 
The norm g HK is unknown and depends on f . The norm P D (x) does not depend on f (or g) but on the design of experiments D only. It holds that

P D (x) = (K φ(x, x) -t Σ φ xD (Σ φ DD ) -1 Σ φ xD ) = 1 σ2 C D (x, x) .
Again, there exists a link with the Gaussian process framework: up to the parameter σ2 , we obtain the variance function of the conditioned Gaussian process (6). For some usual kernels, a uniform upper-bound on P D (x) is available as a function of

a D = sup x∈X d+1 min 1≤k≤nD x -x k
where X is a bounded subspace of R. The value of a D is related to the coverage of the space X by the design of experiments. A design of experiments which minimizes this quantity is said to be minimax [START_REF] Johnson | Minimax and maximin distance designs[END_REF]. The point-wise upper bound is given in the following Proposition [START_REF] Schaback | Error estimates and condition numbers for radial basis function interpolation[END_REF]:

Proposition 1. Assume that the experimental design D is minimax in X . Let H K denote the RKHS associated to the kernel K which is assumed to be derived from a radial basis function as proposed in [START_REF] Wu | Local error estimates for radial basis function interpolation of scattered data[END_REF]. Assume that f lies in H K . Let m D denote the kernel approximation of the function f obtained on the design D. Then the point-wise error

|f (x) -m D (x)| is uniformly upper-bounded in X by |f (x) -m D (x)| ≤ g HK P D (x) ≤ g HK G K (a D ) .
where the function G K is defined on R + and is such that lim

a→0 + G K (a) = 0. Furthermore, if the regressors H ∈ H K , then there exists a constant C > 0 such that |f (x) -m D (x)| ≤ C f HK G K (a D ) .
For instance, when using a Gaussian kernel K φ (x, x ′ ) = e -φ x-x ′ 2 , the function G K is G K (a) = Ce -δ/a 2 where C and δ are constants depending on φ.

Three mixed meta-models

The estimation of the population parameter θ is performed on the meta-model approximation of the mixed model (1). For computational reasons, we introduce three mixed meta-models.

Complete mixed meta-model

Let us introduce the so-called complete mixed meta-model that integrates the metamodel approximation. The regression function f in (1) is approximated by

F D (t, ψ) = m D (t, ψ) + r(t, ψ): y ij = F D (t ij , ψ i ) + σ ε ε ij , ε ij ∼ iid N (0, 1), (9) 
ψ i ∼ iid N (µ, Ω), F D (t, ψ) = m D (t, ψ) + r(t, ψ), with, r(t, ψ) ∼ GP(0, C D (t, ψ; t, ψ)).
Whereas model ( 1) is homoscedastic (constant error variance), the mixed metamodel (9) is heteroscedastic. Let us emphasize that this is not a standard heteroscedastic error model. Indeed, we have:

y ij |ψ i ∼ N (m D (t ij , ψ i ), Γ D (t ij , ψ i )) with Γ D (t, ψ) = σ 2 ε + C D (t, ψ; t, ψ
) , but the (y ij |ψ i ) j are not independent, as well as the individual vectors (y i ) i . This is due to the fact that the (r(t ij , ψ i )) ij are realizations of the same Gaussian process. This is a major difference with approximations that have already been proposed in the literature [START_REF] Donnet | Estimation of parameters in incomplete data models defined by dynamical systems[END_REF][START_REF] Grenier | Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE[END_REF]. Especially, this complicates the implementation of the MCMC scheme.

We propose to estimate θ as the maximum of the likelihood of model ( 9). We denote

m D (t, ψ) = (m D (t ij , ψ i )) 1≤i≤N,1≤j≤ni
the vector of the approximate mean, evaluated on (t, ψ) = (t ij , ψ i ) 1≤i≤N,1≤j≤ni . Similarly, we denote

C D (t, ψ) = (C D (t ij , ψ i ; t i ′ j ′ , ψ i ′ )) 1≤i,i ′ ≤N,1≤j,j ′ ≤ni .
The likelihood of model ( 9) is then:

p D (y; θ) = p(ψ; θ) 1 (2π) ntot/2 |σ 2 ε I ntot + C D (t, ψ)| 1/2 (10) exp - 1 2 t (y -m D (t, ψ))(σ 2 ε I ntot + C D (t, ψ)) -1 (y -m D (t, ψ)) dψ .
This likelihood is not explicit because function m D (t ij , ψ i ) is not linear in ψ i . As said previously, this likelihood cannot be simplified as a product of individual likelihoods because the y i are not independent (the matrix C D (t, ψ) is a full matrix). The corresponding estimation algorithm requires to invert this n tot ×n tot -matrix at each iteration (at least N × 2d per iteration), which is highly computationally intensive. Therefore, we introduce an intermediate mixed meta-model by considering only the diagonal of C D (t, ψ).

Intermediate mixed meta-model

In the intermediate mixed meta-model, the regression function f is approximated by m D (t, ψ)+r(t, ψ), where r(t, ψ) has a diagonal covariance matrix Λ i,ψi = diag(C D (t i , ψ i )):

y ij = m D (t ij , ψ i ) + r(t ij , ψ i ) + σ ε ε ij , (11) 
ε ij ∼ iid N (0, 1) , ψ i ∼ iid N (µ, Ω) r(t i , ψ i ) ∼ ind GP(0, Λ i,ψi = diag(C D (t i , ψ i ))).
The likelihood of model ( 11) is then:

pD (y; θ) = N i=1 p(ψ i ; θ) 1 (2π) ni/2 ni j=1 (σ 2 ε + C D ((t ij , ψ i ), (t ij , ψ i ))) 1/2 (12) exp - 1 2 t (y i -m D (t i , ψ i ))(σ 2 ε I ni + Λ i,ψi ) -1 (y i -m D (t i , ψ i )) dψ i .
This form of the likelihood is separable with respect to ψ i and can be written as a product over the individuals which are independent. The covariance matrix σ 2 ε I ni +Λ i,ψi is diagonal and can be easily inverted. This will substantially reduce the computation time of the estimation method. However the intermediate model is heteroscedastic, and σ ε might be more difficult to estimate than in the exact model. This is why we introduce a simpler mixed meta-model.

Simple mixed meta-model

The simple mixed meta-model neglects the error of approximation of the computer model. The regression function is then m D :

y ij = m D (t ij , ψ i ) + σ ε ε ij , ε ij ∼ iid N (0, 1), ( 13 
) ψ i ∼ iid N (µ, Ω).
The simple mixed meta-model ( 13) has similar properties than model (1): it is homoscedastic (constant error variance), the vectors (y i ) i are independent and identically distributed, and for each individual i, conditionally to ψ i , the (y ij ) j are independent. The likelihood of model ( 13) is given by:

pD (y; θ) = N i=1 p(ψ i ; θ) 1 (2πσ 2 ε ) ni/2 (14) exp - 1 2 t (y i -m D (t i , ψ i ))(σ 2 ε I ni ) -1 (y i -m D (t i , ψ i )) dψ i ,
which has the same form than likelihood of model (1).

Population parameter estimation

Likelihoods of the mixed meta-models being not explicit, we resort to the family of EM algorithm to estimate the parameters θ, which is a classical approach for models with non-observed or incomplete data. We start with the SAEM algorithm for the exact mixed model and then for the three mixed meta-models.

Estimation for the exact mixed model

The objective is to maximize the likelihood p(y; θ) of the exact mixed model (1). Let us briefly cover the EM principle [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. The complete data of the mixed model is (y, ψ). The EM algorithm maximizes the Q(θ|θ ′ ) = E(L(y, ψ; θ)|y; θ ′ ) function in 2 steps, where L(y, ψ; θ) is the log-likelihood of the complete data for the mixed model ( 1) and E is the expectation under the conditional distribution p(ψ|y; θ ′ ).

At the k-th iteration, the E step is the evaluation of

Q k (θ) = Q(θ | θ (k-1)
), whereas the M step updates θ (k-1) by maximizing Q k (θ). For cases with a non analytic E step, [START_REF] Delyon | Convergence of a stochastic approximation version of the EM algorithm[END_REF] introduce a stochastic version SAEM of the EM algorithm which evaluates the integral Q k (θ) by a stochastic approximation procedure. The E step is then divided into a simulation step (S step) of the missing data ψ (k) under the conditional distribution p(ψ|y; θ (k-1) ) and a stochastic approximation step (SA step) of the conditional expectation, using (γ k ) k≥0 a sequence of positive numbers decreasing to 0:

Q k (θ) = Q k-1 (θ) + γ k (L(y, ψ (k) ; θ) -Q k-1 (θ)).
In cases where the simulation of the non-observed vector ψ cannot be directly performed, [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF] propose to combine the SAEM algorithm with a Markov Chain Monte Carlo (MCMC) procedure. The idea is to simulate a Markov chain ψ (k) by use of a Metropolis-Hastings (M-H) algorithm with p(ψ|y; θ (k-1) ) as the unique stationary distribution.

The complete data likelihood L(y, ψ; θ) of the exact mixed model belongs to the regular curved exponential family: The sufficient statistics for the exact mixed model are classically S 1 (y, ψ) [START_REF] Samson | The SAEM algorithm for group comparison tests in longitudinal data analysis based on non-linear mixed-effects model[END_REF]. Then the M step is explicit and easy to implement. The convergence of the SAEM-MCMC algorithm has been proved when the complete data likelihood belongs to the regular curved exponential family and under additional assumptions (see Proposition 2). Thus the exponential family plays a crucial role to obtain an efficient algorithm.

p(y, ψ; θ) = exp {-ν(θ)+ < S(ψ), λ (θ) 
= N i=1 ψ i , S 2 (y, ψ) = N i=1 ψ i t ψ i and S 3 (y, ψ) = N i=1 ni j=1 (y ij -f (t ij , ψ i )) 2 (

Estimation for the simple mixed meta-model

The objective is to maximize the likelihood pD (y; θ) of the simple mixed meta-model (13). In the following, all the quantities referring to this approximate likelihood pD (y; θ) are indexed by D with a tilde symbol. The corresponding complete data likelihood LD (y, ψ; θ) belongs to the regular curved exponential family with minimal sufficient statistics SD (y, ψ), which are the same as the exact mixed model. In that model, the MCMC algorithm is easy to implement because of the independence of the observations of the individuals. More precisely, the SAEM-MCMC is described as follows. with m iterations of an MCMC procedure with pD (ψ i |y i ; θ (k-1) ) as stationary distribution:

For l = 1 . . . , m, given a current value ψ l-1 i for individual i:

-Simulate a candidate ψ c i with a proposal distribution q θ (k-1) (•|ψ l-1 i

).

-Meta-model step: Evaluate the meta-model m D (t ij , ψ c i ) for all j = 1, . . . , n i . -The candidate is accepted, ψ l i = ψ c i , with probability αi (ψ c i , ψ l-1 i ); otherwise the candidate is rejected,

ψ l i = ψ l-1 i with probability 1 -αi (ψ c i , ψ l-1 i ), where αi (ψ c i , ψ l-1 i ) = min pD (y i |ψ c i ; θ (k-1) )p(ψ c i ; θ (k-1) ) pD (y i |ψ l-1 i ; θ (k-1) )p(ψ l-1 i ; θ (k-1) ) q θ (k-1) (ψ l-1 i |ψ c i ) q θ (k-1) (ψ c i |ψ l-1 i ) , 1 . Set ψ (k) i = ψ m i .
Stochastic Approximation step: update the sufficient statistics:

s k,1 = s k-1,1 + γ k N i=1 ψ (k) i -s k-1,1 , s k,2 = s k-1,2 + γ k N i=1 ψ (k) i t ψ i (k) -s k-1,2 , s k,3 = s k-1,3 + γ k   N i=1 ni j=1 (y ij -m D (t ij , ψ (k) i )) 2 -s k-1,3   .
Maximisation step: update the population parameters

µ (k) = s k,1 N , Ω (k) = s k,2 N - s k,1 t s k,1 N 2 , σ ε 2 (k) = s k,3 n tot .

Estimation for the intermediate mixed meta-model

In the following, all the quantities referring to the approximate likelihood pD (y; θ) of the intermediate mixed meta-model are indexed by D with a bar symbol. This model belongs to the exponential family when the Gaussian process r is considered in the hidden states. Then the complete data of the intermediate mixed meta-model are (y, ψ, r) where r = (r(t ij , ψ i )) i=1,...,N,j=1,...,ni . The complete log-likelihood is thus:

LD (y, ψ, r; θ) = log pD (y|r, ψ; θ) + log pD (r|ψ; θ) + log p(ψ; θ) = cst - n tot 2 log(σ 2 ε ) - 1 2 ij (y ij -m D (t ij , ψ i ) -r(t ij , ψ i )) 2 σ 2 ε - 1 2 i log(|Λ i,ψi |) - 1 2 i t rΛ -1 i,ψi r - N 2 log(|Ω|) - 1 2 i t (ψ i -µ)Ω -1 (ψ i -µ) ,
where cst denotes a constant term. The E-step is the computation of Q(θ| θ (k-1) ) = E( LD (y, ψ, r; θ)|y; θ (k-1) ) = log pD (y, r, ψ; θ)p D (r, ψ|y; θ (k-1) )drdψ = log pD (y, r, ψ; θ)p D (r|y, ψ; θ (k-1) )dr pD (ψ|y; θ (k-1) )dψ .

The conditional distribution pD (r i |y i , ψ i ; θ (k-1) ) is explicit, Gaussian, with mean and covariance defined by

m(k-1) r,ψi = Γ(k-1) r,ψi (y i -m D (ψ i ))/ σ 2 ε (k-1) , Γ(k-1) r,ψi = (1/ σ 2 ε (k-1) + Λ -1 i,ψi ) -1 .
Integrated with respect to r inside Q(θ| θ (k-1) ) yields to

Q(θ| θ (k-1) ) = - n tot 2 log(σ 2 ε ) - 1 2 i y i -m D (t i , ψ i ) - m(k-1) r,ψi 2 σ 2 ε - 1 2σ 2 ε i Tr( Γ(k-1) r,ψi ) - 1 2 i log |Λ i,ψi | - 1 2 i t m(k-1) r,ψi Λ -1 i,ψi m(k-1) r,ψi - 1 2 i Tr(Λ -1 i,ψi Γ(k-1) r,ψi ) - N 2 log(|Ω|) - 1 2 i t (ψ i -µ)Ω -1 (ψ i -µ)
p(ψ|y; θ (k-1) )dψ + cst .

Then the sufficient statistic corresponding to σ 2 ε is changed to

S(k-1) D,3 (y, ψ, r) = N i=1 y i - m D (ψ i ) - m(k-1)
r,ψi 2 + Tr( Γ(k-1) r,ψi ). The simulation step is a standard one, which can be applied to each individual separately. The MCMC algorithm targets pD (ψ i |y i ; θ (k-1) ) as stationary distribution, where the process ri has been integrated out. The acceptance probability only requires the knowledge of pD (y i |ψ i ; θ (k-1) ) which is a Gaussian density with covariance matrix σ 2 ε I ni + Λ i,ψi . As this matrix is diagonal, its inversion at each iteration is fast. Finally, the SAEM-MCMC proceeds as follows: with m iterations of an MCMC procedure with pD (ψ i |y i ; θ (k-1) ) as stationary distribution.

SA step: update the sufficient statistics s k,1 and s k,2 as usual and update

s k,3 = s k-1,3 + γ k N i=1 y i -m D (ψ i ) - m(k-1) r,ψ (k) i 2 + Tr Γ(k-1) r,ψ (k) i -s k-1,3
M step: as usual.

Estimation for the complete mixed meta-model

In the following, all the quantities referring to the approximate likelihood p D (y; θ) of the complete mixed meta-model ( 9) are indexed by D.

The main difficulty comes from the fact that model ( 9) is heteroscedastic but not in a standard way: the conditional distributions of y i |ψ i are not independent and all the subjects have to be treated together. Similarly as the intermediate model, we consider the Gaussian process r in the complete data and we have to integrate out with respect to r to compute the function Q. The conditional distribution p D (r|y, ψ; θ (k-1) ) is explicit, Gaussian, with mean and covariance defined by:

m (k-1) r,ψ = Γ (k-1) r,ψ (y -m D (ψ))/ σ 2 ε (k-1)
,

Γ (k-1) r,ψ = (1/ σ 2 ε (k-1) + C D (t, ψ) -1 ) -1 .
The matrix

Γ (k-1) r,ψ
has dimension n tot × n tot and cannot be split as it was the case with the intermediate model. Thus the inversion of Γ r and C D increases dramatically the computation time of the estimation algorithm. Moreover, the MCMC step is also more complex. Indeed, the conditional distributions p D (ψ|y) cannot be written as a product of individual conditional distributions. But the MCMC kernels are applied to each subject i successively. The corresponding target distribution is the conditional distribution p D (ψ i |y, ψ -i ) where ψ -i = (ψ 1 , . . . , ψ i-1 , ψ i+1 , . . . , ψ N ) is the vector of individual parameters except individual i (with obvious notations when i = 1 or i = N ) and not the distribution p D (ψ i |y i ) as in a standard heteroscedastic mixed model. This increases the difficulty of implementation of the MCMC: the whole covariance function C D (t, ψ), evaluated at each point (t ij , ψ i ), has to be evaluated and inverted at each iteration of the MCMC scheme. 

-i = (ψ (k) 1 , . . . , ψ (k) i-1 , ψ (k-1) i+1 , . . . , ψ (k-1) N
) of all the other individuals, update ψ -i ; θ (k-1) ) as stationary distribution: For l = 1 . . . , m, given a current value ψ l-1 i for individual i and a current vector

ψ (k)l-1 = (ψ (k) 1 , . . . , ψ (k) i-1 , ψ l-1 i , ψ (k-1) i+1 , . . . , ψ (k-1) N
) for all individuals:

-Simulate a candidate ψ c i with a proposal distribution q θ (k-1) (•|ψ l-1 i

).

-Set ψ c = (ψ

(k) 1 , . . . , ψ (k) i-1 , ψ c i , ψ (k-1) i+1 , . . . , ψ (k-1) N
).

-Meta-model step: For all j = 1, . . . , n i , evaluate the meta-model m D (t ij , ψ c i ). For all subjects i ′ , i ′′ = 1, . . . , N (including subject i) and all observations j ′ , j ′′ , evaluate the covariance functions C D (t i ′ j ′ , ψ c i ′ ; t i ′′ j ′′ , ψ c i ′′ ) and invert the obtained matrix C D .

-The candidate is accepted,

ψ l i = ψ c i , with probability α i (ψ c i , ψ l-1 i ); otherwise ψ l i = ψ l-1 i with probability 1 -α i (ψ c i , ψ l-1 i ) where α(ψ c i , ψ l-1 i ) = min p D (y|ψ c ; θ (k-1) )p(ψ c i ; θ (k-1) ) p D (y|ψ (k)l-1 ; θ (k-1) )p(ψ (l-1) i ; θ (k-1) ) q θ (k-1) (ψ (l-1) i |ψ c i ) q θ (k-1) (ψ c i |ψ (l-1) i ) , 1 . Set ψ (k) i
= ψ m i . SA step: update the sufficient statistics s k,1 and s k,2 as before and update:

s k,3 = s k-1,3 + γ k y -m D (ψ) -m (k-1) r,ψ (k) 2 + Tr Γ (k-1) r,ψ (k) -s k-1,3 .
M step: as usual.

Let us emphasize that the MCMC in the S step is difficult to implement due to the heteroscedasticity of the complete mixed meta-model. This MCMC algorithm may have poor mixing properties because the vectors ψ i are updated successively while they are highly correlated through this non-diagonal matrix C D (t, ψ). Another solution could be to design a proposal in the MCMC algorithm for the whole vector ψ. However, such a proposal is quite complicated to construct since the dimension of ψ is high: d × N .

Fisher Information matrix estimates

Using formula in [START_REF] Louis | Finding the observed information matrix when using the EM algorithm[END_REF] and estimation scheme proposed in [START_REF] Delyon | Convergence of a stochastic approximation version of the EM algorithm[END_REF], confidence intervals can be obtained on the parameters implementing a stochastic approximation scheme of the Fisher Information matrix. It is only necessary to approximate the gradient and the Hessian matrix of the log-likelihood of the complete data: log p(ψ, y; θ) = log p(y|ψ; θ) + log p(ψ; θ) .

Actually, log p(y|ψ; θ) does not depend on µ et Ω, hence the gradient and Hessian computations are only about log p(ψ; θ) which is a multivariate normal N (µ, Ω). Thus, this implementation does not depend on the mixed model and remains the same for the standard mixed model and the three mixed meta-models.

6 Convergence of the SAEM algorithm to the maximum likelihood of the meta-model

Since the SAEM-MCMC algorithm is not applied to model ( 1), but to an approximate mixed model, it is not possible to prove the convergence of the algorithm toward a local maximum of the exact likelihood p(y; θ). However, it is possible to apply the results of [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF] for the three mixed meta-models. Hence, the algorithms converge toward a local maximum of the likelihood p D (y; θ), pD (y; θ) and pD (y; θ) when applied to the complete, intermediate or the simple mixed meta-models ( 9), ( 11) and ( 13), respectively. This is given by [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF] that we briefly recall, without detailing their assumptions (M1)-( M5) and (SAEM1)-(SAEM4).

Proposition 2 (Kuhn and Lavielle). Under assumptions (M1)-( M5) and ( SAEM1)-(SAEM4) for the complete, intermediate or simple mixed meta-model, if the sequence (s k ) stays in a compact set, the SAEM algorithm produces a sequence ( θ(k) ) k≥1 which converges to the (local) maximum of the approximate likelihood p D (y; θ), pD (y; θ) or pD (y; θ), respectively.

Now we study the impact of the meta-model approximations on the likelihoods. Our goal is to obtain a uniform control on the distance between the likelihood of the exact model p(y; θ) and the likelihoods of the three mixed meta-models p D (y; θ), pD (y; θ) and pD (y; θ) as a function of the quality of the meta-model. We start by the simple mixed meta-model.

Proposition 3. Let us consider the likelihoods p(y; θ) (2) of the mixed model (1) and pD (y; θ) (14) of the simple mixed meta-model ( 13) associated to a minimax design D.

Assume that the support of the distribution of ψ is compact. Assume that the functions f and m D are uniformly bounded on the support of the distribution of ψ. Assume that f lies in the RKHS associated with the kernel K satisfying to the same hypotheses as in Proposition 1. Then, there exists a constant Cy which depends only on y such that

|p(y; θ) -pD (y; θ)| ≤ Cy n tot σ ntot+2 ε G K (a D )
where the function G K tends to 0 when a → 0 (defined in Proposition 1) and the constant a D is the covering distance of the design of experiments D.

Recall that, when using a Gaussian kernel K(x, x ′ ) for the meta-model approximation, the function G K is defined by G K (a) = Ce -δ/a 2 . Then, to ensure that this covering distance is small, we need a global upper-bound, uniformly in ψ. This is true when the support of the distribution of ψ is compact. Under this assumption, we obtain that the covering distance G K (a D ) can be as small as required provided there is a sufficient number of points n D in the design. Thus providing a rich design D during the pre-computation step allows to control as finely as we want the error induced on the likelihoods. Now, we can study the distance between the three mixed meta-models.

Proposition 4. Let us consider the likelihoods p D (y; θ) (10) of the complete mixed meta-model (9), pD (y; θ) (12) of the intermediate mixed meta-model (13) and pD (y; θ) (14) of the simple mixed meta-model ( 13) associated to a minimax design D. Under the same hypotheses as Proposition 3, there exist two constants C y and Cy which depend only on y such that

|p D (y; θ) -pD (y)| ≤ C y n tot σ ntot+2 ε G K (a D ), |p D (y; θ) -pD (y)| ≤ Cy n tot σ ntot+2 ε G K (a D ).
Therefore, this guarantees a control between the likelihood of any of the mixed metamodel and the likelihood of the exact mixed model. With regularity hypotheses on the Hessian matrix of each likelihood, results similar to [START_REF] Donnet | Estimation of parameters in incomplete data models defined by dynamical systems[END_REF] the exact likelihood p(y; θ) and the maximum of the approximate likelihoods p D (y; θ), pD (y; θ) or pD (y; θ) can be as small as we want, as soon as the design D is rich enough.

Simulation study

The objective of this study is to compare the main statistical properties of the estimation with the mixed meta-models and compare them to the exact mixed model rates correspond to the coverage rate of the confidence interval on parameters based on the stochastic approximation of the Fisher Information matrix. In this example, the two meta-models have good performances even with only 25 points in the design of experiments and increasing n D decreases the bias. The parameter ω log Vm is biased when using a meta-model (whatever n D ) while it is not with the exact model. This may be due to the error of approximation that is not completely taken into account.

7.2 First order pharmacokinetic model

Simulation settings

Let us consider a one-compartment PK model with first order absorption and elimination, with a dose D of a drug. The concentration of the drug in the body along time in then described by the following ordinary differential equation

df dt = D k a k e C l exp(-k a t) -k e f, f (t 0 ) = 0
where k a and k e are the absorption and elimination constants, C l is the clearance. We consider the PK parameters of theophyllin [START_REF] Pinheiro | Mixed-effect models in S and Splus[END_REF]: log k e = -2.52, log k a = 0.4, log C l = -3.22. One dataset of 36 patients is simulated with a dose D=6 mmol and measurements at time t = 0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12 hours. The random effects were simulated assuming a Gaussian distribution for the logarithm of the parameters with a diagonal variance-covariance matrix Ω with the following diagonal elements: ω 2 log ke = ω 2 log ka = ω 2 log C l = 0.01. Then a homoscedastic additive error model is simulated with a standard error σ ε = 0.1. The same SAEM algorithms were run as in the first example. The Gaussian process emulators were built with n D = 50 and n D = 100 points, linear regression functions and a Gaussian covariance kernel, in the same fashion as in subsection 7.1.1. The domain where the approximation is built is [-4; -1] for log k e , [0; 2] for log k a and [-4.5; 2] for log C l . The starting values for the parameters are µ 

Results

The computation times are the same as before. Relative bias, relative RMSE and coverage rate computed from 1000 replications are presented in Table 2. When the design of numerical experiments in the pre-computation step has 100 points, the estimates obtained with the mixed meta-models have similar performance to the ones obtained with the exact mixed model. With only 50 points in the design, the estimates with the mixed meta-models are less accurate, especially σ ε with the intermediate mixed model. There is a clear improvement of the quality of the estimates with the intermediate mixed meta-model for the parameters concerning the means. Recall that the simple mixed meta-model neglects the approximation of the function f . Therefore, taking into account the errors of the approximation of the Gaussian process emulator in the model prevents from a systematic bias in the estimates. However, since the correlation between the Gaussian process emulator approximation errors are set to zero for the sake of simplicity, the estimation of σ ε may be less accurate but usually this parameter if of less interest.

Concluding remarks

In the case of a mixed model where the regression function is a non-analytical solution of an ODE or of a PDE, we proposed to build a so-called meta-model which is obtained thanks to a pre-computation step. It consists in running the ODE/PDE solver on a well chosen design of numerical experiments. Once this meta-model is obtained, we use it as a surrogate of the regression function in the estimation procedure which is based on a SAEM-MCMC algorithm. We derived three mixed meta-models depending on whether the additional source of uncertainty due to the approximation by the metamodel is taken into account totally, partially or not at all (complete, intermediate and simple mixed meta-model). In the complete mixed meta-model, there is a full covariance matrix accounting for dependencies induced by the meta-modeling errors which slows down the SAEM-MCMC algorithm. That is why we have renounced to test it in the simulation study. Further works are needed to design MCMC algorithm adapted to this case of non-independent individuals. In the intermediate and simple mixed metamodel, the individuals are still independent thus the SAEM-MCMC algorithm does not suffer from any computational burden. We showed examples where even with a very few design points for the meta-model approximation, the estimation results are very satisfactory. We also showed an example where the intermediate meta-model improves the quality of the estimates of the parameters especially those accounting for the mean of the population parameters.

Since the quality of the approximation provided by the meta-model directly depends on the density of the numerical design of experiments in the neighborhood of the input where the approximation is made, a sequential strategy for building an adaptive design reinforcing the meta-model where the SAEM-MCMC algorithm identifies likely region for the parameters should improve the estimates. However, this strategy would make the Markov property in the SAEM-MCMC procedure no longer to be valid. Therefore, there are theoretical questions which will be interesting to solve in order to ensure guarantees in this case. Therefore, we start by studying |p(y|ψ; θ) -pD (y|ψ; θ)|: (tij, ψi) .

(2πσ 2 ε ) ntot/2 |p(y|ψ; θ) -pD(y|ψ; θ)| = exp - 1 2σ 2 ε ij (yij -f (tij , ψi)) 2 -exp - 1 2σ 2 ε ij (yij -mD(tij , ψi)) 2 = exp - 1 2σ 2 ε ij (yij -f (tij, ψi)) 2 × 1 -exp - 1 2σ 2 ε ij (yij -mD(tij, ψi)) 2 -(yij -f (tij , ψi)) 2 ≤ 1 -exp - 1 2σ 2 ε ij f (tij , ψi) -mD(tij, ψi))(2yij -f (tij , ψi) -mD
Under the assumption that the functions f and m D are uniformly bounded on the support of ψ, there exists a constant C y which is uniform according to ψ such that |2y ijf (t, ψ)m D (t, ψ)| ≤ C y . Proposition 1 implies that the approximation error due to the metamodel |f (t ij , ψ i )m D (t ij , ψ i )| is controlled by inequality (8):

|f (t ij , ψ i ) -m D (t ij , ψ i )| ≤ f HK G K (a D ) .
Then there exists a constant C y depending only on y such that 

Proof of proposition 4

We study the distance between the two likelihoods p D and pD . As in Proposition 3, we start by studying |p D (y|ψ; θ) -pD (y|ψ; θ)|. We consider two Gaussian distributions with same expectations and different covariance matrix. Thus this distance is maximum when (y ijm D (t ij , ψ i )) 2 = 0. This yields (2π) ntot/2 |p D (y|ψ; θ) -pD (y|ψ; θ)|

≤ 1 σ ntot ε - 1 |σ 2 ε I ntot + C D | = 1 σ ntot ε 1 - σ ntot ε |σ 2 ε I ntot + C D | 1/2 ≤ 1 σ ntot ε 1 - σ ntot ε (σ 2 ε + 1 ntot ij C D (t ij , ψ i ; t ij , ψ i )) ntot/2 ≤ 1 σ ntot ε 1 - 1 (1 + 1 σ 2 ε ntot ij C D (t ij , ψ i ; t ij , ψ i )) ntot/2
where we use that the determinant, as a product of eigen values, is smaller than a function of the trace of the matrix. Thus, the sum is over the diagonal of the matrix C D i.e. the sum of the variances. Then, we obtain that there exists a constant C such that

|p D (y|ψ; θ) -pD (y|ψ; θ)| ≤ C 1 σ ntot ε 1 2σ 2 ε ij C D (t ij , ψ i ; t ij , ψ i ) ≤ C(2π) ntot/2 n tot σ ntot+2 ε G K (a D )
where the last inequality holds using Proposition 1. Finally, we obtain The proof is similar for the distance between the two likelihoods pD and pD .

  >}where < •, • > denotes the scalar product, the minimal sufficient statistic S(y, ψ) takes its values in an open subset S of R m , ν D and λ are functions of θ. Then the SA step reduces to approximate E S(y, ψ)| θ (k-1) at each iteration by the value s k .

Algorithm 1 .:

 1 (SAEM-MCMC algorithm for the simple mixed meta-model) At iteration k, given the current values of the estimators μ(k-1) , Ω(k-1) , σ2 (k-1) ε Simulation step: For each individual i separately and successively, update ψ (k) i

Algorithm 2 .

 2 (SAEM-MCMC algorithm for the intermediate mixed metamodel) At iteration k, given the current values of the estimators μ(k-1) , Ω(k-1) , σ2 (k-1) ε : S step: For each individual i separately and successively, update ψ (k) i

Algorithm 3 .

 3 (SAEM-MCMC algorithm for the complete mixed meta-model) At iteration k, given the current values of the estimators μ(k-1) , Ω(k-1) , σ2 (k-1) ε : S step: for each individual i successively, given the current values ψ (k)

  of an MCMC procedure with p D (ψ i |y, ψ (k)

f

  ) ntot/2 |p(y|ψ; θ) -pD (y|ψ; θ)| ≤ C y HK G K (a D ) .

  |p D (y; θ) -pD (y; θ)| ≤ C y n tot σ ntot+2 ε G K (a D ).

Table 1 :

 1 can be obtained: The distance between the maximum of Michaelis-Menten pharmacokinetic simulations: relative bias (%), relative MSE (%) and coverage rate (%) computed over 1000 simulations, with the intermediate meta-, the simple meta-and the exact mixed models. Meta-models are built with either n D = 25, n D = 50 or n D = 100 design points. Coverage rate (Cov.) is the coverage rate of the 95% confidence interval based on the stochastic approximation of the Fisher matrix.

	Parameter		Intermediate			Simplified		Exact
				meta-model			meta-model		model
		n D	25	50	100	25	50	100	
		Bias	-0.508	-0.025	0.121	-0.483	-0.015	0.089	-0.390
	µ log V	RMSE	0.048	0.043	0.042	0.048	0.042	0.041	0.063
		Cov.	92.8	93.3	93.3	92.1	93.6	93.8	86.3
		Bias	-4.920	-1.389	-0.794	-4.872	-1.396	-0.904	-2.079
	µ log ka	RMSE	0.860	0.545	0.476	0.870	0.541	0.502	0.797
		Cov.	79.2	86.9	89.1	77.8	85.9	87.4	81.0
		Bias	-2.067	-0.599	0.014	-1.930	-0.577	-0.138	-1.566
	µ log Vm	RMSE	0.392	0.333	0.314	0.401	0.328	0.327	0.680
		Cov.	87.3	88.1	88.9	85.5	88.9	89.2	82.5
		Bias	4.569	-2.408	-2.185	4.270	-2.108	-2.215	-4.393
	ω 2 log V	RMSE	6.487	5.526	5.276	6.359	5.445	5.287	9.461
		Cov.	94.5	92.2	91.9	94.8	93.3	93.5	84.8
		Bias	1.755	-3.822	-6.797	1.935	-5.022	-6.799	-1.705
	ω 2 log ka	RMSE	17.398	16.382	16.590	17.465	16.305	16.870	23.416
		Cov.	84.4	82.6	81.4	84.9	81.6	80.4	80.0
		Bias -33.721 -30.387 -30.408	-33.916 -29.946 -30.148	1.867
	ω 2 log Vm	RMSE	15.975	13.236	13.039	15.981	12.914	13.236	17.039
		Cov.	62.6	65.6	65.8	62.3	69.6	67.7	83.8
	σ 2 ǫ	Biais RMSE	2.449 0.354	1.975 0.302	2.337 0.370	5.054 0.650	2.648 0.426	2.450 0.397	0.308 0.177

Table 2 :

 2 . Two examples are illustrated below, using standard ODE pharmacokinetics (PK) models. One compartment simulations: relative bias (%), relative MSE (%) and coverage rate (%) computed over 1000 simulations, with the intermediate meta-, the simple meta-and the exact mixed models. Meta-models are built with either n D = 50 or n D = 100 design points. Coverage rate (Cov.) is the coverage rate of the 95% confidence interval based on the stochastic approximation of the Fisher matrix.

	Parameter		Intermediate	Simple	Exact
			meta-model	meta-model	model
		n D	50	100	50	100	
		Bias	0.101	0.007	-0.320	0.007	0.003
	µ log ke	RMSE	0.004	0.005	0.005	0.005	0.005
		Cov.	94.2	94.4	90.6	94.6	93.9
		Bias	-2.441	0.001	-8.380	0.008	-0.220
	µ log ka	RMSE	0.222	0.162	0.910	0.160	0.160
		Cov.	90.9	95.6	59.6	95.3	95.6
		Bias	0.388	0.036	0.160	0.036	-0.004
	µ log C l	RMSE	0.004	0.003	0.003	0.003	0.003
		Cov.	87.6	95.1	93.4	94.7	94.9
		Bias -12.113 -2.745	-23.200 -2.780	-3.400
	ω 2 log ke	RMSE	7.131	6.404	9.730	6.530	6.460
		Cov.	83.2	91.5	65.7	90.5	90.3
		Bias -20.485 -3.442	20.900 -3.320	-2.440
	ω 2 log ka	RMSE	10.696	5.911	13.500	5.930	6.050
		Cov.	72.3	89.7	96.9	89.2	90.2
		Bias	0.375 -1.145	-8.100 -1.100	-2.660
	ω 2 log C l	RMSE	5.944	5.726	5.810	5.690	5.650
		Cov.	92.6	92.0	87.5	92.8	91.1
	σ 2 ǫ	Biais -45.262 -0.612 RMSE 20.719 0.232	16.000 -0.009 2.950 0.220	-0.023 0.220
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Michaelis-Menten pharmacokinetic model

Simulation settings

Let us now consider a one-compartment pharmacokinetic model, first order absorption and Michaelis Menten elimination. A dose D of a drug is given to a patient by intravenous bolus. The concentration of the drug in the body along time in then described by the following ordinary differential equation

where V is the volume of distribution, V m is the maximum elimination rate (in amount per time unit), k m is the Michaelis-Menten constant (in concentration unit) and k a is the absorption constant. We consider log k m as fixed to -2.5. The individual parameter ψ consists in log V , log k a and log V m . We assume a Gaussian distribution on the logarithm of these parameters with mean (µ log V , µ log ka , µ log Vm ) = (2.5, 1, -0.994) and a diagonal covariance matrix with terms (ω 2 log V , ω 2 log ka , ω 2 log Vm ) = (0.09, 0.09, 0.09). Then a homoscedastic additive error model is simulated with a standard error σ ε = 0.1. We implement the four algorithms: SAEM on the original mixed model, SAEM on the complete, intermediate and simple mixed meta-model. For the meta-model SAEM algorithms, we use successively n D = 25, n D = 50 and n D = 100 number of points in the design of experiments for the Gaussian process emulator. The covariance is Gaussian, and the regression functions H are linear functions. More sophisticated choices in the regression functions and in the kernel can be made. However, our goal in this section is to illustrate in a quite simple case the efficiency of the combination of the Gaussian process emulation with the SAEM-MCMC algorithm. In the pre-computation step, for a given value ψ, the ODE solver provides f (t, ψ) for each time of measurement. Thus, the design of numerical experiment is only built over the values of ψ and not t. We have compared two approaches one where t is considered as an additional input and the other where a meta-model is built for each time t. Based on the comparison of the quality of the approximations, we have kept the second one which is quite simple to deal with. However, more sophisticated approaches can be tested (see [START_REF] Rougier | Efficient emulators for multivariate deterministic functions[END_REF], for a review). The approximation is built over the domain: [1.6; 3.3] for log V , [0; 2.1] for log k a and [-1.6; -0.3] for log V m . The starting values for the parameters are µ

Results

The computation times for one run of SAEM (100 iterations of SAEM, with 15 iterations of MCMC at each SAEM iteration) were the following: around 15 min for the exact mixed model (requiring solving the ODE at each iteration of MCMC), around 30 min for the complete mixed meta-model with n D = 50 (requiring inverting the C(t, ψ) at each iteration of MCMC), around 80 sec for the intermediate model and 30 sec for the simple one. Therefore, in the following, we only present the results for the exact mixed model (as a benchmark) and the intermediate and simple mixed meta-models. Relative bias and relative root mean square error (RMSE) are computed for each population parameter from 1000 replications and presented in Table 1. The 95% coverage

Appendix

Proof of proposition 3

We have |p(y; θ) -pD (y; θ)| ≤ |p(y|ψ; θ) -pD (y|ψ; θ)|p(ψ)dψ .