
HAL Id: hal-01162329
https://hal.science/hal-01162329

Submitted on 10 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing synchronization cost in distributed
multi-resource allocation problem

Jonathan Lejeune, Luciana Arantes, Julien Sopena, Pierre Sens

To cite this version:
Jonathan Lejeune, Luciana Arantes, Julien Sopena, Pierre Sens. Reducing synchronization cost in
distributed multi-resource allocation problem. ICPP 2015 - 44th International Conference on Parallel
Processing, Sep 2015, Beijing, China. pp.540-549, �10.1109/ICPP.2015.63�. �hal-01162329�

https://hal.science/hal-01162329
https://hal.archives-ouvertes.fr


Reducing synchronization cost in distributed multi-resource allocation problem

Jonathan Lejeune

Ecole des Mines de Nantes

EMN-Inria, LINA

Nantes, France

Email:jonathan.lejeune@mines-nantes.fr

Luciana Arantes, Julien Sopena, and Pierre Sens

Sorbonne Universités, UPMC Univ Paris 06,

CNRS, Inria, LIP6

F-75005, Paris, France

Email: firstname.lastname@lip6.fr

Abstract—Generalized distributed mutual exclusion algo-
rithms allow processes to concurrently access a set of shared
resources. However, they must ensure an exclusive access to
each resource. In order to avoid deadlocks, many of them are
based on the strong assumption of a prior knowledge about
conflicts between processes’ requests. Some other approaches,
which do not require such a knowledge, exploit broadcast
mechanisms or a global lock, degrading message complexity
and synchronization cost. We propose in this paper a new
solution for shared resources allocation which reduces the
communication between non-conflicting processes without a
prior knowledge of processes conflicts. Performance evaluation
results show that our solution improves resource use rate by
a factor up to 20 compared to a global lock based algorithm.

Keywords-distributed algorithm, generalized mutual exclu-
sion, multi-resource allocation, drinking philosophers, perfor-
mance evaluation

I. INTRODUCTION

Processes in distributed and parallel applications require

an exclusive access to one or more shared resources. In

the case of a single shared resource, one of the standard

distributed mutual exclusion algorithms (e.g. [1],[2],[3], [4],

[5], [6]) is usually applied in order to ensure that at most one

process uses the resource at any time (safety property) and

that all requests are eventually satisfied (liveness property).

The set of instructions of processes’ code that access the

shared resource is then called the critical section (CS).

However, most of distributed systems such as Clouds or

Grids are composed of multiple resources and processes

may ask access to several of them simultaneously. Thus, the

mutual exclusion principle is extended to several resources

but, in this case, a process can access the requested resources

only after having obtained the right to access all of them.

Nevertheless, exclusive access to each resource is not

enough to ensure the liveness property since deadlock sce-

narios can take place. In the context of multiple resources

allocation, such a problem can happen when two processes

are waiting for the release of a resource owned by the

other one. This multi-resource problem, also called AND-

synchronization, has been introduced by Dijkstra [7] with

the dining philosopher problem where processes require the

same subset of resources all the time. Later, it was extended

by Chandy-Misra [8] to the drinking philosopher problem

where processes can require different subset of resources.

In the literature, we distinguish two families of algorithms

which solve the multi-resource problem: incremental ([9],

[10]) and simultaneous (e.g. [11], [12], [13], [14], [15]). In

the first family, a total order is defined for the set of resources

and processes must acquire them respecting such an order. In

the second one, algorithms propose some mechanisms which

allow them to acquire the set of resources atomically without

entailing conflicts. On the one hand, many of the proposed

solutions of the incremental family consider a priori known

conflict graph where vertices represent processes and edges

model concurrent request to the same resource. However,

considering a known and static graph which is a very strong

assumption about the application. On the other hand, some

solutions of the simultaneous family do not require any

knowledge about the conflict graph. Nevertheless, in order to

serialize the requests, these solutions have a huge synchro-

nization cost which entails performance degradation of both

resource use rate and average waiting time. Other solutions

exploit one or several coordinators to order the requests

and avoid, thus, deadlocks, but, since they are not fully

distributed, they can generate some network contentions

when the system load is high. Finally, some algorithms use

broadcast mechanisms which render them not scalable in

terms of message complexity.

In this paper, we propose a new decentralized approach

for locking multiple resources in distributed systems. Our

solution does not require the strong hypothesis of a priori

knowledge about the conflict graph and does not need

any global synchronization mechanism. Moreover, it dy-

namically re-orders resource requests in order to exploit as

much as possible the potential parallelism of non-conflicting

requests. Performance evaluation results confirm that our

solution improves performance in terms of resources use

rate and average request waiting time.

The rest of the paper is organized as follows. Section II

discusses some existing distributed algorithms which solve

the multi-resource allocation problem. A general outline of

our proposal and its implementation are described in sections

III and IV respectively. Section V presents performance

evaluation results of this implementation by comparing them

with two existing solutions of the literature. Finally, Section

VI concludes the paper.



II. RELATED WORK

The original mutual exclusion problem was generalized

in different ways:

• group mutual exclusion problem [16], [17], [18]: a

shared resource can be accessed concurrently but only

within the same session.

• k-mutual exclusion problem [19], [20], [21], [22], [23],

[24], [25]: there are several copies (units) of the same

critical resource but the access to each one must be

exclusive.

• multi-resource allocation problem: single copy of dif-

ferent types of resources. A processes can ask for a

set of resources but the access to each copy must be

exclusive.

In this paper we will focus on the third problem. Hence,

in the rest of this section, we outline the main distributed

multi-resource allocation algorithms of the literature. They

are basically divided into two families: incremental and

simultaneous.

A. Incremental family

In this family, each process locks incrementally a set of re-

quired resources, according to a total order defined over the

global set of resources. Mutual exclusion to each resource

can be ensured with a single-resource mutual exclusion

algorithm. However, such a strategy may be ineffective if it

presents a domino effect1 when processes wait for available

resources. The domino effect may dramatically reduce the

concurrency of non-conflicted nodes and, therefore, hugely

degrade resources use rate.

In order to avoid the domino effect, Lynch [9] proposes

to color a dual graph of the conflict graph. Then, it is

possible to define a partial order over the resources set by

defining a total order over the colors set. This partial order

reduces the domino effect and improves the parallelism of

non-conflicting requests.

Aiming at reducing the waiting time, Styer and Peterson

[10] consider an arbitrary coloring (preferably optimized)

which also supports request cancellation: a process can

release a resource even if it has not use it yet. Such an

approach dynamically breaks possible waiting chains.

B. Simultaneous family

In this class of algorithms, resources are not ordered.

Algorithms implement some internal mechanisms in order

to avoid deadlocks and atomically lock the set of resources

required by the process.

Chandy and Misra [8] have defined the drinking philoso-

phers problem where processes (= philosophers) share a

set of resources (= bottles). This problem is an extension

of the dining philosophers problem where processes share

forks. Contrarily to the latter, where a process always asks

for the same subset of resources, i.e., the same two forks,

1A process waits for some resources which are not in use but locked by
other processes that wait for acquiring other resources.

the drinking philosopher problem let a process to require

a different subset of resources at each new request. The

communication graph among processes corresponds to the

conflict graph and has to be known in advance. Each process

shares a bottle with each of its neighbors. By orienting the

conflict graph we obtain a precedence graph. Note that if

cycles are avoided in the precedence graph, deadlocks are

impossible. It has been shown that the dining philosophers

problem respects this acyclicity but it is not the case for

the drinking philosophers one. To overcome this problem,

Chandy and Misra have applied dining procedures in their

algorithms: before acquiring a subset of bottles among

its incident edges, a process firstly needs to acquire all

the forks shared with its neighbors. Forks can be seen

as auxiliary resources that serialize bottle requests in the

system and are released when the process has acquired

all the requesting bottles. Serialization of requests avoids

cycles in the precedence graph and, therefore, deadlocks

are avoided. On the other hand, the forks acquisition phase

induces synchronization cost.

Ginat et al. [13] have replaced the dining phase of the

Chandy-Misra algorithm by logical clocks. When a process

asks for its required resources, it timestamps the request with

its local logical clock value and sends a message to each

neighbor in the conflict graph. Upon receipt of a request,

the associate shared bottle is sent immediately if the request

timestamp value is smaller than the current clock value of

the receiver. The association of a logical clock value and the

total order over identifiers of processes defines a total order

over requests which prevents deadlocks. However, message

complexity becomes high whenever the conflict graph is

unknown (equivalent to a complete graph since each process

may be in conflict with all the other ones) as the algorithm

uses, in this case, a broadcast mechanism.

In [26], Rhee presents a request scheduler where each

processes is a manager of a resource. Each manager lo-

cally keeps a queue that can be rescheduled according to

new pending requests avoiding, therefore, deadlocks. This

approach requires several dedicated managers which can

become potential bottlenecks. Moreover, the coordination

protocol responsible for avoiding deadlocks between man-

agers and application processes is quite costly.

Maddi [14] proposed an algorithm which is based on a

broadcast mechanism and each resource is represented by a

single token. Each process request is timestamped with the

local clock value of the process and broadcast to all other

processes. Upon reception, the request is stored in a local

queue of the receiver, ordered by the request timestamps.

This algorithm can be seen as multiple instances of Susuki-

Kasami mutual exclusion algorithm [3], presenting, thus,

high messages complexity.

The Bouabdallah-Laforest token-based algorithm [12] is

described in more details in this section because it is the

closest one to our solution and, therefore, the performance

of both algorithms will be evaluated and compared in section

V. A single resource token and a distributed queue are



assigned to each resource. For having the right to access

a resource, a process must acquire the associated resource

token. Furthermore, before asking for a set of resources,

the requester must firstly acquire a control token, which

is unique in the system. A Naimi-Tréhel based [5] mutual

exclusion algorithm is responsible for handling this control

token. This algorithm maintains a dynamic distributed log-

ical tree such that the root of the tree is always the last

process that will get the token among the current requesting

ones. It also keeps a distributed queue of pending requests.

The control token contains a vector with M entries (the

total number of resources of the system) where each entry

corresponds to either the resource token or the identifier of

the latest requester of the resource in question. Thus, when a

requesting process receives the control token, it acquires all

the required resources already included in the control token

and sends an INQUIRE message to the respective latest

requester for each resource token which is not in the control

token. We point out that the control token serializes requests,

ensuring that a request will be registered atomically in the

different distributed waiting queues. Hence, no cycle takes

place among all distributed waiting queues. This algorithm

presents a good message complexity, but the control token

serialization mechanism can induce bottlenecks when the

system has few conflicts, i.e., in a scenario where concur-

rency is potentially high.

III. GENERAL OUTLINE OF OUR SOLUTION

A. Model and assumptions

We consider a distributed system consisting of a finite

set Π of reliable N nodes, Π = {s1, s2, ...sN} and a set

of M resources, R = {r1, r2, ..., rM}. The set Π is totally

ordered by the order relation ≺ and si ≺ sj iff i < j.

There is one process per node. Hence, the words node,

process, and site are interchangeable. Nodes are assumed

to be connected by reliable (neither message duplication

nor message loss) and FIFO communication links. Processes

do not share memory and communicate by sending and

receiving messages. The communication graph is complete,

i.e., any node can communicate with any other one. A

process can not request a new CS before its previous one

has been satisfied. Therefore, there are at most N pending

requests. We also assume no knowledge about the conflict

graph.

B. Discussion

Similarly to our solution, simultaneous solutions found in

the literature do not assume a prior knowledge of the con-

flict graph. Their control mechanisms totally order requests

avoiding, thus, deadlocks. However, they may present poor

performance since they induce communication between non

conflicting processes which have no need to interact with

each other.
On the one hand, Bouabdallah-Laforest [12] is a very

effective multi-resource algorithm since it presents logarith-

mic message complexity. On the other hand, it presents two

constraints which degrade resource use rate:

• two non conflicting sites communicate with each other

in order to exchange the control token, inducing addi-

tional cost in terms of synchronization;

• request scheduling is static: it depends only on the

acquisition order of the control token by the requesting

processes. Consequently, a new request is not able to

preempt another one which obtained the control token

before it, preventing, therefore, a dynamic scheduling

which would increase resource use rate.

Hence, our objective is twofold:

• not to use a global lock to serialize requests in order to

avoid useless communication between non conflicting

processes,

• to schedule requests dynamically.

Figure 1 shows, in a system with five shared resources,

the impact of our two objectives (lack of global lock and

dynamic schedule) on the resource use rate when compared

to Bouabdallah-Laforest’s algorithm [12] (global lock and

static scheduling) and a mofified version of the latter without

global lock and static scheduling:

• the lack of global lock reduces the time between two

successive conflicting critical sections (Figure 1(b)).

• the dynamic scheduling makes possible the granting

of resources to processes in idle time periods (white

spaces) where resources are not in use (Figure 1(c)).

C. Suppression of global lock

In order to serialize the requests without using a global

lock, we propose a counter mechanism and totally ordering

the requests based on the counter values and the identifiers

of the nodes.

1) Counter mechanism: The goal of the control token

in Bouabdallah-Laforest’s algorithm is to provide a unique

scheduling order over the whole requesting waiting queues

associated to resources. In order to remove this global lock,

we have assigned one counter per resource. Each counter

provides then a global request order for the resource to which

it is related. Hence, there are M counters in the system

that should be accessed exclusively, i.e., there is a token

associated to each counter whose current value is kept in

the respective token. Therefore, a requesting process should

firstly obtain, for each requested resource, the current value

of the counter of each of these resources. Then, each token

holder, related to these counters, atomically increments the

respective counter in order to ensure different values at each

new request. Once a process has acquired all the required

counter values, its request can be associated with a single

vector of M integers in the set INM . Entries of the vector

corresponding to non required resources are equal to zero.

Consequently, every request is uniquely identified regardless

of the time when it has been issued as well as the set of

required resources. Then, a process can request its resources

independently. Note that this counter mechanism and the

exclusive access to a resource are independent: it is always

possible to ask for the value of a resource counter while the

resource in question is currently in use.



(a) With global lock, static scheduling (b) Without global lock, static scheduling (c) Without global lock, dynamic scheduling

Figure 1. Illustration of the impact of our objectives on the resource use rate

2) Total order of requests: A request reqi issued by the

site si ∈ Π for a given resource is associated with two pieces

of information: the identifier of the requesting process si
and the respective associated vector vi ∈ INM . Deadlocks

are avoided if a total order over requests is defined. To this

end, we firstly apply a partial order over the vector values

by defining a function A : INM → IR which transforms

the values of a counter vector in a real value. Since such

an approach guarantees just a partial order, we use the

identifier of the sites to totally order the requests. Therefore,

we define this total order, denoted, ⊳ by reqi ⊳ reqj iff

A(vi) < A(vj) ∨ (A(vi) = A(vj) ∧ si ≺ sj). Thus, if A
returns the same real value for two requests’ vector values,

the identifiers of the corresponding requesting sites break the

tie. Although this mechanism avoids deadlocks by ensuring

that all requests can be distinguished, the satisfaction of

the algorithm’s liveness property depends on the choice

of a suitable function A. In other words, A should avoid

starvation by ensuring that every request will have, in a finite

time, the smallest real value among all pending requests

according to the order ⊳. The function A is a parameter of

the algorithm and, basically, defines the scheduling resource

policy.

D. Dynamic scheduling

The introduction of a loan mechanism into the algorithm

could improve the resource use rate. Requested resources are

acquired progressively but are actually used once the process

got the right to access all of them. Thus, some or even many

resources are locked by processes which are not able to

use them. Such a behavior reduces the overall resource use

rate. The idea of the dynamic scheduling is then to restrict

as much as possible the right to access a resource only to

critical section execution, i.e., to offer the possibility to lend

the right to access a resource to another process. However,

for sake of the liveness property, the loan mechanism has to

guarantee that eventually a site get back the right, previously

acquired, to access the resource. In other words, it must

avoids starvation and deadlocks.

1) Starvation avoidance: Since the lending of the right

to access a resource will not necessarily ensure that the

borrower process will own all the set of resources it needs,

starvation problems may occur. To overcome this problem,

we propose a simple mechanism by restricting the loan to

only one process at a time. We thus guarantee that the lender

process will obtain again all the lent resource access rights

in a finite time since the critical section time of the borrower

is bounded by assumption.

2) Deadlock avoidance: Resources borrowed from mul-

tiple processes can lead to cycles in the different resources

waiting queues and, therefore, to deadlocks. To avoid it, we

propose to restrict the loan to a single site provided that

the lender process owns all the resource access rights which

are missing to the borrower process. Consequently, upon

reception of the rights, the latter can immediately execute

its critical section.

IV. DESCRIPTION OF THE IMPLEMENTATION

In this section we describe the principle of our multi-

resource allocation algorithm. Due to lack of space, we are

not going to present the pseudo-code of it. However, the

pseudo-code, the proof of correctness, and a more detailed

description of the algorithm are given in [27].

Each resource is associated with a unique token which

contains the resource counter. The process that holds the

token is the only one which has the right to access and

increment the counter value ensuring, therefore, an exclusive

access.

Each token is controlled by an instance of a simplified

version of the Mueller algorithm [28]. The latter is a pri-

oritized distributed token-based mutual exclusion algorithm

that logically organizes the processes in a dynamic tree

topology where the root of the tree is the token holder of the

corresponding resource. Every token also keeps the queue

of pending requests related to the resource it controls.

For instance, in Figure 3, we consider 3 processes (s1, s2,

and s3) and 2 resources (rred and rblue). Figure 3(a) shows

the initial tree topologies related to each of the resources

where s1 and s3 hold the token associated with rred and

rblue respectively. Notice that s2 has 2 fathers, s1 (red tree)

and s3 (blue tree), while s1 (resp. s3) has a single father s3
(resp. s2) associated with the blue tree (resp. the red tree). In

Figure 3(c), the topologies of the trees have changed since

s2 got the two tokens and it is, therefore, the root of both

trees.



We should point out that the choice of a prioritized

algorithm as Mueller’s one makes possible the rescheduling

of pending requests of a given resource queue whenever

a request, with a higher priority according to the ⊳ order,

regarding this resource, is received.

A. Process states

A process can be in one of the following four states:

• Idle: the process is not requesting any resource;

• waitS: the process is waiting for the requested counter

values;

• waitCS: the process is waiting for the right to access

all the requested resources.

• inCS: the process is using the requested resources (in

critical section).

Figure 2 shows the global machine states of a process.

Figure 2. Machine state of a process

B. Messages

We define five types of message:

• ReqCnt(r, sinit): sent by sinit when requesting the

current value of the counter associated with r.

• Counter(r, val): sent by the token holder associated

with the resource r as a reply to a ReqCnt request. It

contains the value val of the r counter that the token

holder has assigned to the request in question.

• ReqRes(r, sinit,mark): sent whenever sinit requests

the right to access resource r. The request is tagged

with mark, the value returned by function A.

• ReqLoan(r, sinit,mark,missingRes): sent by sinit
whenever it requests a loan of resource r tagged with

mark value (return of function A). The message also

contains the set of missing resources missingRes
which sinit is waiting for.

• Token(r, counter, wQueue, wLoan, slender): The to-

ken message related to resource r which contains the

latest value of the associated counter and the waiting

queue wQueue of pending requests in increasing order

of the respective marks. The queue wLoan contains

the set of pending requested loans concerning r and,

if the latter is currently lent, slender corresponds to the

identifier of the lender site.

Request messages (ReqCnt, ReqRes, and ReqLoan
types) are forwarded from the sender sinit till the token

holder along the corresponding tree structure while the

messages of type Counter and Token are sent directly to

the requester.

Note that the graph that represents the tree topology

dynamically changes during message forwarding which: (1)

may lead to cycles and indefinitely forwarding of requests

and (2) starvation problem, i.e., requests that are never

satisfied. For avoiding the first problem, we have included

in every request message the identifiers of the nodes already

visited by the request. For the second one, each site keeps a

local history of received request messages, whose obsolete

messages can be discarded thanks to a timestamp mecha-

nism.
It is worth also pointing out that in order to reduce

the number of messages in our implementation, whenever

possible, messages with same type related to the same

resource and addressed to the same site can be combined

into a single message of this type.

C. The counter mechanism

When process si wishes to access a set of resources, it

changes its state from Idle to waitS. Then, it has to get

the current value of the counters associated with all these

resources. If si already owns the tokens associated with

some of the required resources, it reserves to its request the

current value of the respective counters and increases them.

We should remind that only the token holder (si in this case

for the tokens it holds) has the right to increase the counters

associated with the resources in question. Otherwise, for

each missing counter value, si sends a ReqCnt message

to one of its fathers, i.e., the one which is its father in

the corresponding resource tree. It also registers in its local

CntNeeded set variable the id. of the missing resources.

Process si then waits to receive the missing counter values.
When sj receives the request ReqCnt message for re-

source r from si, if it does not hold the token related to r,

it forwards the message to its father which belongs to the r
tree. On the other hand, if sj is the token holder, but does

not require r, it directly sends the token to si. Otherwise,

sj keeps the token and sends a Counter message, which

contains the current value of the counter to si and then,

increments the counter.
Upon receipt of a Counter message for the resource r,

si removes r from its CntNeeded set. When CntNeeded
becomes empty, si has obtained counter values for all the

resources it required. Note that these values are uniquely

assigned to the requests of si. It then changes its state to

waitCS and for each of these resources, whose token it does

not hold yet, it sends a ReqRes message to the respective

father.
Similarly to the ReqCnt message, when receiving a

ReqRes for a resource r, process sj forwards the message

to its father if it does not hold the token associated with r. If

sj holds the token and does not require r or is in the waitS
state, it sends the token directly to si. Otherwise, si and sj
are in conflict and it is necessary to take a decision about

which of them has the right to the resource r. If sj is in

critical section (inCS state) or if the priority of its request

is higher than the si’s request (reqj⊳reqi), it keeps the right.

In this case, si’s request is registered in the r token queue



(wQueue). Otherwise, sj has to grant the right to access r
to si. To this end, it registers its own request in the r token

queue (wQueue) and sends the token directly to si, i.e., a

Token message.

When si receives a Token message related to r, it makes

two updates: (1) it includes r in its set of owned tokens.

If r belongs to CntNeeded, i.e., si has not received all

the counter values required in its last request, it registers

the current value of the token counter for this request,

increments the counter and removes r from CntNeeded;

(2) Then si takes into account pending messages of the local

history for the concerned resource: it replies by a Counter
message to each site that has issued a ReqCnt message

and adds in wQueue (respectively wLoan) of the token the

information related to ReqRes (resp. ReqLoan) messages.

Site si can enter in critical section (inCS state) if it owns

the right to access all the requested resources. If it is not

the case, it can change its state to waitCS provided its

CntNeeded set is empty (i.e., si got all the asked counter

values). In this case, si sends ReqRes messages for each

missing resources. Due to the updates of (2), site si has to

ensure that its request has the highest priority according to

the ⊳ order. If it is not the case, the token is granted to the

site having the highest priority. Site si can now potentially

satisfy a loan request stored in wLoan concerning the other

tokens that it keeps. Finally, si can initiate a loan request,

if necessary (see section IV-D).

When the process exits the critical section, it dequeues

the first element of the waiting queue of all owned resource

tokens and sends to their next holder (or potentially the

lender site) the associated token. Finally si’s state becomes

Idle.

Let’s take up the example of Figure 3 with the 3 processes

(s1, s2 and s3) and the 2 resources (rred and rblue),

where the initial configuration is given in Figure 3(a), that

we have previously described. Processes s1 and s3 are in

critical section accessing rred and rblue respectively. Figure

3(b) shows the messages that processes exchange when s2
requires both resources. First, s2 sends to each of its fathers,

s1 (red tree) and s3 (blue tree), a ReqCnt request in order

to obtain the associated current counter values. When s2 has

received the two requested counter values, it sends ReqRes
messages along the trees asking for respective resources.

Upon exiting the critical sections s1 and s3 respectively

send rred token and rblue token to s2, which can thus enter

the critical section once it received both tokens. The final

configuration of the logical trees is shown in Figure 3(c).

D. The loan mechanism

The execution of a loan depends on some conditions

related to both the lender and the borrower sites:

• Upon receipt of a token, process si can request a loan

provided it is in the waitCS state (i.e., it got all

the needed counter values) and the number of missing

resources is smaller or equal to a given threshold. If it is

the case, si sends a ReqLoan message to the respective

father of the missing resources trees. Similarly to a

ReqRes message, a ReqLoan message for a resource

is forwarded till the token holder associated with this

resource.

• When receiving a ReqLoan message for resource r,

the token holder sj first checks if the loan is possible.

All required tokens in the message (missingRes set)

can be lent if the following conditions are met:

– sj owns all the requested resources (indicated in

the ReqLoan message by the missingRes set);

– none of the resources owned by sj is a loan;

– sj has not lent resources to another site;

– sj is not in critical section

– si’s request has a higher priority than sj’s request

if both have sent a loan request for their current

CS request.

If the loan is feasible, the tokens associated with the

resources are sent to si with slender equals to sj . On the

other hand, if sj does not require the resource of the request

or is in waitS state, it sends the token directly to the

borrower site si. Otherwise, i.e., one or more of the above

conditions were not satisfied, the loan request is included

in the wLoan of the corresponding token to be potentially

satisfied later upon receipt of new tokens.

When si receives borrowed tokens and if it does not

enter in critical section (e.g., if it has yield other tokens

for higher priority requests in the meantime), then the loan

request fails. Consequently, the loan request is canceled and

si immediately returns borrowed tokens to slender, avoiding,

therefore, an inconsistent state where a site owns borrowed

and unused tokens.

Finally, when exiting the critical section, si sends back

these tokens directly to sj .

E. Optimizations

1) Synchronisation cost reduction of single resource re-

quests: It is possible to reduce the synchronization cost of

requests requiring a single resource by directly changing

the state of the requester from Idle to waitCS. Since such

requests require only one counter, stored in the token, the

root site of the corresponding tree is able to apply A and

then consider the ReqCnt message as a ReqRes message.

Hence, such an optimization reduces messages exchanges.

2) Reduction of ReqRes messages: Once a process si
gets all the requested resource counter values, it sends, for

each of these resources, a ReqRes message that will travel

along the corresponding tree till the token holder (root site).

The number of these forward messages can be reduced by:

• shortcuting the path between the requesting site si and

the root site sj : upon receipt of a Counter message

from sj , si sets its father pointer to sj since the latter

is the last token owner from the viewpoint of si.
• stopping forwarding before the message reaches the

root site. When receiving a ReqRes message for a

resource r, a process sj does not forward the message

if (1) it is in the waitCS state, also requires r, and its



(a) Initial state (b) Execution (c) Final state

Figure 3. Execution example

request has a higher precedence than si’s request or (2)

sj has lent the token. If one of these two conditions is

met, sj knows that it will get the token corresponding

to r before si. The request of si will eventually be

stored in the waiting queue wQueue of the token.

V. PERFORMANCE EVALUATION

In this section, we present some evaluation results com-

paring our solution with two other algorithms:

• An algorithm, which we have denoted incremental

algorithm which uses M instances of the Naimi-

Tréhel algorithm [6], one of the most efficient mutual

exclusion algorithm thanks to its messages complexity

comprised between O(LogN) and O(1)
• The Bouabdallah-Laforest algorithm [12] (see Section

II).

In order to show the impact of the loan mechanism, we

consider two versions of our algorithm named Without loan

and With loan which respectively disable and enable the

loan mechanism. In the latter, a site asks for a loan when it

has just one missing requesting resource.

We are interested in evaluating the following two metrics:

(1) resource use rate and (2) the waiting time to have the

right to use all the requested resources, i.e., the right to

execute the critical section.

As previously explained, our algorithm requires a function

A as input. For performance evaluation, our chosen function

A computes the average of non null values of the counter

vector. This function avoids starvation because counter val-

ues increase at each new issued request which implies that

the minimum value returned by A increases at each new

request. Thus, the liveness property is ensured. We should

emphasize that the advantage of this approach lies in the

fact that starvation is avoided only by calling the function

and does not induce any additional communication cost.

A. Experimental testbed and configuration

The experiments were conducted on a 32-nodes cluster

with one process per node. Therefore, the side effect due to

the network is limited since there is just one process per net-

work card. Each node has two 2.4GHz Xeon processors and

32GB of RAM, running Linux 2.6. Nodes are linked by a 10

Gbit/s Ethernet switch. The algorithms were implemented

using C++ and OpenMPI. An experiment is characterized

by:

• N : number of processes (32 in our experiments).

• M : number of total resources in the system (80 in our

experiments).

• α: time to execute the critical section (CS) (4 possible

values : 5 ms, 15 ms, 25 ms and 35 ms according to

the number of asked resources).

• β: mean time interval between the release of the CS by

a node and the next new request issued by this same

node.

• γ: network latency to send a message between two

nodes (around 0,6 ms for our experiments).

• ρ: the ratio β/(α+ γ), which expresses the frequency

with which the critical section is requested. The value

of this parameter is inversely proportional to the load:

a low value implies a high request load and vice-versa.

• φ: the maximum number of resources that a site can

ask in a single request which ranges for 1 and M .

The greater the value of this parameter, the lower the

potential parallelism of the application and thus, the

higher the probability to have conflicting requests.

At each new request, a process chooses x resources. The

critical section time of the request depends on the value

of x: the greater the value, the higher the probability of a

long critical section time since a request requiring a lot of

resources is more likely to have a longer critical section

execution time.
For each metric, we show performance results correspond-

ing to both medium and high load scenarios.

B. Resource use rate

This metric expresses the percentage of time that re-

sources are in use (e.g., 100 % means that all resources

are in use during the whole experiment). It can be seen as

the percentage of colored area in the diagrams of Figure 4.

We can observe that resources are used more effectively in

the example of execution of Figure 4(b) than in the example

of Figure 4(a), i.e., the former presents fewer white areas.
By varying φ, we show in Figure 5 the impact of the

number of asked resources within a request, denoted request



(a) Inefficient execution (b) Efficient execution

Figure 4. Illustration of the metric of resource use rate

size, on the resource use rate in the case of medium (figure

5(a)) and high (figure 5(b)) loads. The request size x may

be different for each new request and it is chosen according

to a uniform random law from 1 to φ.

In addition to the considered algorithms, we have included

in both figures a fifth curve which represents a distributed

scheduling algorithm executed on a single shared-memory

machine with a global waiting queue and no network com-

munication. The aim of such a curve is the evaluation of the

synchronization cost of the different algorithms since it is a

resource scheduling algorithm without any synchronization.

Overall, in both figures, whenever φ increases, the re-

source use rate increases too. When the request size is

minimal, the maximal number of resources in use is equal to

the number of processes N which is smaller than the number

of the total resources M . On the other hand, when the

average request size increases, each critical section execution

concerns a larger number of resources and, therefore, the

resource use rate increases.

Note that in high load scenario (Figure 5(b)) the shape of

the curve of the scheduling algorithm without synchroniza-

tion firstly increases, then decreases till a threshold value at

φ = 20, and finally increases again. The curve has such a

shape due to a threshold effect. In the first rise of the curve,

the probability of having conflicts is small compared to

both the request size and the difference between N and M .

After φ = 4, the number of conflicts starts to increase and

the drop that follows is a consequence of the serialization

of conflicting requests. Finally, when φ is greater than 20,

the probability of having requests conflicts is maximum but

each critical section access requires a lot of resources which

increases the global use rate. Hence, the subsequent rise of

the curve is not caused by the increase of non-conflicting

requests concurrency, but by the increase of requests’ size.

We should also point out that, when the average request

size increases, the shapes of the resource use rate curves

of the different algorithms are not the same. For the in-

cremental algorithm, the resource use rate decreases and

stabilizes since this algorithm does not benefit from the

increase in the request size due to the domino effect (see

II-B). The resource use rate of the Bouabdallah-Laforest

algorithm increases regularly. Although this algorithm is

very disadvantaged by the global lock bottleneck whenever

there are few conflicts (especially in high load), its use rate

increases with the average request size. We observe that in

this algorithm the resource use rate increases faster because

it can take advantage of concurrent requests. However, it is

not as much effective as our algorithms: independently of the

request size, the latter present a higher resource use rate than

the former, whose performance is affected by the bottleneck

of its control token as well as its static scheduling approach.

Notice that, depending on the request size, our algorithms

have resource use rate values from 0.4 to 20 times higher

than Bouabdallah-Laforest algorithm.
The curves related to the resource use rate of our two

algorithms have the same shape than the one of the schedul-

ing without synchronization. When the loan mechanism is

enabled, the respective algorithm presents a higher resource

use rate in high load scenario when the request size lies

between 4 and 16 (improvement of up to 15%). Such a

behavior shows that the loan mechanism is effective in

reducing the negative effect of conflicts induced by medium

requests and does not degrade performance when request

size is big.

C. Average waiting time

In this section we study the average waiting time of a

request which corresponds to the interval from the time the

request was issued till the time when the requesting process

got the right to access the resources whose identifiers are in

the request.
For both high and medium loads, Figures 6 and 7 show

the average waiting time for processes to enter in critical

section, respectively considering a small (φ = 4) and the

highest (φ = 80) maximum request size. Figure 7 presents

in more details the waiting time of different request sizes.

We have not included in the figures the performance of the

incremental algorithm because it is strongly disadvantaged

by the domino effect: the average waiting time was too high

compared to the experiment duration.
We can note in Figures 6(a) and 6(b) that our algorithms

have a lower average waiting time than the Bouabdallah-

Laforest algorithm when request size is small (around 11

times lower in high load and 8 times lower in medium load).

Such a behavior confirms that our algorithms benefit from its

lower synchronization cost. We also observe an improvement

of 20% when the loan mechanism is activated in the high

load scenario which is consistent with the previous figures

related to resource use rate.
On the other hand, contrarily to our algorithms, both the

waiting time and the standard deviation of Bouabdallah-

Laforest algorithm do not vary much when request size

varies, as shown in Figures 7(a) and 7(b). Although our

algorithm is the most efficient, its scheduling penalizes

requests of small size. We can observe in the same figures

that the average waiting time of small requests is the highest

one as well as the respective standard deviation. Indeed,

due to our chosen scheduling policy, i.e., our function A,

the access order of a single resource request depends on

the value of the corresponding counter. In other words,

the vector value average returned by the function concerns,



 0

 10

 20

 30

 40

 50

 60

 10
 20

 30
 40

 50
 60

 70
 80

❘
�
✁✂
✄
☎✆
�
✁
✄
✁�
☎✝
✞�

▼✟✠✡☛☞☛ ✌✡✍✎ ✏✑ ✒✎✓☞✎✌✔✌

Incremental
Bouabdallah Laforest

Without loan
With loan

in shared memory

(a) Medium load

 0

 10

 20

 30

 40

 50

 60

 10
 20

 30
 40

 50
 60

 70
 80

✕
✖
✗✘
✙
✚✛
✖
✗
✙
✗✖
✚✜
✢✖

✣✤✥✦✧★✧ ✩✦✪✫ ✬✭ ✮✫✯★✫✩✰✩

Incremental
Bouabdallah Laforest

Without loan
With loan

in shared memory

(b) High load

Figure 5. Impact of request size over resource use rate

 0

 200

 400

 600

 800

 1000

Bouabdallah_Laforest

without_loan

with_loan

❆
✱
✲
✳✴
✵
✲
✶
✴
✷✸
✷✹
✵
✸✷
✺
✲
✻✷
✹
✺
✼✽

(a) Medium load

 0

 200

 400

 600

 800

 1000

Bouabdallah_Laforest

without_loan

with_loan

✾
✿
❀
❁❂
❃
❀
❄
❂
❅❇
❅❈
❃
❇❅
❉
❀
❊❅
❈
❉
❋●

(b) High load

Figure 6. Average waiting time (φ = 4)

in this case, just one counter value which is increased

according to the frequency with each the associated resource

is required: a highly requested resource will have a higher

counter value when compared to other ones which are less

requested.

VI. CONCLUSION AND FUTURE WORK

We have presented in this paper a new distributed algo-

rithm to exclusively allocate a set of different resources.

It does not require a prior knowledge about the graph of

conflicts and reduces communication between non conflict-

ing processes since it replaces a global lock by a counter

mechanism. The totally order of requests can be ensured

with the definition of a function A, given as input parameter

of the algorithm. Performance evaluation results confirm

that the counter mechanism improves the resource use rate

and reduces the average waiting time. However, it can not

completely avoid the domino effect which increases the

waiting time of pending requests. To overcome this draw-

back, we have include in the algorithm a loan mechanism

that dynamically reschedules pending requests, reducing the

probability that the domino effect takes place.

Since our solution limits communication between non

conflicting processes, it would be interesting to evaluate

our algorithm on a hierarchical physical topology such as

Clouds, grids and large clusters. The lack of global lock of

our algorithm would avoid useless communication between

two distant geographic sites reducing, therefore, requests

waiting time when compared to other control token based

multi-resource algorithms. Performance results show that

initiating a loan request when a process misses just one

resource (threshold =1) improves use rate in scenarios with

medium size requests. Thus, it would be interesting to

evaluate the impact of this threshold on other metrics.

VII. ACKNOWLEDGMENT

Experiments presented in this paper were carried out using

the Grid’5000 experimental testbed, being developed under

the Inria ALADDIN development action with support from

CNRS, RENATER and several Universities as well as other

funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, pp. 558–565,
July 1978.

[2] G. Ricart and A. K. Agrawala, “An optimal algorithm for
mutual exclusion in computer networks,” Commun. ACM,
vol. 24, pp. 9–17, January 1981.



 0

 200

 400

 600

 800

 1000

 1200

 1400

. Bouabdallah_Laforest

without_loan

with_loan

❆
�
✁
✂✄
☎
✁
✆
✄
✝✞
✝✟
☎
✞✝
✠
✁
✡✝
✟
✠
☛☞

1res
17res
33res
49res
65res
80res

(a) Medium load

 0

 200

 400

 600

 800

 1000

 1200

 1400

. Bouabdallah_Laforest

without_loan

with_loan

✌
✍
✎
✏✑
✒
✎
✓
✑
✔✕
✔✖
✒
✕✔
✗
✎
✘✔
✖
✗
✙✚

1res
17res
33res
49res
65res
80res

(b) High load

Figure 7. Average waiting time to get a given number of resources (φ = 80)

[3] I. Suzuki and T. Kasami, “A distributed mutual exclusion
algorithm,” ACM Trans. Comput. Syst., vol. 3, no. 4, pp. 344–
349, 1985.

[4] K. Raymond, “A tree-based algorithm for distributed mutual
exclusion,” ACM Trans. Comput. Syst., vol. 7, no. 1, pp. 61–
77, 1989.

[5] M. Naimi and M. Trehel, “How to detect a failure and
regenerate the token in the log(n) distributed algorithm for
mutual exclusion,” in WDAG, 1987, pp. 155–166.

[6] ——, “An improvement of the log(n) distributed algorithm
for mutual exclusion,” in ICDCS, 1987, pp. 371–377.

[7] E. W. Dijkstra, “Hierarchical ordering of sequential pro-
cesses,” Acta Informatica, vol. 1, pp. 115–138, 1971.

[8] K. M. Chandy and J. Misra, “The drinking philosopher’s
problem,” ACM Trans. Program. Lang. Syst., vol. 6, no. 4,
pp. 632–646, 1984.

[9] N. A. Lynch, “Upper bounds for static resource allocation in
a distributed system,” J. Comput. Syst. Sci., vol. 23, no. 2, pp.
254–278, 1981.

[10] E. Styer and G. L. Peterson, “Improved algorithms for dis-
tributed resource allocation,” in PODC, 1988, pp. 105–116.

[11] B. Awerbuch and M. Saks, “A dining philosophers algorithm
with polynomial response time,” in FoCS, 1990. Proceedings.,
31st Annual Symposium on, oct 1990, pp. 65 –74 vol.1.

[12] A. Bouabdallah and C. Laforest, “A distributed token/based
algorithm for the dynamic resource allocation problem,” Op-
erating Systems Review, vol. 34, no. 3, pp. 60–68, 2000.

[13] D. Ginat, A. U. Shankar, and A. K. Agrawala, “An efficient
solution to the drinking philosophers problem and its exten-
sion,” in WDAG (Disc), 1989, pp. 83–93.

[14] A. Maddi, “Token based solutions to m resources allocation
problem,” in SAC, 1997, pp. 340–344.

[15] V. C. Barbosa, M. R. F. Benevides, and A. L. O. Filho, “A
priority dynamics for generalized drinking philosophers,” Inf.
Process. Lett., vol. 79, no. 4, pp. 189–195, 2001.

[16] Y.-J. Joung, “Asynchronous group mutual exclusion (extended
abstract),” in PODC, 1998, pp. 51–60.

[17] V. Bhatt and C. Huang, “Group mutual exclusion in O(log
n) RMR,” in PODC 2010, Zurich, Switzerland, July 25-28,
2010, 2010, pp. 45–54.

[18] Aoxueluo, W. Wu, J. Cao, and M. Raynal, “A generalized
mutual exclusion problem and its algorithm,” in Parallel
Processing (ICPP), 2013 42nd International Conference on,
2013, pp. 300–309.

[19] K. Raymond, “A distributed algorithm for multiple entries
to a critical section,” Inf. Process. Lett., vol. 30, no. 4, pp.
189–193, 1989.

[20] M. Raynal, “A distributed solution to the k-out of-m resources
allocation problem,” in ICCI, 1991, pp. 599–609.

[21] M. Naimi, “Distributed algorithm for k-entries to critical
section based on the directed graphs,” SIGOPS Oper. Syst.
Rev., vol. 27, no. 4, pp. 67–75, Oct. 1993.

[22] N. S. DeMent and P. K. Srimani, “A new algorithm for k
mutual exclusions in distributed systems,” Journal of Systems
and Software, vol. 26, no. 2, pp. 179–191, 1994.

[23] R. Satyanarayanan and C. R. Muthukrishnan, “Multiple in-
stance resource allocation in distributed computing systems,”
J. Parallel Distrib. Comput., vol. 23, no. 1, pp. 94–100, 1994.

[24] S. Bulgannawar and N. H. Vaidya, “A distributed k-mutual
exclusion algorithm,” in ICDCS, 1995, pp. 153–160.

[25] V. A. Reddy, P. Mittal, and I. Gupta, “Fair k mutual exclusion
algorithm for peer to peer systems,” in ICDCS, 2008, pp. 655–
662.

[26] I. Rhee, “A modular algorithm for resource allocation,” Dis-
tributed Computing, vol. 11, no. 3, pp. 157–168, 1998.

[27] J. Lejeune, L. Arantes, J. Sopena, and P. Sens, “Reducing
synchronization cost in distributed multi-resource allocation
problem,” Inria, Research Report RR-8689, Feb. 2015.
[Online]. Available: https://hal.inria.fr/hal-01120808

[28] F. Mueller, “Priority inheritance and ceilings for distributed
mutual exclusion,” in Real-Time Systems Symposium, 1999.
Proceedings. The 20th IEEE, 1999, pp. 340 –349.


