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 

Abstract— Magnetostrictive-piezoelectric composite in bi-layer 

structure shows a resonant enhancement for the mechanical strain 

mediated magnetoelectric coupling when operating under bending 

mode. Such composite is of importance to achieve ultrasensitive 

magnetometers for detecting quasi-static magnetic fields by 

measuring the parameter variation near the resonant frequency. 

Detection performance is limited by diverse noise processes 

appearing in the composite and associated electronics such as the 

extrinsic interferences due to the environmental vibration and 

temperature and loss noise sources produced by the energy 

dissipation in the composite. Since the bending resonance is based 

on the mechanical interactions in the composite, the noise source 

due to the thermo-mechanical dissipation becomes an importance 

noise process to be investigated. In this paper, we investigate the 

field detection performance relating to the thermo-mechanical and 

thermo-electric dissipation in a doubly clamped magnetoelectric 

composite by means of modulation techniques. 

 
Index Terms—Magnetoelectric effects, Equivalent Circuits 

Modeling, Magnetic field measurement 

 

I. INTRODUCTION 

agnetic field sensing can be achieved by using a 

magnetoelectric composite consisting of magnetostrictive 

and piezoelectric phases as a magnetic field sensor. The 

sensitivity, termed magnetoelectric coefficient could be studied 

by applying a reference magnetic field and measuring the charge 

or voltage response through the direct 

magnetostrictive-piezoelectric effect [1]-[3]. In this case, the 

ME coefficient is proportional to the product of the 

piezoelectric and piezomagnetic coefficients, where the latter 

can be enhanced by a biased magnetic field to reach the 

maximal sensitivity. Thus, by amplifying the electric output, 
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ones can achieve the passive detection of magnetic fields. By 

amplifying the electric output, ones can achieve the passive 

detection of magnetic fields. Under the passive detection mode, 

noise performances are limited by the dielectric loss in sample 

or the noise sources in the amplifier. 

 Besides, other methods based on carrier modulations with the 

ME composite can be applied for sensing magnetic field by 

modulating coefficients such as the flexibility, the 

magnetostriction [4]-[7]. Under an exterior magnetic field, the 

change of either coefficient can produce an extrinsic parameter 

change which results to increase or reduce a measureable output 

due to physical coefficients. For example, a magnetic field 

induced stress or strain can be measured as a function of the 

transfer function or the resonant frequency variation. The 

working method can be classified into magnetic and electric 

excitation according to the excitation types. The former depends 

on an oscillating magnetic field producing a magnetostrictive 

strain on the composite by using an excitation coil. High energy 

consumption is required because of the current in the excitation 

coil. The latter employs an excitation voltage across the 

piezoelectric layer to generate a strain or stress on the composite 

through the piezoelectric effect.  

 An analytic method is based on the equivalent circuit of a 

magnetoelectric composite which could be regarded as a system 

with several elements exhibiting magnetic, electric and 

mechanical properties. The sensitivity to a magnetic field can be 

calculated with the help of this circuit. Besides, the energy 

dissipations can be integrated into these elements by 

considering the noise theory in an electric system. Thus, 

fluctuations due to the energy dissipation lead to, in detection 

process, an incertitude which is generally referred to as 

amplitude noise or phase noise at the output side. The electric 

and mechanical energy losses dominate the main noise sources 

in a ME. The electric dissipation produces incertitude on the 

electric capacitance as electric loss noise source. And the 

mechanical noise sources are due to the dissipation in elastic 

elements such as the mechanical capacitance or the resistance. 

II. ELECTRIC EXCITATION METHOD ON ME COMPOSITE 

A. Spring-mass-damper modeling 

A magnetostrictive-piezoelectric bi-layer composite can be 

modulated by two transducers. In general, a traditional 

equivalent circuit modeling can be created by using the 

constitutive equations with the flexibility, piezoelectric 

coefficients, etc. However, theses coefficients are not always 

perfectly fit to the measurement in practice due to diverse 
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factors such as the imperfect bonding between layers, 

demagnetization and/or excitation in a ME composite. This 

produces an enormous error between the approaching result and 

the one in practice [8]-[10]. However, a driven-damped 

calculation based on the spring-mass-damper modeling, which 

is simplified from the equivalent circuit, can serve to simulate 

the sensitivity and noise by measuring the mechanical and 

electric parameters in the circuit. The inertia, elastic and 

damping terms can be defined as three mechanical parameters: 

the mechanical inductance Lm, the mechanical capacitance Cm 

and the mechanical resistance Rm, respectively. Besides, the 

piezoelectric coupling is defined by a parameter p. By using 

the equivalent circuit modeling [11], the equivalent sensor 

capacitance, sensorC , can be developed from Fig. 1. C0 is the 

constant part of the electric capacitance which is invariant from 

the mechanical parameters or the piezoelectric coupling 

parameter. CPE is the capacitance contribution from the 

piezoelectric effect. The mechanical impedance consisting of 

Lm, Cm and Rm is defined as Zm. Thus, the expression of the 

sensor capacitance is presented as 
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where ω is the angular frequency of the applied signal. 

 

 
Fig. 1: Equivalent circuit model of a ME laminated sensor. 

 

 For a mechanical detection such as the phase or amplitude 

measurement around the resonant frequency, the mechanical 

quality is an important factor for the sensor performance 

[12], [13]. This factor Qm, is given as 
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By taking into count the transformed expression of the 

mechanical quality,
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m
m res m m

L
Q

R C R




   where res is the 

angular resonant frequency.
. 
The mechanical impedance can be 

rewritten as a function of the mechanical resistance, the 

mechanical quality and a dissonant factor diss [14]. 
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where, 
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f  is defined as  a small frequency shift between the excitation 

frequency and the resonant one. 

 In order to sense low frequency magnetic fields, the time or 

frequency dependent parameter can be measured. The time 

depending parameters consists of the amplitude and phase of the 

voltage. A low frequency magnetic field can modulate these 

time-variant parameters to achieve the magnetic field sensing by 

using a modulation-demodulation process. However, frequency 

dependent parameters, such as the resonant frequency, can also 

be used to detect static or quasi-static magnetic field. 

 A composite under asymmetric structure can produce a 

bending resonant frequency in low frequencies [15], [16]. 

Around this frequency, the voltage-charge transfer function is 

much more sensitive to an external force than the ones far from 

the resonant frequency. The response of the transfer function to 

the stress induced change of the sensor capacitance reaches its 

maximum value. The real part and imaginary part of the sensor 

capacitance can be derived with the help of (1). Thus, the 

electric transfer function with a charge amplifier [17] can be 

written as 
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where C1 is the feedback capacitance in the charge amplifier and 

Re (Cm) and Im (Cm) are the real and imaginary part of the 

transfer function, with 
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Thus, the gain and the phase response to an exterior magnetic 

field are given by 
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With the gain 2 2Re( ) Im( )rEE m mT C C  and the phase 
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By inserting the expressions of the real and imaginary parts 

into (5), it yields 
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The resonant amplitude is sensitive to the field tuned 

mechanical capacitance. This is caused by the flexure flexibility 

of the sensor which changes as a function of the field-induced 

force. Similarly, the real and imaginary response to a low 

frequency magnetic field can result a phase shift of the transfer 

function. This phase response to an external magnetic field 

becomes, 
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Particularly, at the mechanical bending resonant angular 

frequency, ωres, we have 0A . This simplifier the above 

formula into, 
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where  is defined as an electro-elastic angular which presents 

the ratio between the capacitance produced by the mechanical 

and dielectric effect. 

 Sensors based on the piezomagnetic or piezoelectric 

resonances have been theoretically and experimentally 

investigated for sensing strain stress or small mass by changing 

the flexibility of the sensor [18], [19]. A magnetic field induced 

resonant frequency shift defines the sensitivity of the resonant 

frequency to an exterior magnetic field. By measuring this 

resonant frequency shift, low frequency magnetic fields can be 

reconfigured [20]. The sensitivity has the form 
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The resonant frequency defined in this paper is the frequency 

which can maximize the mechanical response of the ME 

composite. The resonant frequency shift is produced by the 

magnetostrictive-stress-induced flexibility change, which is 

related to the mechanical capacitance Cm. So the sensitivity can 

be developed in the formula
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The maximum value of imaginary part of the electric transfer 

function is another parameter depending on the exterior 

magnetic field. The analytical expression can be developed as a 

function of mC

H




. By applying a small magnetic field, we 

suppose that mC

H
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 is the dominant term in the sensing process. 

Thus, we have 
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Similarly to the detection on the resonant frequency, the 

sensitivity by detecting the maximal absolute value can be 

developed in the formula
max max m
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B. Dissipation 

 The intrinsic dissipations in a ME composite can be generally 

classified into three types: magnetic, electric and mechanical 

energy losses [21]-[23]. Each energy loss can be calculated 

from the dissipated and stored energy on the area of its hysteric 

circle [24], [25]. And the three types of energy loss are partially 

correlated to each other two by two in a ME composite. The 

dielectric dissipation, relating to the electric energy loss 

between an electric field and a polarization, determines the 

intrinsic noise performance in low frequency for passive mode 

detection. The noise due to the magnetic energy dissipation is a 

classical noise source with notable influence to the detection 

with a pick-up coil, where it appears as a main intrinsic noise 

source. However, only the correlated part of the magnetic 

dissipation which is transferred into the electric one by 

mechanical media can contribute to the output noise level for 

the electric detection. Thus, the magnetic dissipation in a ME 

composite is nearly negligible comparing to the electric one for 

an electric detection. 

 The piezoelectric layer, PMN-PT used in the sensor, is a 

typical ferroelectric relaxor material [26], [27], where the 

dielectric dispersion processes can be produced by the kinetics 

from different defect phenomenon such as the domain wall 

discontinuous motions and boundary imperfections. Thus, 

fluctuations can be generated in these dissipative processes. 

However, the nature of low frequency electric fluctuations is not 

clearly understood so far, in spite that numerous experimental 
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results and assumptions have been made. We can assume that 

the low frequency disordering is related to polarization 

fluctuation which is not the unique contribution to the low 

frequency electric noise. There exist other contributions to the 

low frequency fluctuation such as the temperature fluctuation 

and the resistivity one. However, the relaxation time due to the 

defections with domain wall motions and boundaries usually 

exceeds by magnitudes the one from free electron motions or 

temperature relaxation time. Thus, the low frequency 

dissipation due to the fluctuation polarization can become the 

origin of a dominant noise process. The power spectrum of the 

electric fluctuation due to the dielectric loss can be derived by 

using a dielectric loss tangent tan(elec) with the help of the 

Nyquist’s formula. It yields, 
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 Fluctuations due to the mechanical energy dissipation can 

also lower the detection performance of a sensor [28], [29]. This 

energy dissipation is induced by the inter-friction loss and the 

elastic loss in layers and inter-layers of a ME sensor. As a result 

of the mechanical fluctuations, the oscillatory amplitude and 

frequency become uncertain. This dissipation can be regarded 

as a loss process in the mechanical resistance and capacitance. 

A force noise source can be partially related to the mechanical 

inter-friction which determinates the value of the mechanical 

resistance. By applying the Nyquist’s formula, a mechanical 

fluctuation source can be quantitatively obtained. It yields 
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with two dissipative terms mR and  tan /m mC  . They are both 

given in accordance with the mechanical resistive and 

capacitive loss, respectively. kB is the Boltzmann constant. 

tan(m) is a loss tangent of the flexibility representing the 

dissipative level in the mechanical capacitance. T is the ambient 

temperature in Kelvin. 

 

III. NOISE SOURCES 

According to the transmission mechanism, the noise source can 

be generally classified into two types: the passive noise and the 

modulation noise. The first process occurs without any 

additional driven signal. However, the latter is a parasitic 

phenomenon depending on an excitation signal, and usually 

accompanying with a frequency up-conversion. In this case, the 

low frequency dissipation distributes as fluctuations around an 

excitation frequency. 

 

a) Passive noise sources 

In order to analyze the noise strength due to the passive 

contribution from the fluctuation in a ME sensor, we can add a 

force generator at the mechanical dissipation elements in the 

equivalent circuit. Thus, the noise transfer function, Tr_QF, 

between a force fluctuation and an output electric charge can be 

defined as the ratio between a generated charge, Q, and a 

applied force, F. This can be deduced from the equivalent 

circuit model in Fig. 1, and it yields 
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Thus, with the help of the force transfer function, the passive 

additive charge noise source, qn_Zm, can be presented as a 

function of the mechanical force fluctuation. It yields 
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The pure electric dissipation due to the electric permittivity loss 

in the static capacitance C0 contributes to the output charge 

noise of a ME sensor. It yields 
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b) Active noise sources under modulation 

Active noise sources exhibit as a product of the fluctuation and a 

carrier in a modulation process [30]. This result a near carrier 

noise spectral densities in frequency domain. Fluctuation of the 

resonant frequency and the maximum amplitude at this 

frequency are two noise sources which must be considered for 

magnetic field detection by measuring the variation of these two 

values. The resonant frequency noise spectral density can be 

given as a function of the mechanical force fluctuation. It yields 
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where mC

F




is the mechanical capacitance variation to an 

external force. The resonant frequency noise spectral density is 

directly related to the value of the resonant frequency, the 

mechanical capacitance, the sensitivity of the mechanical 

capacitance to an exterior force and the force noise. Thus, the 

resonant frequency noise depends on an initial value of the 

mechanical capacitance. This initial value can be fixed by an 

exterior magnetic bias and/or an exterior force to achieve a 

tunable resonant frequency. 

 The mechanical force can also lead to a fluctuation on the 

maximum absolute amplitude of the imaginary transfer 

function, which is defined as a noise source for the maximum 

absolute value. It yields 
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This expression consists of a term which depends on the force 

induced mechanical capacitance change. The mechanical 

resistance can be also influenced by a mechanical force as well. 

But the value is nearly constant for fluctuations with small 

amplitude. 

 By using amplitude modulation method, the near carrier 

active noise due to the mechanical dissipation can be expressed 

as 
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This is the charge noise source around an excitation signal due 

to the low frequency mechanical dissipation. Thus, the total 

output charge noise source is a quadratic sum of (16), (17) and 

(20). It yields the total charge noise source at the output of the 

sensor for an amplitude modulation, 
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In our previous papers [6], we have investigated the noise 

performance by using the amplitude modulation at the 

symmetric resonant frequency, where the dominant noise source 

is the low frequency noise source distributing around the 

excitation frequency. The noise contribution from the passive 

mode is lower than the modulation one on the carrier around the 

mechanical resonant frequency. However, when we drive the 

sensor by using a lower excitation frequency towards several 

hundred hertz the passive noise sources presents as the main 

noise contribution in the detection. 

 

IV. EXPERIMENTAL 

 A ME composite consisting of a magnetostrictive layer, a 

piezoelectric layer was fabricated as a magnetic field sensor for 

low frequency field sensing, shown in Fig. 2 (a). The 

magnetostrictive layer is made of three foils of Metglas in 

dimension of xxx. A DC magnetic bias is applied by two 

magnets in order to achieve a maximal magnetostriction for a 

AC magnetic field. Five piezoelectric macro-fibers create the 

piezoelectric layer with a dimension of xxx, bonding to Kapton 

layers with interdigital electrodes on both the top and bottom 

surface. Thus, an output voltage U0 (or a output charge) can be 

measured through the electrodes across the piezoelectric layer. 

The working method under the bending mode is given in the 

Fig. 2 (b). A doubly clamped ME composite is magnetically 

biased by a pair of magnets along its length direction. A low 

frequency magnetic field is generated by a Helmholtz coil (not 

shown in the figure) along the in-plane direction of the sensor. A 

voltage excitation is applied across the interdigital electrodes to 

induce a flexure displacement u along the out-of-plane 

direction. 

 In order to achieve the experimental measurement, the ME 

sensor is connected to the charge amplifier where the induced 

charge can be picked up with the help of two pairs of 

inter-digital electrodes which are disposed on both the top and 

bottom surfaces of the piezoelectric layer. In order to apply the 

excitation carrier, a sinusoidal wave generator was connected 

onto the positive input of the charge amplifier as shown in 

Fig. 3. A low-frequency magnetic field H, serving as a reference 

signal, produces a stress on the ME laminate. By injecting a 

noise input and measuring the response of this noise, the transfer 

function of this system can be measured as a function of 

frequencies around the bending resonant frequency. 

 

 
(a) 

 
(b) 

 

Fig. 2: (a) ME sensor with interdigital electrodes and 

(b) Sketched figure on the working mode under doubly clamped 

condition 

 

 
Fig. 3: ME sensor with an associated charge amplifier. 

 

 Thus, the electric transfer function, _r EET  in unit [V/V] can 

be given by the following formula, 

 

_ _'
2 2 mesS S

r EE r EE
inin

V V
T T

VV
           (22) 

 

where _
mes s

r EE
in

V
T

V
 is the measured system transfer function. The 

measured electric transfer function is shown in Fig. 4. 
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Fig. 4: Real part, imaginary part and gain of the electric transfer 

function in green, red and black, respectively, as a function of 

the frequency 

 

 In practical, the noise performance can be characterized by 

two steps. Firstly, the mechanical elements in the equations 

were obtained or calculated by measuring the electric transfer 

function around the bending resonant frequency. The 

mechanical capacitance was obtained from the measured 

bending resonant frequency ωres at the minimal value on the red 

curve in Fig. 4 and the dynamic mass Lm of the sensor. Then, the 

pure electric capacitance can be derived by measuring the 

maximal and minimal value of the real part of the transfer 

function, with the help the equation 

 

     _ _

0 1

Re 2 Re 2

1
2

mes mes
r EE r EEMax T Min T

C C

 
 

  
 
 

  (23) 

 

where   _Re 2 mes
r EEMax T and   _Re 2 mes

r EEMin T  are the maximum 

and minimum of the real part of the electric transfer function. 

The mechanical quality can be obtained by measuring the 

tangent value of the transfer function around the bending 

resonant frequency. It yields 

 

  
  

2

_ 1 0

_ _ 1 0

2 11
1

2 1

mes
r EE res

m
mes

diss r EE f

T j C C
Q

T j C C



  

  
 

  
  

 

   (24) 

 

 

where ω_f  is an angular frequency with a small shift of f far 

from the resonant frequency. 

 By tuning f, the mechanical quality can be characterized as a 

function of the frequency step number. The step of a frequency 

shift is 0.0125 Hz in the calculation. By taking a small step 

number, the measured mechanical quality is inaccurate because 

noise disturbs the measurement of the transfer function. The 

obtained mechanical qualities Qm are around 43 and 56 at 1 Hz 

(with 80 steps) far from the resonant frequency for the case with 

and without external magnets, respectively shown in Fig. 5(a). 

With the help of the measured mechanical qualities, the 

mechanical resistance Rm is fund as value of either 0.274 or 

0.355 [kg/s] for the cases of with or without exterior magnets, 

respectively, shown in Fig. 5(b). 

 
(a) 

 
(b) 

 
Fig. 5: (a) Mechanical quality and (b) mechanical resistance as functions of the 

frequency shift step with (red curve) and without (black curve) exterior bias 

magnets. 

 

 Besides of the first bending resonance, the other resonances 

depending on vibration methods can also be characterized by 

measuring the electric transfer function. Thus, the imaginary 

part of the wide bandwidth transfer function can be given in 

Fig. 6. Resonant peaks based on several vibration modes were 

observed on the curve of the electric transfer function at 

resonant frequencies around 175 Hz, 900 Hz and 5500 Hz. In 

practice, the inter-friction loss in a ME sensor can be assumed as 

a sum of the velocity dissipation in several vibration modes. By 

using a similar method in the previous discussion, we can obtain 

the mechanical quality and the mechanical resistance for each 

resonant frequency. The inter-friction occurs along the in-plane 
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direction of the laminate in spite of different vibration modes 

along the out-of-plane direction. The total force noise spectral 

power is the quadratic sum of individual ones, which can be 

calculated from several resonant peaks. Thus the value of the 

mechanical resistance can be expressed by 

 

_ _m total m n

n

R R         (25) 

where Rm_n is the mechanical resistance related to the n
th

 

resonant frequency. In the following simulations, we took the 

first two highest resonant peaks for the calculations, at 175Hz 

and 5500 Hz. 

 

 
Fig. 6: Imaginary part of the wide bandwidth transfer function as a function of 

the frequency. 

 

 At last, we deduce the piezoelectric coupling coefficient p. 

This coefficient can be calculated from the value of the transfer 

function at the bending resonant frequency. It yields 

 
2

1 maxp res mC R S          (26) 

 

 With the help of the measured parameters, we can simulate 

the output voltage noise spectral densities in passive mode. 

From (24), the output voltage noise at the output of the charge 

amplifier can be calculated by
1

n
n

q
e

C
 . We compare the 

measured and predicted curves in Fig. 7(a) as well as a 

zooming-in visualization around the bending resonant 

frequency, shown in Fig. 7(b). The dashed lines are the 

simulations curves of the output voltage noise spectral density 

by using the measured mechanical parameters in passive mode 

characterization. The output noise spectral density is amplified 

by the transfer function near mechanical resonant frequency. 

 
(a) 

 
(b) 

Fig. 7: The noise spectral densities for the (a) wide and (b) on-resonance 

bandwidth. The dashed lines are the simulation curves for the dielectric loss 

dissipation in green, the resistive one in dark red, the capacitive one in purple 

and the total noise spectral density simulation in black. The solid black curves 

in both (a) and (b) are the measured ones for the passive mode without any 

reference signal. And the solid green curve is the one with reference signals at 2 

Hz. 

 

 The force noise can be derived from its theoretical formula by 

using the value of the mechanical resistance. By using the 

resistive part of the mechanical force _4n B m totalf k TR  the 

passive noise spectral density is noise source for the low 

frequency modulation. In this case, the equivalent magnetic 

noise spectral density is defined by 

 

_ / 1 _ _ /

pn
n n

r ME EE mech r ME E E

e
b f

T C Z T




      (27) 

 

where the magnetic transfer function Tr_ME/EE  was measured as a 

function of the frequency by applying a sinusoidal sweeping 

signal. By this measuring, we have 

_

_ _ / 158
r EE

r ME E E exc

T
T V

H


  


 [V/T], regarded at the output of 

Reference signals 
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the charge amplifier, for a measurement bandwidth towards 

26 Hz which is set as the cutoff frequency of the low-pass filter 

during the demodulation process. 

 
 Experimentally, the amplitude modulation has been achieved 

by using an electric excitation with a frequency near the bending 

resonant frequency of the composite. Meanwhile, a low 

frequency magnetic signal was applied in the longitudinal 

direction as a reference signal. By taking the values of the 

parameters in above sections, we give the simulation curves as 

well of the spectral densities as well as the measured one for the 

equivalent magnetic noise in Fig. 8. 

 

 
Fig. 8: Equivalent input magnetic noise spectral density as a function of the 

frequency by using amplitude modulation. The black solid curve is the 

measured noise spectral density. The dashed green, dark red, purple and black 

lines are the simulation curves for the dielectric, resistive, capacitive loss and 

the total one. 

 

V. CONCLUSION 

 Modulation techniques can be achieved on a 

magnetostrictive-piezoelectric composite by measuring the 

variation of the gain, phase, resonant frequency or the maximum 

peak value under an exterior magnetic field. Fluctuation due to 

the mechanical dissipation results diverse noise sources for each 

detection method. A model based on simplified Mason 

modeling is used to predict the noise performance of a ME 

sensor for sensing low frequency magnetic field, where the 

electric and mechanical elements can be characterized by 

measuring the electric transfer function as a function of 

frequency around the bending resonant frequency. The 

experimental curves are in good agreement with the predicted 

noise performance. 
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