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Summary : 

Numerical applications of the approach presented in the first of these two companion papers is 

proposed in the cases of coupled beams and coupled plates. Results are compared with other 

calculations. CLF calculation for coupled beams is achieved with analytical modal description. The 

influence of thickness ratio and damping about the quality of the prediction are presented and 

discussed. CLF determination with FEM modal description are then applied to the case of two thin 

plates coupled in an L shape. This case permit to achieve comparison with other calculation and 

will be representative of the applicability of the method to more complex structures as industrial 

ones. A very good agreement is noticed that validate the calculation of CLF with the present 

method. 
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1. INTRODUCTION 

 

In the first of these two companion papers, a theoretical method was presented to calculate the 

Coupling Loss Factor from subsystems modal information. By using Dual Modal Formulation and 

an appropriate subsystem mode definition, the expression which has be obtained (see (68) of part I) 

permits to determine CLF only from the knowledge of the modes of the uncoupled – subsystems 

and damping information. In the case of complex subsystems, the modal information can be 

calculated by Finite Element Method. The mode shapes are then described by nodal variables 

(displacements or forces) and the interaction modal work between couple of modes can be evaluated 

by considering the discretised model (see section 4, part I).  

In this part, numerical applications of the approach is proposed to illustrate the method and to 

show validations with other calculations. Before going on to perform CLF calculations with FEM, 

one first example of coupled beams presents the CLF determination from the Dual Modal 

Formulation. In this section, modes are calculated analytically and results are compared with ‘exact’ 

calculation for different thickness ratios and different damping loss factors of the beams. 

Validation of CLF calculation with FEM data are then presented. An example of L-shaped plates 

is considered, it is representative of the applicability of the method to more complex structures and 

allows us to compare to the results given by SEA inverse matrix technique with numerical 

experiments. 

 

2. A FIRST EXAMPLE 

2.1. PRESENTATION 

This example is based on two Euler-Bernoulli beams coupled rigidly at one end as shown in 

Figure 1. The beams of rectangular section are simply supported at their ends, then the coupling are 

expressed by continuity conditions on the flexural moments and the angular rotations. 
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L, b, h, E, ,  are, respectively, length, width, thickness, Young’s modulus, mass density, 

and Poisson’s coefficient of beam i. Then, the cross section area are S=bxh and the second 

moment area of beam  are 
 
12

.
3

 hb
I  . 

The Euler – Bernoulli assumptions on displacements and stresses for beam  are: 
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where W(x,t) is the generalised transversal displacement of beam .  
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2.2. ANALYTICAL DESCRIPTION 

One supposes the beams are constituted by the same material (aluminium) but one makes the 

hypothesis that beam 1 is thinner than beam 2. The consequence is that beam 1 will vibrate rather 

like it is clamped at its coupling end and beam 2 will vibrate rather like it is simply supported at its 

coupling end. The subsystem definitions are then deduced naturally: the uncoupled - blocked 

subsystem for beam 1 and the uncoupled - free subsystem for beam 2. The boundary conditions for 

the extraction of subsystem modes are simply supported - clamped for beam 1, and simply 

supported - simply supported for beam 2 (see Figure 2). 

 

 

 

FIGURE 1 
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Then, the subsystem 1 would have to be described by stress description, and the subsystem 2 

would have to be described by displacement description. It is not necessary to re-develop the dual 

modal formulation, because it is very simple to use directly the results of section 3 and the physical 

interpretation of the interaction modal work to determinate the modal coupling coefficients, 12

pq . In 

this example, the dual variables are the flexural moment and the angular rotation. The flexural 

moment, 1

fM , is associated to beam 1 (stress description) and the angular rotation, 2

z ,  is associated 

to beam 2 (displacement description). The interaction modal work exchanged by the pth mode of 

beam1 and the qth mode of beam 2, 12

pqW , is expressed by the product of the flexural moment of the 

pth mode and the angular rotation of the qth mode at the coupling end: 

   121112 ~
.

~
LL q

z

p

fpq MW  , 
 

(3) 

 where  11~
Lp

fM  is the flexural moment of mode 'p' of beam 1 at the coupling end, 

 and  12~
Lq

z  is the angular rotation of mode 'q' of beam 2 at the coupling end. 

 

With Euler - Bernouilli theory, one has:  
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(4) 

 

(5) 

 

To evaluate CLF from equation (68) of part I, one must calculate modes for each beam. The 

necessary information are for beam 1 natural frequencies, generalised mass and stress mode shapes 

 

FIGURE 2 
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at the coupling end, and for beam 2, natural frequencies, generalised mass and displacement mode 

shapes at the coupling end. 

For beam 1, modal analysis is developed in Appendix A where two methods are presented to 

evaluate the stress mode shapes. Finally, the modal information can be expressed by  0for  1 p : 
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For beam 2, the subsystem modal information is classical: 
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(11) 

From equations (4-8), one evaluate the expression of the interaction modal work (3): 

  2112112 ....2 qppq kIEkW . 

 

 

(12) 

One can notice that the modal informations necessary to evaluate the interaction modal work are 

only the mode shapes at the coupling end. 

The CLF must be evaluated by only taking into account the coupling between the resonant modes 

in the considered frequency bandwidth . These resonant modes being chosen to resemble to 

physical modes of the global structure, it justifies that they describe the global behaviour of the 

structure in the frequency bandwidth. One note  2

2

2

1

1

2

1

1  and  resp.  and NNNN , the modal orders of 

resonant modes with the lowest and highest natural frequencies in  for beam 1 (resp. beam 2). 

The number of resonant modes is 11

1

1

21  NNN for beam 1 and 12

1

2

22  NNN for beam 2. 
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Then, with equation (68) of part I, (6), (7), (10) and (12), the CLF is expressed by: 
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It can be noticed that the Damping Loss Factor can be attributed independently to each mode of 

each subsystem. However, in classical SEA, one global Damping Loss Factor is affected to each 

subsystem for all the modes of the frequency bandwidth. One assumes:  
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With this assumption, (13) becomes: 

      
           

 



































 

1
2

1
1

2
2

2
1

212222112211
22221

21222211

2221

1122

1

12

.....

....
.

...

...8
.

.

1 N

Np

N

Nq
pqqpqpqp

pqqpq

c SLL

IEk

N 






(15) 

 

2.3. NUMERICAL RESULTS 

The present approach is compared to the results yielded by the SEA matrix – inversion technique 

with numerical experiment (see reference [1]). Euler – Bernoulli theory and wave decomposition is 

used to simulate the numerical experiment. The ‘rain on the roof’ excitation on beam 1 is 

approximated by averaging beam energy over 20 points of excitation randomly distributed. The 

potential and kinetic energy obtained by the wave decomposition for a given angular frequency are 

spatial and frequency averaged. CLF is finally calculated introducing beams energies in SEA 

relation when subsystem 2 is not excited: 
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(17) 

The results given by equation (15) are called ‘CLF Dual Modal Formulation’ or shortly CLF 

DMF, and the results given by the numerical experiment and equation (16) is called ‘SEA matrix – 

inversion’. 

In what follows, the values E=7x10+10 N/m2, =0.3, =2700 kg/m3, =1,2 are always used. 

2.3.1. Intermodal Coupling Factors 

Let us first present in Figure 3 the Intermodal Coupling Factors,  pq

12  as a function of couples of 

resonant modes of the two beams. One remembers that the CLF are obtained by summing up all 

these factors (see equation (15)).  
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Generally speaking, the Intermodal Coupling Factors vary considerably with the mode couple, 

this is due to two phenomena: 

- the spatial coincidence of mode shapes at connection, 

- the frequency coincidence (second bracket in (18)). 

In this case of point connection, the frequency coincidence effect dominates and the Intermodal 

Coupling Factor is strong when 
21

qp    (see Figure 3). 
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2.3.2.  Results for different thickness ratio of the two beams 

Figure 4 shows the CLF versus third octave band for four different beams thickness ratio. There 

is a good agreement between the results given by the approach developed in this paper and the 

results given by numerical experiment. However, one can see a little difference when the thickness 

ratio is near one (see Figure 4 (a)). In this case, the structure leads to a uniform beam of constant 

section. In the SEA sense and with FAHY’s definition of strength coupling (see [2]), one can 

conclude that the two subsystems are strongly coupled: The subsystem modes used (Figure 2) can 

not really resemble to the global modes of the system (which are not localised). Thus, the difference 

of CLF must be related to the fact that SEA approach is not a very good approximation of reality in 

this case. 

 

 

 

2.3.3. Results for different damping 

Figure 5 shows the Coupling Loss Factor versus third-octave band when beams Damping Loss 

Factor are modified. In Figure 5 (a-b-c) the DLF are the same for the two beams. A very good 

agreement can be seen between both method of calculation. In the case of low damping, the 

difference is larger (see Figure 5 ( c )). This can be explained by the fact that modal energy 

equipartition is not achieved for low damping, and standard SEA is a poor approximation. In such a 

situation, one can use a more detailed approach (SmEdA) presented in reference [3]. This method 

allows us to take into account modal energy distribution, and the calculations from the Intermodal 

Coupling Factors accurate energy results when modal overlap is low. 

 

FIGURE 3 

 

FIGURE 4 
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In Figure 5 (d), the case of different Damping Loss Factors for the two beams is investigated. As 

previously, the presented method agrees well with the classical calculation with (16). 

It can be noticed from the results given here that the CLF values depend slightly on damping 

which justify that the classical travelling wave approach gives results independent of damping. 

However, for very low damping, the damping dependence of CLF is more important (see [4]) and in 

this case, SmEdA approach is necessary (see [3]). 

The present approach agrees with the numerical experiment method but present the major 

advantages of giving CLF without solving equations, just making analogy with basic SEA 

modelisation. The computation time is thus very short.  

 

 

 

3. APPLICATION OF CLF DETERMINATION WITH FEM DATA 

 

To demonstrate the validity of the approach, the simple case of two coupled homogeneous plates 

in an L shape as shown in Figure 6 is considered.  

For Finite Elements point of view, the matrix form of the equation of motion is the same for 

complicated and simple structures. So, in principle, the treated problem will be representative of the 

applicability of the method to more complicated cases. In addition, this case allows us to make a 

comparison with another calculation. 

 

 

 

Thin plate theory is assumed and only bending motion is considered. All the non coupled edges 

of each plate are supposed simply supported. The parameter definitions and their values are 

presented table 1. 

 

FIGURE 5 

 

FIGURE 6 
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Plate 1 is thinner than plate 2, then it must be described by modes of the uncoupled - blocked 

subsystem, and plate 2 must be described by modes of the uncoupled - free subsystem. Thus, for 

subsystem definitions, plate 1 is clamped on the coupling edge and simply supported on the others 

edges. Plate 2 is simply supported on all the edge.  

3.1. FINITE ELEMENT MODEL 

 

The Finite Element Model of each subsystem are generated and analysed by UAI/NASTRAN 

v11.8 package and by using the QUAD4 Element. The numbers of nodes of the regular meshes are 

chosen in order to have a minimum of ten elements by natural wave length at 3000 Hz. Then, for 

plate 1 there are 100 nodes along each edges, and for plate 2 there are 100 nodes for the smallest 

edge in order to have coincidence meshing and 130 nodes for the other one. Appropriate boundary 

conditions and Lanczos method are used to calculate the modes between 1 Hz and 3000 Hz for each 

plate. The generalized masses are normalised to one. The NASTRAN output data for each mode are 

the natural frequency, the ‘SINGLE POINT CONSTRAINT FORCE’ for plate 1, and the 

‘DISPLACEMENT’ for plate 2. The present approach requiring only the mode shapes on the 

coupling boundary, it is possible to select only the nodes on the coupling boundary as a set of output 

(coupling node set). That allows us to limit the size of the NASTRAN output files. For example, for 

plate 1, this output set is composed of the nodes, which are fixed, and the shape output data are 

described by the ‘SINGLE POINT CONSTRAINT FORCE’. The output necessary to the CLF 

determination (see table 2) are extracted from the NASTRAN output files and are analysed by a 

MATLAB program. 

 

 

 

TABLE 1 

 

TABLE 2 
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One uses equation (80) of part I to determine the interaction modal work from nodal components 

of mode shapes. In this case of flexural plates coupling, only the 5th force nodal component for plate 

1 (z-component of bending moment) and the 5th displacement nodal component for plate 2 (z-

component of angular rotation) are not null for the nodes of the coupling node set. Then, the 

interaction modal work between mode p of plate 1 and mode q of plate 2 can be reduced to: 
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set  node
Coupling

2

5

1

5

12 ~.
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q

i

ppq ufW , 
 

(19) 

where i

pf 1

5

~
 is the 5th nodal component force of node i representing the z-component bending 

moment of the pth mode of plate 1, and i

qu 2

5
~  is the 5th nodal component displacement of node i 

representing the z-component angular rotation of the q th mode of plate 2. 

3.2. MODAL DENSITY COMPARISON 

 

To check the validity of the FEM models in the frequency band of interest, it is possible to count 

the natural frequencies, then determine the modal density for each frequency band and finally 

compare it with the asymptotic value n given by: 
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(20) 

 

This is presented in Figure 7 where the modal density ratio between the two subsystems is 

plotted versus third octave band. One can conclude that the FEM modelisation is well representative 

of the vibration behaviour of the plates in the frequency range of interest. It is well known that the 

eigen-frequencies and the mode shapes of the Finite Element Model may be shifted to the real 

eigen-frequencies and mode shapes at ‘high frequency’ even in the case of a correct element model. 

However, as explained in reference [5], these numerical errors seem to be reduced by averaging the 

data. 
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3.3. COUPLING LOSS FACTOR COMPARISON 

 

From the expression of the interaction modal work for discretised system (19) and with the FEM 

data described in section 3.1, one can evaluate the Coupling Loss Factor (with (68) of part I). One 

calls this result the CLF-DMF/FEM. 

In the same manner that in section 2-3, the present approach with FEM data is compared to the 

results yielded by the SEA matrix – inversion technique with numerical experiment. The ‘exact’ 

results of the numerical experiment are obtained from the Dual Modal Formulation with analytical 

modal description. A comparison with the general dynamic stiffness method allows one to check the 

convergence of the modal series. The ‘rain on the roof’ excitation on plate 2 is approximated by 

averaging plate energy over 15 points of excitation randomly distributed. Energies are spatial and 

frequency averaged. CLF is finally calculated introducing plate energies in SEA relation when 

subsystem 1 is not excited: 
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(20).by given   plate ofdensity  modal  theis   and 
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(21) 

 

In Figure 8, one presents a comparison of three techniques of CLF calculation: The two 

techniques previously described and the classical technique derived from the travelling wave 

approach (see equations (20-23) in reference [6]). 

 

 

FIGURE 7 
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One shows a good agreement between the three results in high frequency. Below 800 Hertz, the 

travelling wave approach which considers semi – infinite plates gives bad results for some third 

octave band whereas the present approach takes correctly into account the coupling between the two 

plates. 

  

 

 

Figure 9 present a SEA calculation using the CLF-DMF/FEM when plate 2 is excited. This 

calculation is compared to an exact calculation (used previously in the SEA matrix – inversion 

technique). A very good agreement can be noticed that definitely validate the calculation of CLF 

with the present method. 

 

 

 

The important variations of energy ratios for the frequency bands below 1000 Hz can be explained 

by the fact that there is few resonant modes which participate to the coupling in these bands. Indeed, 

figure 10 shows the Intermodal Coupling Factors for the third octave band centred on 800 Hz. 

Although plate 1 has 20 resonant modes in the frequency band and plate 2 has 12 resonant modes, 

one notices that only two couples of modes participate mainly to the coupling of plates. Contrary to 

beam coupling, the spatial coincidence has an important effect which leads some couple of modes to 

be uncoupled. 
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FIGURE 10 
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4. CONCLUSIONS 

 

Beam examples have permitted to verify the validity of the CLF determination with the dual 

modal formulation and basic SEA relation for power flow in oscillators having gyroscopic coupling. 

It is shown that results are good when SEA assumptions are respected.  

On another hand, one has seen that the present approach can be used in connection with FEM. 

Application of the SEA-CLF/FEM technique gives good estimates of vibrational energy ratios 

between two coupled plates for the third octave band between 315Hz and 2500 Hz. Although 

eigenfrequency shift occur in FEM calculation at high frequency, one gets good results for CLF. 

This is due to the averaging over several couples of modes participating to the transfer. The simple 

plate example has been chosen to allow us a comparison. The application to more complicated 

structures is straightforward because the technique is based about any general Finite Element 

Model. It can be noticed that heterogeneous substructures having three dimensional vibration 

motions can be treated without difficulty by CLF-DMF/FEM technique.  

When a subsystem has a low number of mode in the frequency band, SEA can give poor estimate 

of energy transfer, because some assumptions used in the method are not realistic (equipartition in 

particular). The approach described in these two companion papers is a starting point of an 

extension of SEA to non modal energy equipartition in subsystems. This SEA extension called 

SmEdA (Statistical modal Energy distribution Analysis) is briefly presented in reference [3] and 

will be developed in another paper. The purpose of SmEdA is to extend the validity of SEA to 

system of low modal density. 
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APPENDIX A: MODAL ANALYSIS OF UNCOUPLED – BLOCKED BEAM 1 

Without applied forces and displacement, the free motion of the uncoupled – blocked subsystem 

– beam 1 - respect the following equations:  
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Two methods can be used to obtain the natural frequencies and the stress mode shapes: 

- by analogy between the stress eigenvalue problem and an equivalent displacement 

eigenvalue problem. 

 

To obtain the stress problem, one should combine time second derivation of (A2) with equation 

(A1): 
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After a separation of time and space,  
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the stress eigenvalue problem can be written: 
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This problem is analogous to classical displacement eigenvalue problem of a beam simply 

supported in x=0 and free in x=L1. Then, the solutions can be expressed by  01 p : 
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As the Helmholtz mode for an acoustic cavity problem, the beam simply supported – clamped 

has one stress mode of null natural frequency (see section 3.4.2). Indeed by analogy with 

displacement equation of motion, this mode corresponds to the rigid body mode of the beam simply 

supported – free. It is expressed by: 
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It can be noticed that this method of calculation of stress mode shapes can be used only for 

simple structure where the analogy with displacement equations is possible. This method does not 

permit to obtain directly the generalised mass or the generalised stiffness as defined in section 3 by 

equations (eq30). 

 

- by the calculation of the displacement mode shapes of the displacement eigenvalue 

problem and by using the constitutive low (see reference [7]).  

 

The displacement eigenvalue problem are obtained directly by introducing (A1) in (A2) and by 

taking into account  boundary conditions.  
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Using the constitutive law (A2), one deduces the stress shape associated to the pth mode: 
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By this calculation one cannot determinate the stress mode of null frequency. However, for the 

CLF determination it is not important because this mode is always non resonant and thus it is not 

necessary to take it into account. 
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APPENDIX B: NOMENCLATURE 

 

A A1 2,     plate length of the common edge 

b b1 2,     beam width 

B B1 2,     plate length 

E E1 2,    Young modulus 

   E Et t

1 2,   averaged total energy obtained from numerical experiment 

f fk

i

k

i1 2,    force nodal variable 
i

qk

i

pk ff 21 ~
 ,

~
  force nodal mode shape 

h h1 2,     beam thickness 

H H1 2,    plate thickness 

I I1 2,     beam second moment area 

k kp q

1 2,     modal wave number 

K Kp q

1 2,    modal stiffness 

L L1 2,     beam length 
~
M f

p1    flexural moment mode shape of beam 1 

M Mp q

1 2,    modal mass 

n n1 2,     modal density 

N N1 2,    number of resonant modes in the considered frequency bandwidth 

N N1

1

1

2,    modal order of resonant mode with the lowest natural frequency in   

N N2

1

2

2,     modal order of  resonant mode with the highest natural frequency in   

S S1 2,     beam cross section 

u uk

i

k

i1 2,    displacement nodal variable 
i

qk

i

pk uu 21 ~ ,~   displacement nodal mode shape 

Wpq

12  interaction modal work between mode p of subsystem 1 and mode q of 

subsystem 2 

W W1 2,    beam generalised transversal displacement 
~

W q2    generalised displacement mode shape of beam 2 

 pq

12  Intermodal Coupling Factor (ICF) between mode p of subsystem 1 and mode 

q of subsystem 2 

    angular frequency bandwidth of interest 

 p q

1 2,    modal damping bandwidth 

12    Coupling Loss Factor (CLF) 

12

ne  CLF obtained by SEA matrix - inversion technique with numerical 

experiment 

 1 ,  2   Damping Loss Factor (DLF) 

 pq

12  gyroscopic modal coupling coefficient between mode p of subsystem 1 and 

mode q of subsystem 2 

 1 2,     Poisson’s coefficient 
q

z

2~
    angular rotation mode shape of beam 2 

c    central angular radian frequency of the frequency bandwidth   

 p q

1 2,    mode’s natural angular frequency 

 1 2,    mass density 

 x x

1 2,     beam generalised normal stress 
~x

p1    generalised stress mode shape of beam 1
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FIGURE CAPTIONS  

 

Figure 1: Two pinned-pinned beams coupled rigidly at one end. 

 

Figure 2: Uncoupled beams (a) Uncoupled - blocked subsystem, beam 1   

 (b) Uncoupled - free subsystem, beam 2. 

  

Figure 3:  Intermodal Coupling Factors versus couples of resonant modes of the two beams, third 

octave band 16000 Hz; 

 L1=2.5m, L2=3.5m, b1=b2=0.01m, h1=0.001m, h2=0.004m, 1=2=0.01. 

 

Figure 4:  Coupling Loss Factor versus frequency; one-third octave band results; L1=2.5m, 

L2=3.5m, b1=b2=0.01m, h1=0.001m, 1=2=0.01; (a) h2/h1=1.5, (b) h2/h1=2, (c) h2/h1=3, 

(d) h2/h1=4;   

              , SEA Dual Modal Formulation; x, SEA matrix -inversion. 

 

Figure 5:  Coupling Loss Factor versus frequency; one third-octave band results;  

 L1=2.5m, L2=3.5m, b1=b2=0.01m, h1=0.001m, h2=0.004m; 

  (a) 1=2=0.01, (b) 1=2=0.005, (c) 1=2=0.002, (d) 1=0.02, 2=0.005;    

           , SEA Dual Modal Formulation; x, SEA matrix –inversion. 

 

Figure 6: Illustration of an L-shaped plate. 

 

Figure 7: Modal densities ratio versus frequency, third octave band calculation: 

    , FEM result;  x, with expression (20). 

 

Figure 8:  Coupling Loss Factor versus frequency, third octave band calculation; 

                , CLF-DMF/FEM;  o, SEA matrix –inversion;  *, Travelling wave approach. 

 

Figure 9:  Energy ratio E1/E2 versus frequency, third octave band calculation, plate 2 excited; 

    , SEA result with CLF obtained by DMF/FEM;  o, Exact result. 

 

Figure 10:  Intermodal Coupling Factors versus couples of resonant modes of the two plates, third 

octave band 800 Hz; 

 DMF/FEM results; Modes classified with increasing natural frequencies 
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TABLE CAPTIONS 

 

 

 

Table 1: Definition and values of parameters 

 

Table 2: Definition of the extracted FEM output data for each plate. 

   i: node on the common edge (coupling node set). Generalized masses normalised to one. 
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FIGURE 1        L.MAXIT, J.L. GUYADER 
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FIGURE 2        L.MAXIT, J.L. GUYADER 
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FIGURE 3        L.MAXIT, J.L. GUYADER 
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FIGURE 4        L.MAXIT, J.L. GUYADER 
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FIGURE 5        L.MAXIT, J.L. GUYADER 

 

 

 
 



  

 - 28 - 

FIGURE 6        L.MAXIT, J.L. GUYADER 
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FIGURE 7        L.MAXIT, J.L. GUYADER 
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FIGURE 8        L.MAXIT, J.L. GUYADER 
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FIGURE 9        L.MAXIT, J.L. GUYADER 
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FIGURE 10        L.MAXIT, J.L. GUYADER 
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TABLE 1 

 

 

 

 

 

 

 

 

 

 

 

 

 Plate 1 Plate 2 

Length of the common edge A1=1m A2=1m 

Other length  B1=1m B2=2.5m 

Thickness H1=4mm H2=12mm 

Modulus of elasticity E1=2x10+11 Pa E2=2x10+11 Pa 

Density 1=7800 Kg/M3 2=7800 Kg/M3 

Poisson ratio 1=0.3 2=0.3 

Damping Loss Factor 1=0.02 2=0.02 
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TABLE 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mode 

order 

Natural frequency Mode shape on common edge 

 set node Couplingi  
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