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Summary: 

 

The theoretical approach presented in this paper allows us to calculate SEA Coupling Loss Factors 

for subsystems modelled with FEM. It is then possible to take into account complicated substructure 

that can be encountered in practical industrial application. The technique relies on the basic SEA 

relation for coupled oscillators and the use of Dual Modal Formulation to describe vibration of 

coupled subsystems. With this approach, the boundary conditions of uncoupled subsystems are 

clearly defined and as assumed in SEA no modal coupling exists in a subsystem. Modes of two 

different subsystems are coupled together by gyroscopic elements and the coupling strength is 

related to eigenfrequencies of the uncoupled subsystems and mode shapes through the interaction 

modal works. A general expression of CLF has been obtained, it permits to determine CLF only 

from the knowledge of the modes of the uncoupled subsystems and the modal damping. Finite 

Element Model can be used to calculate the modal information in the case of complex 

substructures. It is possible to treat the case of heterogeneous subsystems having three dimensional 

vibration motions without difficulty. Contrary to classical approach based on SEA inverse matrix 

and numerical experiments, that necessitates calculations of subsystem energies for the coupled 

structures for a lot of excitation points, this technique calculates CLF directly from the governing 

equations, without solving them. In a companion paper, the present approach is applied about 

simple example to illustrate it and to present validations. 
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1. INTRODUCTION 

 

Statistical Energy Analysis (SEA) permits to predict vibro-acoustic behaviour of complex 

structures in mid and high frequency range. The method relates the power flow exchanged by two 

coupled subsystems to total subsystem energies by the so-called Coupling Loss Factor (CLF). 

Writing finally the power balance for stationary motion in each subsystem produces a linear 

equation system where the unknowns are total energies of subsystems. Then, the difficulty in 

applying SEA is not due to solving complicated equations, but to the evaluation of Coupling Loss 

Factors. 

Several techniques have been developed to determine CLF. The travelling wave approach is the 

most popular to obtain theoretical expression in simple cases of coupled beams, plates, and shells 

(see[1], Chapter 10). Based on the evaluation of the wave transmission coefficient, this approach is 

very easy to use. However, it can lead to mistake for system having a low modal overlap (see [2]). 

CLF can be only calculated for academic substructures that limits the application in the cases of 

manufacturing structures. Different experimental approaches have been elaborated to evaluate CLF 

by measurement:[3] using measured point mobility; [4] with the concept of energetic mobility; [5] 

from measured impulse responses in the coupled system; [6], [7], [8] based about inversion of the 

SEA equation. This last one, called the power injection method is the most popular. The difficulty 

of the method relies on the number of transfer functions that are necessary to measure, also that the 

evaluation of the spatial averaged energy from some measurement points in the case of 

heterogeneous subsystems. These experimental techniques are very useful in an industrial context 

but they necessitate to have the mechanical structure, then, it is not a predictive method. To solve 

this problem, the possibility to use Finite Elements Method to calculate numerically the response of 

two coupled subsystems and then identify CLF has been used [9], [10], [11]. This type of approach 

is predictive, and has been used to study the validity of some SEA assumptions. The difficulties of 
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this approach are similar to experimental approach for heterogeneous substructures. The limit of 

application are, of course, the frequency range link to use FEM, and the difficulty to give different 

damping loss factor to the various subsystems because global modes are used. The approach 

presented in reference [12] differs from the previous method by the use of the numerical Green 

functions of the un-coupled subsystems and a receptance based approach. Then it is possible to take 

into account different damping for various subsystems and to increase, in some cases, the frequency 

range considered because the FEM calculation are made about individual uncoupled subsystem. 

However, it is necessary to include sufficient uncoupled modes to constitute the Green function that 

can be a frequency limitation. 

The approach presented in this paper allows us to calculate CLF directly from subsystem modal 

equations. The method uses modal definition of CLF which are established in the basic SEA 

formulation (see [1] Chapter 3, [13], [14]) and remembered in section 2. The expression of the 

power flow exchanged by two oscillators coupled by gyroscopic element will be used to calculate 

the Coupling Loss Factor by summation of the different Intermodal Coupling Factors.  

In section 3, one will see the major theoretical contribution of this paper. The purpose of this 

section is to propose one general approach allowing one to obtain modal equations of motion which 

can be represented as set of coupled oscillators (modes) by gyroscopic elements. These modal 

equations will permit to identify modal coupling coefficients necessary to calculate Intermodal 

Coupling Factors and thus, Coupling Loss Factors. The formulation will be presented in the general 

case of the two coupled continuous three-dimensional elasto-dynamic systems. This approach is 

based on two subsystem modes definitions, and on the use of the Dual Modal Formulation (DMF). 

It is analogous to the approach used to describe the mechanical structure - cavity coupling [15], 

[16], [17]. Therefore one presents here a generalisation like suggested in reference [18].  

In the last section, DMF is applied to discretized system to determine the modal coupling 

coefficients. Then, in the cases of complex subsystems, FEM can be used to calculate the modes of 

each uncoupled subsystem and to deduce Coupling Loss Factor. 
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SEA provides Statistical estimates of energy for an ensemble average of systems whereas FEM 

gives deterministic response for a system whose characteristics are exactly known. In consequence, 

the direct use of Finite Elements results gives only an estimate of CLF based on one system. 

However, one advantage of the proposed method is the possibility of deriving statistical estimate of 

CLF introducing random distribution of eigenfrequencies, and calculating the associated average 

CLF. 

 

2. CLF EXPRESSION DEDUCED FROM MODAL SEA FORMULATION 

2.1.  POWER FLOW EXCHANGED BY TWO OSCILLATORS COUPLED BY GYROSCOPIC ELEMENT 

 

 

 

Two oscillators coupled via a gyroscopic element (see Figure 1) are considered. M1, M2 are the 

masses, and K1, K2 are the stiffness of the oscillators. Then, the natural angular frequencies of each 

uncoupled oscillator are: 2. oscillatorfor    and  1 oscillatorfor    
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Each oscillator is damped by viscous absorber of damping coefficient: 1 for oscillator 1 and 2 

for oscillator 2. The coupling forces transmitted through the coupling of constant Gc are 

proportional to the mass velocities, 21  and yy  . It is assumed that when the velocity of oscillator 1 is 

positive, the force applied on oscillator 2 is negative and when the velocity of oscillator 2 is 
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coupled oscillators excited by external forces F1 and F2 are yielded by: 

         

         














,  

,  

21

1

212

2

2222

122

1

11

2

1111

tFtyMMtytyty

tFtyMMtytyty








 

 

(1) 

 

FIGURE 1 
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where the gyroscopic modal coupling coefficient, , is: 

.
21MM

GC  

 

(2) 

 

Now, one assumes that external excitations are independent (uncorrelated), stationary and to 

have PSD constant (white noise). It has been demonstrated in this case [1] that the time averaged 

power flow from oscillator 1 to oscillator 2, 12P , is proportional to the difference of the time 

averaged total energies of the oscillators  21 EE  : 

 2112 EEP   , 
 

(3) 

where the coefficient  are expressed by: 
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(4) 

 

One notices that the coefficient  depends on the natural angular frequencies of the uncoupled 

oscillators, the damping constants and the coupling coefficient . 

 

2.2. FROM TWO COUPLED OSCILLATORS TO TWO COUPLED SUBSYSTEMS 

Now consider two coupled mechanical subsystems. The interaction between these subsystems 

may correspondingly be studied by investigating the interaction between two sets of resonant modes 

in the considered frequency band. This assertion which is expressed with little attention in the 

literature will be the subject of a detailed study in section 3. One will show that for the good choice 

of modes and using dual modal formulation, the modal equations of motions have the form: 
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(5) 

where: 111  , , ppp Mc   (resp. 222  , , qqq Ma  ) are modal amplitudes, generalised masses, and natural 

frequencies of mode p of subsystem 1 (resp. mode q of subsystem 2), 

 1

pF  (resp. 2

qF ) are generalised ‘forces’ applied on subsystem 1 (resp. subsystem 2), 

 12

pq  are the modal coupling coefficients between couple of modes (p,q). 

 

One considers that in the frequency band, there are N1 resonant modes for subsystem 1 and N2 

resonant modes for subsystem 2. One assumes, and the choice of modes of section 3 will go in this 

direction, that these resonant modes can approximately represent the dynamic behaviour of the 

coupled subsystems in the frequency band considered. 

Then, equations (5) can be schematically represented as Figure 2: One mode of one subsystem is 

not coupled with modes of the same subsystem but is coupled by gyroscopic elements with the 

modes of the other subsystem. 

 

 

 

Isolating, in the equations system, the coupling between the mode p of subsystem 1 and the mode 

q of subsystem 2, one can write: 
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FIGURE 2 
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where the terms pqpq LL 21  and  contain the generalised forces and the interactions forces with all the 

others modes. 

Then, by analogy with the equations of motions of two coupled oscillators (1), the power flow, 

12

pq , exchanged by these two modes can be deduced: 

 211212

qppqpq EE   , (7) 

where: 21  , qp EE  are the modal energies of mode p of subsystem 1 and mode q of subsystem 2, 

12

pq , called the Intermodal Coupling Factor (I.C.F.), can be determined by analogy with (4) 

in function of the natural angular frequencies 21  , qp  , the modal damping bandwidth 21  , qp   and the 

modal coupling coefficient 12

pq : 
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(8) 

The application of relation (3) for the coupling of these two modes implies that one supposes that 

the forces pqpq LL 21  and  are uncorrelated, stationary, and have flat spectra in the frequency band. 

The condition of validity of this assumption has not been clearly established in the literature. It 

implies a certain independence of modal amplitudes (see [1], p.60-61). One can say, according to 

reference [19], p.434-436, that the forces due to coupling with other modes will be relatively flat if 

modal overlap is sufficient and their correlation small if the coupling between subsystems is weak. 

The power flow exchanged by the two subsystems, 21 , is the sum of all the individual mode-

to-mode power flows. Then, one may write: 

 
  

 
1 21 2

1 1

2112

1 1

12

21

N

p

N

q

qppq

N

p

N

q

pq EE . 

 

(9) 

Modal energy equipartition assumption is made: 

   22
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1 1,...,     ,   ,1,...,    , Nqe ENpeE qp  , (10) 

where e1 and e2 are two constants. 



  

 - 9 - 

With the orthogonality property of modes, one can write: 
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(11) 

where 1 and 2 represent the time averaged total energies of subsystem 1 and 2. 

Therefore, with  (10) and (11), one may write: 
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that is injected in (9). Finally, 
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where the Coupling Loss Factor, 12 , is expressed by 
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(14) 

with c , central angular frequency of the frequency band of interest. 

This final expression permits to estimate the Coupling Loss Factor from the Intermodal Coupling 

Factors which depend on subsystems modes and on modal coupling coefficients, 
12

pq . 

  

SEA provides statistical estimates of energy for an ensemble average of subsystems whereas 

equation (14) is deriving from one individual system. As in reference [20], the coefficient obtained 

from (14) which concerns one individual case can be distinguished from the traditional CLF that is 

used for the SEA ensemble. One advantage of the proposed method is the possibility of deriving 

statistical estimate of CLF by introducing random distribution of eigenfrequencies, and by 

calculating the associated ensemble average CLF. To obtain this statistical estimate of CLF, one 

would have to average the Intermodal Coupling Factors over a population of structures. In reference 

[1], Lyon gives a mean value of the ICF for a particular population of structures such that the natural 
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frequencies of each subsystem are random variables with values uniformly probable over the 

frequency band of interest,  : 

 21212
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(15) 

 

This formula could replace the deterministic ICF in equation (13) in order to obtain the ensemble 

average Coupling Loss Factor: 
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(16) 

This approach produces simple results but the considered population of structures can be 

unrealistic. A second approach consists in replacing the deterministic eigenfrequencies by Gaussian 

random variables centred on the corresponding eigenfrequencies. Then, one can get ensemble 

average CLF from a Monte Carlo simulation.  

 

About the equipartition assumption, one can notice that with the approach presented in reference 

[21] and with the calculation of the Intermodal Coupling Factors by the present approach, it is 

possible to extend SEA to the case of non modal energy equipartition. 

 

One has not yet defined which boundary conditions are necessary to establish equations (5) and 

how to evaluate the modal coupling coefficients. It is the aim of the next section. 

 

3. DEFINITION OF SUBSYSTEM MODES AND USE OF THE DUAL MODAL 

FORMULATION TO OBTAIN C.L.F. 

 

The approach presented here is not classical for mechanical coupled systems. However, the dual 

formulation is the standard approach used to study the coupling cavity-structure (see [15], [16], 
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[17]). Therefore, each time that it will be possible, one will make reference to this case to facilitate 

comprehension. 

The present formulation is equally based on the work of Karnopp. Indeed, in reference [18]1, he 

initiated the use of dual formulation (enunciated in [22]) to the coupling of mechanical subsystems 

and applies the method for the coupling of two rods of identical section. One presents here a 

generalisation of this approach for the coupling of two continuous mechanical systems. 

3.1. STRUCTURE DESCRIPTION 

One considers two elastic continuous mechanic systems which are rigidly coupled on CouplingS  as 

shown in Figure 3. V1 (resp. V2) represents the volume occupied by the subsystem 1 (resp. 

subsystem 2). ) and   (resp.  and  2211

FreeClampedFreeClamped SSSS  are the boundary surfaces with blocked 

displacements and with free displacements for subsystem 1 (resp. subsystem 2). In a first step, free 

vibration of elastic conservative systems is considered to find modal equations of motion of the 

coupled subsystems. 

In Lagrangian coordinate xi, (i=1,2,3), one defines on the surface of the volume V1 (resp. V2) the 

unit vector ) (resp. 21 nn  along the outer normal of the volume. The variables 21  and ii WW  are 

supposed to represent displacements in V1 and V2, respectively. 21  and ijij   are the stress tensors, 

21   and ijij   are the strain tensors. And 21  and ijklijkl SS are the compliance tensors associated to materials 

of V1 and V2, respectively. 21  and   are the mass densities and are supposed independant of time. 

One studies the dynamical behaviour of the structure between time 10  and tt . 

 

 

 

 

                                                 
1  It may be noted that several typing errors and one error of sign are present in the equations of this paper. 

 

FIGURE 3 
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The continuity conditions on CouplingS  can be expressed by: 

 10

21 , x on      ttSWW Couplingii  , (17) 

 10

2211 , x on     0 ttSnn Couplingjijjij  . (18) 

) (resp. 21

jj nn  is the jth component of the outer normal vector ). (resp. 21 nn  

3.2. DEFINITION OF SUBSTRUCTURES 

For the sub-structuration of the problem, it is now necessary to imagine that one separates these 

two subsystems and that one prescribes displacements or forces on CouplingS for each subsystem. One 

defines 1

CouplingS  (resp. 2

CouplingS ) as the coupling surface CouplingS  in subsystem 1 (resp. subsystem 2). 

 

 

 

One chooses to prescribe displacements on 1

CouplingS  for the subsystem 1 and forces on 2

CouplingS  for 

the subsystem 2 (as shown Figure 4). Then, for subsystem 1, one assumes the boundary condition on 

1

CouplingS  to be: 

 10

11 , xon       tt SWW Coupling

c

ii  . (19) 

And, for subsystem 2, the boundary condition on SCoupling
2  to be: 

 10

222 , x on       ttSFn Coupling

c

ijij


 . (20) 

Note: For the cavity - structure coupling, the boundary conditions for the cavity coupled with the 

structure are the displacements imposed by the structure (like subsystem 1) and the boundary 

conditions for the structure coupled with the cavity are the pressures imposed by the cavity (like 

subsystem 2). 

 

 

FIGURE 4 
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Then, from the fundamental equations and principles of continuum mechanics, the linear field 

equations describing the dynamics of both subsystems can be expressed.  

For subsystem 1, the following equations constitute one first problem called problem 1: 

- Equations of motion: 

 10

11

,2

12

1 , x in      ttV
t

W
jij

i 



  . 

 

(21) 

- Constitutive equations for Hookean linear elastic solid: 
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1111
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1

,

1 , x in         =
2

1
ttVSWW klijklijjiij   . 

 

(22) 

- Boundary conditions: 

 10

111 , x on        0 ttSn Freejij  , 

 10

11 , x on       0 ttSW Clampedi  , 

 10

11 , x on       ttSWW Coupling

c

ii  . 

(23) 

 

(24) 

 

(25) 

And for the subsystem 2, one has problem 2: 

- Equations of motion: 

 10
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,2

22

2 , x in      ttV
t
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jij
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


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(26) 

- Constitutive equations for Hookean linear elastic solid: 

   10

2222
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(27) 

- Boundary conditions: 

 10

222 , x on       0 tt Sn Freejij  , 

 10

22 , x on       0 ttSW Clampedi  , 

 10
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c

ijij


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(28) 

 

 

(29) 

 

(30) 
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3.3. VARIATIONAL FORMULATION OF THE PROBLEMS USING REISSNER PRINCIPLE 

For each subsystem, it is possible to express the dynamic problem by using Reissner principle. 

This formulation will allow us to facilitate the use of the modal expansions. 

For problem 1, the associate Reissner functional  111 , ijiR W   can be expressed by (see in 

references [23], [24] the second form of the Reissner functional): 
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2

1

2

1
, 




 . 

 

 

(31) 

The associate admissible spaces are: 

     111111

10

11 0/S=   W;  / WW, ClampediiiR VttxV   , (32) 

  

       111121

,

121111

10

11 /0   ;    ;     ;   /, FreejijjijijjiijijR S.nVLVLttxV   . (33) 

The problem constituted by equations (21-25) can be replaced by searching 11  and ijiW   in their 

respective admissible spaces 1

R

1  and R  such that they render the functional  111 , ijiR W   stationary. 

 

In the same way, for problem 2, the Reissner functional  222 , ijiR W   can be expressed by (see in 

references [23], [24] the first form of the Reissner functional): 

 
   222

R

22

22

R

222

,     ,                      

      x   :,

ijiiji

RijiR

WW

W








 

 

    dtdSWFdVSWW
t

W
W

t

t S

i

c

i

V

klijklijijjiij

i

ijiR

Coupling

 










































1

0
22

22222

,

2

,

2

2

22

2

222

2

1

2

1

2

1
, 




 . 

 

 

 

(34) 

 

 



  

 - 15 - 

And the associate admissible spaces: 

     222122

10

22 0/S=   W;  / WW, ClampediiiR VttxV   , (35) 

  

     222222222

10

22 /0.    ;     ;   /, FreejijijjiijijR SnVLttxV   . (36) 

 

In this case, the problem constituted by equations (26-30) can be replaced by searching  

22  and ijiW   in their respective admissible spaces 22  and RR S  such that they render the functional 

 222 , ijiR W   stationary. 

3.4. MODES OF UNCOUPLED SUBSYSTEMS 

3.4.1. Definition of subsystem modes 

In a first step, modal expansion will be used to solve separately the two previous variational 

problems. The sets of mode shapes which will be considered, generate subspaces of admissible 

spaces associated to each variational problem. Then, the approximate solutions of these problems 

will be found considering these subspaces. The definition of the modes of each subsystem must be 

judicious in order to permit to link the two problems in a second step. Indeed, the coupling of the 

problems will be possible if modal expansion of the stress field of subsystem 1 allows one to 

determinate the force excitation of subsystem 2, and ‘inversely’, if modal expansion of the 

displacement field of subsystem 2 allows one to calculate the displacement excitation of subsystem 

1. The subspaces of admissible spaces, and by consequence, the mode’ definitions must be chosen 

adequately . 

Then, modes of subsystem 1 are defined with blocked displacements on 
1

CouplingS (as shown Figure 

5 (a)). One calls them, the modes of the uncoupled - blocked subsystem or shortly the blocked 

modes. These modes respect the admissibility conditions on stresses for the problem 1. (In the case 
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of cavity - structure coupling, the modes of the cavity are the blocked modes because they are 

determined with rigid walls.) 

On the other hand, modes of subsystem 2 are calculated with null stresses on 2

CouplingS (as shown 

Figure 5 (b)). One calls them, the modes of the uncoupled - free subsystem or free modes. These 

modes respect the kinematic admissible conditions for the problem 2. (They correspond to the 

modes of the in-vacuo structure in the case of cavity - structure coupling.) 

 

 

 

3.4.2. Calculations and properties of modes 

The eigenvalue problems respected independently by each field can be obtained from equations 

of motion, constitutive law and boundary conditions expressed in mixed variables:  

- For the displacement field of subsystem    2,1 , the eigenvalue problem called primal 

problem can be written after a separation of time and space,      tj

ii eMWtMW  ~
,  : 

   












.conditionsBoundary  

,in  
~~

 
2

1~
,,,

12 
  V   WWSW

jkllk

-

ijkli  

 

 

(37) 

- And for the stress field of subsystem , the eigenvalue problem called dual problem can be 

written with     tj

ijij eMtM   ~,  : 

   











.conditionsBoundary  

,in       ~~~
,,,,

12 
  VSσ kmlmlmkmijklij  

 

(38) 

 

These two problems (primal and dual) are extracted from the same problem expressed in mixed 

variables. In general, the problem in mixed variables is respected by the couples of solutions 

 
  ijiW ~ ,

~
 , . However, one can notice that one solution of the dual problem having a null 

 

FIGURE 5 
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eigenvalue can exist and do not have equivalence in the primal problem. Then, this solution does 

not appear in mixed variables. For a cavity, it corresponds to the Helmholtz mode that is found in 

term of pressure and not in term of displacement. This solution having a null eigenfrequency will 

have a negligible contribution in the modal expansion (because non-resonant) as soon as others 

resonant modes participate to the response. The CLF calculation taking only into account the 

resonant modes in a frequency band, the Helmholtz mode contribution can be neglected. Thus, one 

will use the problem in mixed variables to define the stress and displacement shapes of each mode. 

Let us defined: 

- for the uncoupled - blocked subsystem 1:  










 shape, mode stress   the:~

  and shape, modent displaceme  the:
~

, mode offrequency angular  natural  the:

1

1

1

p

ij

p

i

p

W

p





 

with the following equations  0for 1 p : 

   VW p

jij

p

ip ,in      ~~
. 11

,

121

1    

 

(39) 

  ,in         ~=
~~

2

1 1111

,

1

, VSWW p

klijkl

p

ij

p

ji   

 

(40) 

111 on    0~
Freej

p

ij Sn  ,     on    0
~ 11

Clamped

p

i SW   ,     on    0
~ 11

Coupling

p

i SW  , 
 

(41) 

 

 - and  for the uncoupled - free subsystem 2: 










 shape, mode stress   the:~

  and shape, modent displaceme  the:
~

, mode offrequency angular  natural  the:

2

2

2

q

ij

q

i

q

W

q





 

with the following equations  0for  2 q : 

   in      ~~ 22

,

222

2 VW q

jij

q

iq   , (42) 
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  2222

,

2

, in         ~=
~~

2

1
VSWW q

klijkl

q

ij

q

ji  , 

 

(43) 

 on     0~ 222

Freej

q

ij Sn  ,    on       0
~ 22

Clamped

q

i SW  ,     Sn Couplingj

q

ij

222 on      0~  . (44) 

 

These modes have the following orthogonality properties (see [25]) for subsystem  2,1   : 

pqp

V

q

i

p

iqp KdVWW  







~~

, 
 

(45) 

pqp

V

q

klijkl

p

ij KdVS  




~~ , 

 

(46) 

 


 

V

pqp

q

i

p

jij KdVW
~~

, , 
 

(47) 

  


 

V

pqp

q

ij

q

ji

p

ij KdVWW ,,

~~

2

1~ , 

 .  if 1 ; if 0 symbolKronecker   theis  and

, subsystem of  mode of stiffness modal  theis  where

qpqp

pK

pqpqpq

p

 



 

 

 

(48) 

The natural angular frequencies can be expressed by:  

1,2    ,  






p

p

p
M

K
 

. subsystem of  mode of mass modal  theis  where  pM p  

 

(49) 

 

Note: The blocked modes of subsystem 1 respect the admissibility conditions on stresses of the 

variational problem 1. Thus, the set of the stress mode shapes     1.2...., ,~1 pMp

ij  (taking into 

account the stress mode of null frequency if it exists) constitutes a base of the admissible space 1

R . 

In a same way, the uncoupled – free modes of subsystem 2 respect the kinematic admissible 

conditions of the variational problem 2. The set of the displacement mode shapes 

    1.2...., ,
~ 2 qMW q

i  constitutes a base of   2

R (the displacement kinematically admissible 
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space). This will allow one to calculate the stress field for subsystem 1 and the displacement field 

for subsystem 2 on the coupling boundary from the modal expansion. 

 

3.5. MODAL EXPANSION OF THE SOLUTION 

Expanding displacements and stresses of each subsystem in the modal bases, one can write: 

     





1

111 ~
,

n

n

ini MWtatMW ,      





1

111 ~,
m

m

ijmij MtbtM  , 

 

(50) 

     





1

222 ~
,

r

r

iri MWtatMW ,      





1

222 ~,
s

s

ijsij MtbtM  . 

 

(51) 

The expansion allows one to find the weak solutions of the two problems (21-25), (26-30) by 

using Reissner principle and subspaces of admissible spaces. These solutions are weak solutions 

because the subspace generated by mode shapes will not permit strictly verification of equation (25) 

for problem 1 and equation (30) for problem 2.  

Introducing expansions (50,51) into the variational principles (31,34), and using the modes’ 

orthogonality properties (45-48), the solution of each problem is then obtained by finding modal 

amplitudes that render stationary the Reissner's Functional. That is to say modal amplitudes 

satisfying Euler equation (52) associated to ) , (resp. , , 2211

qpmn baba  for subsystem 1 (resp. subsystem 

2): 

            0,,   :/ 









 tqtqF

qdt

d
tqtqF

q
q ii

i

ii

i

i












, 

 

(52) 

        .,on  depends which functional considered  theis , where tqtqtqtqF iiii
   

One obtains finally, for subsystem 1:  

 
    0   :/ 111

21

1

1  tbKta
K

a ppp

p

p

p



, 

 

(53) 

    0~   :/ 1111111

1

  dSnWtbKtaKb j

S

p

ij

c

ippppp

Coupling

 , 
 

 

(54) 
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and, for subsystem 2: 

 
    0

~
   :/

2

2222

22

2

2  
CouplingS

q

i

c

iqqq

q

q

q dSWFtbKta
K

a 


, 

 

(55) 

    0   :/ 22222  tbKtaKb qqqqq , 
 

(56) 

According to dual formulation used by Karnopp [18], one must describe the behaviour of 

subsystem 1 with stress modal amplitudes,  tbp

1 , and subsystem 2 with displacement modal 

amplitudes,  taq

2 . It is analogous to the coupling cavity - structure where the pressure is the 

descriptive variable for the subsystem with blocked modes (cavity), and the displacements are the 

descriptive variables for the subsystem with free modes (structure). Therefore, combining time 

second derivative of equation (54) with (53), and (55) with (56), give: 

     
  

1

11

121

1211 ~1

CouplingS

j

p

ij

c

i

pp

ppp dSnW
M

tbtb 


  , 

 

(57) 

      
2

2

2

2222 ~1

CouplingS

q

i

c

i

q

qqq dSWF
M

tata  . 

 

(58) 

3.6. FREE VIBRATIONS OF COUPLED SUBSYSTEMS 

Equations (57) and (58) describe the coupling through specified displacements on subsystem 1 

and forces on subsystem 2. To express coupling conditions, one has to say that the specified force 

acting on subsystem 2 is the opposite of stress boundary vector of subsystem 1 (see equation (18)), 

and, the prescribed displacements on subsystem 1 is the displacements of subsystem 2 on the 

coupling surface (see equation (17)). It is now easy to express the accelerations and the forces on the 

coupling surface by using modal expansions: 

  Coupling

m

j

m

ijm

c

i SntbF on   ~

1

111




  , 

 

(59) 

  Coupling

r

r

ir

c

i SWtaW on    
~

1

22




  . 

 

 

(60) 
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Injecting (60) in (57), and (59) in (58), one obtains the system of equations, 

     
 

   

         
















 
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






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1121
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1
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m S
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r
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qdSnWtb
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pdSnWta
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








 

 

(61) 

To have equations analogous to equations (5), it is necessary to carry out the change of variable: 

   tctb pp

11  . 
 

(62) 

For the cavity – structure problem, the pressure is replaced by the acoustic – fluid velocity 

potential, which, with the Euler law in fluid medium, represents a change of variable similar to (62).  

Finally, one obtains the equations governing free vibrations of coupled substuctures: 

     
 

   
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
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(63) 

 

3.7. FORCED VIBRATION OF COUPLED SUBSYSTEMS 

By introducing excitation and damping in equations (63), one get the system of equations 

describing the forced response of the coupled subsystems from the modal amplitudes of the modes 

of uncoupled subsystems: 

       
 
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(64) 

where one has introduced modal viscous damping through the modal damping bandwidths 

21  and qp  , and external excitations through the generalised terms 
21  and qp FF . 
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To identify the modal coupling coefficient as defined in the basic model of two coupled 

oscillators, one considers only the coupling of the pth mode of subsystem 1 and the qth mode of 

subsystem 2:  

       

   
 
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(65) 

where pqpq LL 21  and  contain the generalised 'forces' and the interaction 'forces' with all the others 

modes. 

One deduces directly by comparison with (6) the modal coupling coefficient between the pth 

mode and the qth mode: 

 


CouplingS

j

p

ij

q

i

qpp

pq dSnW

MM

112

2121

12 ~~1




 . 

 

(66) 

Physically, it is important to notice that the integral represents the interaction modal work 

exchanged by the pth blocked mode of subsystem 1 and the qth free mode of subsystem 2. One notes 

the interaction modal work by: 



CouplingS

j

p

ij

q

ipq dSnW 11212 ~~
W . (67) 

This is demonstrated in the general case of three dimensional continuum mechanical subsystems, 

and thus can be accepted as a basic principle that can be applied in simplified models of beams, 

plates and shells. In these cases, one has to consider the work associated to dual variables 

introduced in 1D or 2D models (force - displacement, moment - rotation, etc.). 
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3.8. DISCUSSION 

 

One notices, and it is an advantage of the dual formulation, that compared to displacement 

formulation and free modes, there are not 'direct couplings' between modes of the same subsystem 

(see [26]). Indeed, from a formal point of view, mode p of subsystem 1 (resp. mode q of subsystem 

2) is coupled with the modes of subsystem 2 (resp. subsystem 1) but it is not directly coupled with 

the others modes of subsystem 1 (resp. subsystem 2). When using classical displacement 

formulation, the introduction of blocked modes gives also no direct coupling for modes of same 

subsystem (see [1], p.61). However, the modes of different subsystems are coupled by mass, 

stiffness and damping elements. The damping oscillator/mode coupling is not taken into account in 

classical SEA, that poses a problem; the present approach has not, the modal coupling being only 

gyroscopic.  

 

In some structures, coupling dissipative joints are present. This situation can be schematically 

represented as Figure 6 where one has introduced one stiffness coupling element and one dissipative 

element between the two subsystems. 

   

 

 

In this case, one can use the uncoupled  - subsystems as Figure 7: Subsystem 1 are blocked and 

subsystem 2 is free. The uncoupled - blocked subsystem takes into account the stiffness and 

dissipative elements. The modes of this uncoupled – subsystem are obtained by considering the 

associated conservative structure. The damping coupling element is taken into account by the 

damping loss factor of subsystem 1. Of course, as for the general case, the modal couplings are 

gyroscopics. Then, the dual modal formulation allow us to take into account dissipative coupling 

between subsystem without modification of SEA relations.  

 

 

FIGURE 6 



  

 - 24 - 

 

 

 

 

As mentioned by Karnopp [18] for two identical coupled rods, the dual modal formulation can 

converge even if the subsystems have equivalent impedance. For this particular case, it could be 

necessary to consider a big number of modes to converge, whereas for cases which one subsystem is 

stiffer that the other, it is only necessary to consider few modes of one subsystem to be coupled with 

few modes of the other.  In section two, one has considered as SEA, the interactions between the 

subsystem modes which have their eigenfrequencies in the frequency band. Then, the present 

approach, considering resonant modes and using blocked modes for one subsystem and free modes 

for the other, is well suited to coupling in which one subsystem is stiffer that the other, but leads to 

approximation when both subsystem tends to have same stiffness. Obviously, one has to block the 

soft subsystem and to consider the stiff subsystem as free. The influence of bad choice of modes on 

CLF results should be presented in the companion paper. In the particular case of equally stiff 

subsystems on the coupling boundary, the choice is arbitrary but the prediction is not so good as in 

the case of impedance rupture. 

 

3.9. CALCULATION OF COUPLING LOSS FACTORS 

Combining equations (8), (14), (66) and (67), one obtains a general expression allowing us to 

calculate the Coupling Loss Factors from subsystem modal information: 
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(68) 

 

FIGURE 7 
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3.10. ENERGY PROPERTIES 

The equation system (64) can be interpreted as the coupling between a set of oscillators 

associated to subsystem 1 with another set of oscillators associated to subsystem 2. One is interested 

here in evaluating the energy properties of these associated oscillators. In a first step, one establishes 

the relations between subsystem energies and modal energies,  and in a second step one evaluates 

the links between the energies associated to amplitudes  taq

2  and  tc p

1 , and the modal energies. 

3.10.1. Subsystem energy and modal energy 

- The instantaneous kinetic energy of subsystem  2,1    is expressed by: 

dV
t

W
E

V

i

K

2

2

1
 















 







 . 

 

(69) 

Using the displacement modal expansion and taking into account the modal orthogonality 

property (45), gives 

    





1

2

2

1

n

nnK taMtE   , 

 

(70) 

therefore, 

   





1n

n

KK tEtE  , 

 

(71) 

where     2
2

1
taMtE nn

n

K

   is the modal kinetic energy of mode n of subsystem . 

- With the same manner, the instantaneous potential energy of subsystem  is expressed by: 

  dVStE kl

V

ijklijP

 



2

1
. 

 

(72) 

Using the stress modal expansion, and taking into account the modal orthogonality property (46), 

gives finally 

    





1

2

2

1

n

nnP tbKtE  . 

 

(73) 
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Therefore,  

   





1n

n

PP tEtE  , 

 

(74) 

where     2
2

1
tbKtE nn

n

P

   is the modal potential energy of mode n of subsystem . 

In conclusion, the total energy of a subsystem is equal to the sum of the modal total energies of 

all modes. 

3.10.2. Energy properties associated to amplitudes  taq

2  and  tc p

1  

From the form of (64), the modal amplitudes  taq

2  can be associated to the displacement 

amplitude of an oscillator whose its mass is the generalised mass and its stiffness is the generalised 

stiffness of mode q. It is well known that the kinetic (resp. potential) energy of the oscillator 

represents the mode q kinetic energy (resp. potential energy, taking into account (56)). Thus the 

total energy of the oscillator is the modal total energy. 

For subsystem 1, the parameters, which must be associated to the oscillator, are not classical (as 

for subsystem 2). Calculations are then necessary to identify what are represented by kinetic energy 

and potential energy of the corresponding oscillator: 

 

 

 

One notes M, the mass, K, the stiffness and y(t), the amplitude of the oscillator. By identification 

from the form of equation (64), one associate the modal parameters of the pth blocked mode of 

subsystem 1 to the oscillator parameters as shown in Figure 8:  

- The oscillator mass, M, is equal to the modal stiffness, 
1

pK ;  

- And the oscillator stiffness, K, is equal to 
 

1

21

p

p

M

K
. 

 

FIGURE 8 
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The kinetic energy of the oscillator at any time can be expressed by: 

       2112

2

1

2

1
tcKtyMtE ppK

  . 

 

(75) 

By introducing relation (62), one obtains: 

    211

2

1
tbKtE ppK  . 

 

(76) 

Thus, the kinetic energy of the associated oscillator is the potential energy of the pth blocked 

mode. 

 

For the potential energy of the oscillator, one can write: 
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p
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(77) 

Injecting (62) in (53), then calculating the integral over the time (taking into account that one 

considers stationary motion), one has: 

   ta
K

M
tc p

p

p

p

1

1

1

1  . 

 

(78) 

Injecting in (77), gives: 

    211

2

1
taMtE ppP

 . 

 

(79) 

Thus, the potential energy of the associated oscillator is the kinetic energy of the pth blocked 

mode. It is, however, important to notice that the total energy of the associated oscillator is equal to 

the total energy of the pth blocked modes. 
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4. CLF CALCULATION WITH FEM DATA 

4.1. INTRODUCTION 

The goal of the present approach is to apply SEA to complicated substructures. In that case only 

a finite element model of each subsystem can be performed. The advantages of the proposed method 

to calculate CLF in this case are: 

- Subsystem boundary conditions are clearly defined (the uncoupled modes are clearly 

defined). 

- Heterogeneous subsystems having three dimensional vibration motions can be treated 

without any difficulty. This can be quite difficult to do with the classical numerical 

experiment and inverse SEA technique due to the choice of the position and type of force 

which should be applied. 

- The present technique has a short computing time, because the resolution of the equation 

of motion is not necessary. The CLF are calculated directly from the coefficients of 

modal equations. 

4.2. INTERACTION MODAL WORK FOR DISCRETIZED SYSTEM 

In our approach, CLF are calculated from the interaction modal work of couple of modes. For a 

FEM discretized system, one can determine the expression of the interaction modal work directly 

from the nodal variables. For the node i, the displacement variables are the three displacements 

 3,2,1 , ku i

k  and the three rotations  6,5,4 , ku i

k ; And the dual variables are the three forces 

 3,2,1 , kf i

k , and the three moments  6,5,4 , kf i

k . 

One considers a system composed of  two vibrating subsystems discretized by Finite Element 

and coupled together. When they are coupled, the two subsystems have some common nodes called 

‘coupling node set’ on the coupling boundary. As in section 3, one supposes that subsystem 1 is the 

uncoupled - blocked subsystem and that subsystem 2 is the uncoupled - free subsystem. Then, 
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subsystem 1 must be described by the nodal forces  6,...,1 ,1 kf i

k  and subsystem 2 by the nodal 

displacement  6,...,1 ,2 ku i

k . One deduces from the physical interpretation that the interaction 

modal work between the pth mode of subsystem 1 and the qth mode of subsystem 2 is expressed by: 

 






 



set  node
Coupling

6

1

2112 ~~

i k

i

qk

i

pkpq ufW , 

 

(80) 

2. subsystem of mode   theof node ofnt displacemecomponent    theis ~  and

1, subsystem of mode   theof  node of forcecomponent    theis 
~

 where

2

1

ththi

qk

ththi

pk

q iku

pikf
 

N.B.: All nodal variables must be described in the same global co-ordinate system for the two 

subsystems. 

In conclusion, to calculate the Coupling Loss Factor of complicated system only eigenvalue 

problem using FEM must be solved for each uncoupled subsystem. The informations, which must 

be extracted, are the natural angular frequencies, the generalized masses and the mode shapes (nodal 

forces or nodal displacement) on the coupling boundary (coupling node set). Equation (80) permits 

to determine the modal interaction works. Then, expression (68) can be applied directly to calculate 

the CLF between the two subsystems.  

 

5. CONCLUSIONS 

One has presented here a technique to calculate SEA Coupling Loss Factors for complicated 

subsystem modelled with FEM. The technique relies on the basic modal formulation of SEA and the 

use of a formulation called Dual Modal Formulation. The use of the DMF presents some 

advantages: (a) the modal equation have no direct coupling between modes of the same subsystem 

(like SEA assumes); (b) The considered subsystem modes are the physical local modes when there 

is a rupture of impedance between the two subsystems. Therefore these resonant modes are able to 

represent the behaviour of the structure in a frequency bandwidth; (c) The natural frequencies which 

must be considered to determine the CLF are the natural frequencies of the uncoupled (free or 
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blocked) subsystems. (d) There is not the problem of stored energy in the coupling between modes 

because it is only gyroscopic (no mass and stiffness coupling that store energy are necessary with 

the present approach); (e) The method is simple to apply because it is possible to use directly the 

physical interpretation of the interaction modal work. 

The final expression of CLF which has be obtained allows us to determine it only from the 

knowledge of the modes of the uncoupled – subsystems and the modal damping. Finite Element 

Method can be used to calculate the modal information in the case of complex subsystems that 

allows one to apply this technique to industrial structures. Contrary to classical SEA matrix – 

inversion technique, the present method does not require solving equations of motion for a lot of 

excitation. CLF are directly obtained by equation (68) without resolution of equation. This saves an 

enormous computing time. In addition, one can use different damping loss factor for subsystem 

without difficulty. In the numerical simulation technique and SEA matrix inversion, one has often 

the technical difficulty that FEM codes use a global damping loss factor for the considered structure. 

It is then impossible to use different damping loss factors for substructures.  

It can be noticed that it is also possible to establish an ensemble averaged estimate of the CLF by 

replacing deterministic Intermodal Coupling Factors by ensemble average of the Intermodal 

Coupling Factors. 
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APPENDIX : NOMENCLATURE 

 

   tata qp

21  ,   modal amplitude of displacement expansion 

   tbtb qp

21  ,   modal amplitude of stress expansion 

   tctc qp

21  ,   modal amplitude defined by equation (62) 

21  , EE    time averaged total energy of oscillator  

q

K

p

K E,E 21    instantaneous modal kinetic energy 

q

P

p

P EE 21  ,   instantaneous modal potential energy 

21  , qp EE   time averaged modal total energy 

21  , KK EE   instantaneous subsystem kinetic energy 

21  , PP EE    instantaneous subsystem potential energy 

i

k

i

k ff 21  ,   force nodal variable 

i

qk

i

pk ff 21 ~
 ,

~
  force nodal mode shape 

21  , FF    external force 

21  , qp FF   generalised ‘force’ 

c

iF    specified forces on 
2

CouplingS  

cG    gyroscopic constant 

21  , KK   oscillator’s stiffness 

21  , qp KK   modal stiffness 

21  , pqpq LL   generalised ‘forces’ and interaction ‘forces’ with others modes 

srqpnm ,,,,,   modal order  

21  , MM   oscillator’s mass 

21  , qp MM   modal mass 
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21  , jj nn    outer normal vector component 

21  , NN   number of resonant modes in the considered frequency bandwidth 

12P    time averaged power flow from oscillator 1 to oscillator 2 

21  , ijklijkl SS   compliance tensor 

21  , FreeFree SS   boundary surface with free displacement 

21  , ClampedClamped SS  boundary surface with blocked displacement 

21  , CouplingCoupling SS  coupling boundary surface 

10  , tt , t   time 

i

k

i

k uu 21  ,    displacement nodal variable 

i

qk

i

pk uu 21 ~ ,~   displacement nodal mode shape 

21  ,VV    volume occupied by subsystem 

12

pqW  interaction modal work between mode p of subsystem 1 and mode q of 

subsystem 2 

21  , ii WW   displacement vector 

q

i

p

i WW 21 ~
 ,

~
  displacement mode shape 

c

iW    specified displacements on 
1

couplingS  

21  , yy    oscillator amplitude 

    proportional constant between 12P and  21 EE   

12

pq  Intermodal Coupling Factor (ICF) between mode p of subsystem 1 and mode 

q of subsystem 2 

    angular frequency bandwidth of interest 

21  ,    oscillator’s damping bandwidth 
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21  , qp     modal damping bandwidth 

21  , ijij     strain tensor 

12    Coupling Loss Factor (CLF) 

    gyroscopic coupling coefficient between two oscillators 

12

pq  gyroscopic modal coupling coefficient between mode p of subsystem 1 and 

mode q of subsystem 2 

21    time averaged power flow exchanged by two subsystems 

12

pq  time averaged power flow from mode p of subsystem 1 to mode q of 

subsystem 2 

c    central angular radian frequency of the frequency bandwidth   

21  ,    oscillator’s natural angular frequency 

21  , qp    mode’s natural angular frequency 

  , 21

RR    displacement admissible space 

21  ,     mass density 

21  , ijij    stress tensor 

q

ij

p

ij

21 ~ ,~    stress mode shape 

  , 21

RR    stress admissible space 

21  ,    time averaged total energy of subsystem 

21  , RR    Reissner functional
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FOOTNOTE: 

 

 

Foot note 1: It may be noted that several typing errors and one error of sign are present in the 

equations of this paper. 
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FIGURE 1        L.MAXIT, J.L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Two oscillators coupled by gyroscopic element. 
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FIGURE 2        L.MAXIT, J.L. GUYADER 
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Figure 2: Illustration of coupling of N1modes of subsystem 1 with N2 modes of subsystem 2.
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FIGURE 3        L.MAXIT, J.L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3: Representation of the coupling of the two elastic continuum systems. 
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FIGURE 4        L.MAXIT, J.L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Figure 4: Illustration of the fictive separation of subsystems. 
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FIGURE 5        L.MAXIT, J.L. GUYADER 
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Figure 5: Subsystem definition.  (a) Uncoupled - blocked subsystem 1.  (b) Uncoupled - free 

subsystem 2. 
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FIGURE 6        L.MAXIT, J.L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Two subsystems coupled by stiffness and dissipative elements. 
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FIGURE 7        L.MAXIT, J.L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    (a)      (b) 

 

 

Figure 7: Subsystem definition. (a) Uncoupled - blocked subsystem 1. (b) Uncoupled – free 

subsystem 2. 
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FIGURE 8        L.MAXIT, J.L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Illustration of the oscillator associated to the pth blocked modes. 
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