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Summary : 

 

In order to enlarge the application field of Statistical Energy Analysis (SEA), a reformulation is 

proposed. The model described here,  Statistical modal Energy distribution Analysis (SmEdA), does 

not assume equipartition of modal energies contrary to classical SEA.  

Theoretical derivations are based on dual modal formulation described in [1,2] for the general 

case of coupled continuous elastic systems. Basic SEA relations describing power flow exchanged 

by two oscillators are used to obtain modal energy equations. They permit to determine modal 

energies of coupled subsystems from the knowledge of modes of uncoupled subsystems. The link 

between SEA and SmEdA is established and render possible to mix the two approaches: SmEdA for 

subsystems where equipartition is not verified and SEA for other subsystems.  

Three typical configurations of structural couplings are described for which SmEdA improves 

energy prediction compared to SEA: (a) coupling of subsystems with low modal overlap. (b) 

coupling of heterogeneous subsystems. (c) case of localised excitations. 

The application of the proposed method is not limited to academic structures, but could easily be 

applied to complex structures by using finite element method (FEM). In this case, FEM are used to 

calculate the modes of each uncoupled subsystems; these data are then used in a second step to 

determine modal coupling factors necessary to SmEdA to modelise the coupling. 
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1. INTRODUCTION 

  

Statistical Energy Analysis (SEA) [3-5] has been developed to predict noise and vibration 

transmission through complex structures at medium and high frequencies. In SEA, the built-up 

structure is subdivided into a number of subsystems and the vibration response within each 

subsystem is characterized by the subsystem energy. Derivation of SEA is based on several 

assumptions (see [6]), and its validity domain is not easy to establish even if many studies addressed 

this point [7-29]. Let us first present some cases, where SEA give poor prediction.  

 

Yap and Woodhouse [7] have studied the influence of damping on the quality of SEA results. 

Equivalent Coupling Loss Factor (CLF) was obtained from numerical simulations on beam and 

plate coupling. They were shown to depend strongly on damping, whereas CLF obtained classically 

by the wave approach were independent of damping. For weakly damped system, equivalent CLFs 

are proportional to Damping Loss Factors (DLF), and values are lower than those given by the wave 

approach, i.e. wave approach leads to overestimate the energy transfer. The authors attributed the 

strong dependency to damping to the fact that energy equipartition does not hold when damping is 

low.  

For three plates coupled in U shape, Fredo [8] showed that indirect coupling between first and third 

plate can be significant if damping is weak. The indirect coupling was attributed to the non-

observance of one or more SEA assumptions. Previously, Finnveden had already shown in the case 

of three coupled elements [9] that SEA seriously overestimates the flow of energy when damping 

loss factors are small. 

The coupling of two irregular plates has been studied by Mace et al. [10], [11]. For large damping, 

the response is independent of the shape of the plate and wave estimate of CLF gives accurate 

predictions. Contrary to light damping, the transmission depends significantly on the specific 

geometry of each plate; and the power transmitted is often substantially less than that predicted by 

SEA. 

Ming et Pan studied the accuracy of SEA results on coupled plates [12]. They noticed that two 

parameters influence the quality result : the geometric mean of the modal overlap factors and the 

number of resonant modes in the frequency band of interest. At low frequency, where there are few 

modes, SEA results are poor and exact results present a high sensitivity to the position of the 

excitation point. Increasing frequency, modal overlap factors and modes number increase ; then 
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SEA results are better and the sensitivity to the position of excitation decreases (see also [13]). A 

previous work of Fahy and Mohammed [14] on beam-plate coupling cases gave similar conclusions. 

When the modal overlap factor is much less than unity, SEA overestimates energy transfer.  

From analytical calculations of the power exchanged by two coupled one dimensional subsystems, 

Mace [15, 16] proposed the  parameter to characterize the coupling strength. This parameter is  

defined by the ratio of the transmission factor to the product of the two modal overlap in both 

connected subsystem. When  is small, the coupling is called weak, i.e. classical SEA is valid. 

Finnveden [17, 18] deduced the same coupling strength criterion by investigating the ensemble 

averaged power flow in a three elements structure.  

 

One can conclude that SEA has serious difficulties to predict energy transfer when SEA 

assumptions are not verified in at least one subsystem. This was the key point of our interest in 

developing a refinement of SEA, based on not so restrictive assumptions. 

 

Langley [19, 20] proposed an extension of SEA called Wave Intensity Analysis (WIA). Classical 

SEA assumed that the vibrational wavefield in each subsystem is diffuse. In some cases (not 

explicitly defined by the author), this assumption can be not fulfilled leading SEA to yield poor 

estimates of vibrational responses. In WIA, the directional dependency of the vibrational wavefield 

in each subsystem is derived using Fourier series. When the first term of the Fourier serie is only 

considered, WIA is equivalent to SEA. Adding terms in the series improve predictions for plate 

assemblies [19-22]. 

 

The study presented in this paper is also based on the reformulation of SEA with less restrictive 

assumptions. The goal is to extend the validity of the model to cases where classical SEA was seen 

unsatisfactory. The assumption that one wishes to remove in this paper is equipartition of energy.  

The approach, based on the dual modal formulation proposed in [1,2] take into account the modal 

energies distribution of each subsystem. The present model is called SmEdA (Statistical modal 

Energy distribution Analysis) and can be seen as a refinement of traditional SEA. 

 

2. DUAL MODAL FORMULATION 

The dual modal formulation described in [1] for the general case of coupled continuous elastic 

systems is based on a dual displacement-stress formulation and two kinds of subsystem modes : 
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uncoupled-free modes and uncoupled-blocked modes. The results which constitute the base of 

SmEdA model are summarised here. (For more details, see references [1,2].) 

 

2.1. COUPLING OF TWO CONTINUOUS MECHANICAL SYSTEMS 

Two mechanical systems are considered. They are rigidly coupled on a surface SCoupling  as shown in 

figure 1. Both systems are excited by random, ergodic excitations of band limited white noise type 

and the material of each subsystem is supposed to be linear elastic and have viscous damping. 

 

Subsystem 1 is described by displacement vector  tMWi ,  and subsystem 2 by stress 

tensor  tMij ,  where i and j = 1,2,3,  t is time, and M (resp. M’)  denotes point of subsystem 1 

(resp. subsystem 2). According to the dual modal formulation, subsystem 1 is described by modes of 

the uncoupled-free subsystem (null stresses on SCoupling ) and subsystem 2 by modes of the 

uncoupled-blocked subsystem (null displacements on SCoupling ). (see figure 2.)  

 

Expanding displacements of subsystem 1 and stresses of subsystem 2, and assuming responses 

controlled by resonant contributions, gives : 
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(2) 

where : 

-  tan ,  tbs are modal amplitudes for subsystem 1 and subsystem 2, respectively ; 

-  MW n

i

~
 are displacement mode shapes of subsystem 1 ; 

-  Ms

ij
~  are stress mode shapes of subsystem 2, and ; 

- N1, N2 are the number of resonant modes of subsystem 1 and subsystem 2, respectively. 

 

With the change of modal variable, 

   ,tctb qq
  

 

(3) 

the modal equations given by the dual modal formulation (see [1]) is : 
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(4) 

 

(5) 

where : 

 - qp   ,  are modal damping bandwidths of each subsystem; 

 - qp   ,  are natural angular frequencies of uncoupled subsystems; 

 - qp MM  ,  are modal masses;  

 - qp FF  ,  are generalised modal forces, and; 

 - pqW  are interaction modal works yielded for each couple of modes (p,q) by : 



CouplingS

j

q

ij

p

ipq dSnW 2~~
W , 

 

(6) 

and 2

jn  are components of the outer normal vector of the volume occupied by subsystem 2. 

This system of equations describes the forced response of the coupled subsystems from the 

amplitudes of modes of the uncoupled subsystems.  

The form of these equations allows us to interpret modes interactions as oscillators with gyroscopic 

couplings (see figure 3). It is pointed out that a mode of one subsystem is coupled to the modes of 

the other subsystem but is not directly coupled with the other modes of the subsystem to which it 

belongs. This configuration of mode coupling is exactly the one that supposes SEA. 

 

3. REFORMULATION OF SEA MODEL WITHOUT EQUIPARTITION ASSUMPTION 

One proposes in this section to reformulate SEA model without taking into account equipartition of 

energy. 

3.1. MODAL ENERGY EQUATIONS  

Let us consider mode p of subsystem 1. Its equation of motion is given in (4). The principle of 

conservation of energy applied to this mode gives : 

 1

1

1     ,
2

,...,Np
N

q

pq

p

diss

p

inj  


,
 

 

(7) 

 

 

where: 
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- p

inj  is time-averaged injected power by the generalized force pF ; 

-  p

diss  is time-averaged dissipated power by internal damping of mode p, and ; 

- 



2

1

N

q

pq  is time-averaged power flow exchanged by mode p with the modes of subsystem 2 

The injected power into mode p by external excitation is, either dissipated by internal damping of 

the mode or exchanged with modes of subsystem 2. Let us estimate the different powers appearing 

in this equation : 

- Evaluating p

inj  from the power injected relation established for an oscillator excited by a 

white noise force ([2]) gives: 

pF

p

p

inj S
M4


 ,

 

 

(8) 

where 
pF

S  is the power spectral density of the generalised force expressed in N2/(rad/s). 

- The power dissipated by internal damping of an oscillator (see [5]) can be related to its 

total energy by expression (9): 

ppp

p

diss E ,
 

 

(9) 

where pE is the time averaged energy of mode p, and p  is the modal damping factor ( ppp  ). 

- To evaluate the power exchanged by mode p of subsystem 1 with mode q of subsystem 2, 

one isolates these two modes in the modal equations of motion (4) and (5) : 
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Supposing as classically done in SEA that the interaction forces  tL pq1  and  tL qp2  are uncorrelated 

white noise forces, the basic SEA relation established by Sharton and Lyon [30] can be used: 
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 qppqcpq EE   ,
 

 

(12) 

where c  is the central angular frequency of the band of interest, and, pq  is called the modal 

coupling loss factor (see [1]). It is a function of natural angular frequencies, qp   , ; modal masses, 

qp MM  , ; modal bandwidths, qp   , ; and interaction modal works , pqW  : 
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(13) 

 

Introducing (8), (9), and (12) in (7), one obtains power balance equations (14) for mode p of 

subsystem 1: 
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In the same way, energy balance equation of mode q of subsystem 2 can be written: 
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The relations (14) and (15) constitute a linear system of modal energies of subsystems 1 and 2 : 
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(16) 

 

The total energy of each subsystem can be finally obtained by adding modal energies  : 
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(17) 

where E1 (resp. E2) is the time-averaged total energy of subsystem 1 (resp. subsystem 2). 

 

The model attached to the modal energy equations (16) is called SmEdA (Statistical modal Energy 

distribution Analysis). The application of this model is not limited to academic structures, but can 

be apply to complex structures by using finite element method (FEM). As described in [1, 31] to 

evaluate CLFs, FEM can be used to calculate the uncoupled subsystems modes which permit to 

determine the modal coupling loss factors. 
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In the next section, the link between SmEdA and  SEA will be established. 

 

3.2. RELATIONS BETWEEN SEA AND SMEDA 

In classical SEA, modal energy equipartition is assumed and permits to restrict the N1 degree of 

freedom (DOF) of subsystem 1 and the N2 DOF of subsystem 2 to only two DOF, one per 

subsystem. Introducing equipartition relation (18), 
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in the modal energy equations (16), and adding energy balance equations of subsystem 1 modes 

(resp. subsystem 2 modes), gives us the standard SEA equation (19) : 
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In some practical applications, equipartition assumption can be fulfilled by some subsystems but not 

by the others. In these situations, it will be interesting to mix SEA and SmEdA: classical SEA being 

used for subsystems where equipartition is valid and SmEdA for the others. To precise this point, let 

us consider the case of two subsystems, assume equipartition valid for subsystem 1 and not for 

subsystem 2; equation (16) writes: 
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(22) 

 

The unknowns of these equations are the total energy of subsystem 1 and the N2 modal energies of 

subsystem 2. It is thus possible to only apply SmEdA for the subsystem where equipartition is not 
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achieved, and to use classical SEA for the other subsystem.  (Application to four coupled plates is 

proposed in [32]). 

 

4. SOME EXAMPLES 

Three typical cases where equipartition is not achieved are shown in this section: (a) coupling of 

subsystems with low modal overlap; (b) coupling of heterogeneous subsystems; (c) case of localised 

excitation.  

The following examples are based on beam and plate couplings in order to simplify the calculation. 

However, it should not be seen as a limit of the approach ; the application to complicated 

subsystems could be achieved, thanks to finite element models, in a straight forward manner.  

In what follows, one notes by : SmEdA, the present approach; SEADMF, the SEA approach 

considering CLFs estimated by equation (13), i.e. the dual modal formulation; SEAwave, the SEA 

approach considering CLFs estimated by the classical wave approach (see [3]). 

 

4.1. COUPLING OF SUBSYSTEMS WITH LOW MODAL OVERLAP 

4.1.1. Two subsystems 

 

Two pinned-pinned beams coupled rigidly at one end as shown figure 4 are considred. L, b, h, 

E,  are, respectively, length, width, thickness, Young’s modulus, mass density of beam . 

The subsystem boundary conditions are simply supported at both ends for beam 1 and, clamped - 

simply supported for beam 2. Rigid coupling is assumed that is to say continuity of angular rotations 

and flexural moments, thus, the interaction modal works pqW
 
are expressed by :  

q

f

p

zpq MW
~~

 , 

where: 

- p

z
~

 is the pth mode angular rotation at the junction for beam 1, and; 

- 
q

fM
~

 is the qth mode bending moment at the junction for beam 2. 

 

 

(23) 

In the following, only beam 1 is excited in the normalised octave band of central frequency 1000 hz. 

The driving force is a ‘rain on the roof’ type, thus, power spectral densities of generalised forces 

(see equation (8)) are constant whatever the modes. In order to compare with classical calculations, 

solution based on wave decomposition for pure tone excitation was used, then frequency averaging 
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of energy was done. Lastly, to approximate rain on the roof excitation, beam energies obtained for 

20 excitation points randomly distributed over beam 1 were averaged.  

Beam lengths were chosen for having sufficient modes resonant in the excited band (10 modes for 

beam 1 and 9 modes for beam 2).  

Figure 5 shows beam energies ratio E2/E1 versus geometric mean modal overlap. The geometric 

mean modal overlap factor, M  is given by: 

21MMM  ,
 

(24) 

where:  

- M is beam  modal overlap:  1,2 ,    nM c
; 

- c  is the central angular frequency of the excited beam; 

-   is the damping loss factor, and; 

- n is the modal density of beam  (see [3]).  

 

SmEdA results agree with classical calculation for any geometric mean modal overlap whereas 

SEADMF gives poor estimates when 1.0M . It can also be noticed that SEAwave gives 

approximately the same results that SEADMF.  

Poor prediction of SEADMF suggests that equipartition is not achieved when modal overlap is weak. 

This point is confirmed in figure 6 where the distribution of modal energies of the non-excited beam 

is presented for four different values of the geometric mean modal overlap. For the strongest value, 

equipartition is quite fulfilled explaining that SEADMF gives good results. For the lowest value 

(figure 6 (a)), there is a large disparity between modal energies: the 4th mode in the frequency band 

considered largely dominates the response. In this case, SEADMF  gives poor results. However, 

strong disparities of modal energies do not lead systematically to a bad estimation of energies by 

SEA. Comparing figures 6 (a) and 6 (b), disparities of modal energies are similar but SEA results 

come out in a very different place in the two cases: through the middle in (b), but through the peak 

in (a). In case (a), SEA overestimates largely energy transfer; whereas in case (b); SEA prediction is 

reasonably good (see figure (5)).         

 

Modal energy disparities are due to frequency coincidence that has a significant role in the modal 

couplings when modal overlap factors are less than one (see expression (13)) ; some modes can be 

strongly coupled whereas other ones are much less. It is shown figure 7 where modal coupling loss 

factors are plotted. When damping is low (figure 7, (a)), the coupling between the two beams are 

dominated by the interaction between the 4th mode of beam 1 and the 4th mode of beam 2 (due to 
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close natural frequencies) ; then equipartition is not achieved (see figure 6, (a)). On the other hand, 

when the mean geometric modal overlap factor is equal or greater than one (see figure 7, (c,d)), all 

modes of beam 2 are strongly coupled to at least one mode of beam 1, in this case equipartition is 

achieved (see figure 6, (c,d)). 

 

Several studies [7,12,14,29] have shown, as it can be observed here, that classical SEA 

overestimates the energy transfer between subsystems when modal overlap factors are much less 

than one. The present results demonstrate that, in this case, modal equipartition is not fulfilled and is 

responsible of the poor prediction of SEA. This was previously mentioned in reference [7]. 

The  factor was proposed separately by Mace [16] and Finnveden [17] as an indicator of the 

coupling strength of two subsystems. When  is much less than one, the coupling between two 

subsystems is called weak, i.e. classical SEA is valid. 







12

2

1 22 M M
,
 

 

(25) 

where 12 is the transmission factor. 

 

Table 1 presents the  factor (25) for different cases treated in figure 5. It can be observed that this 

criterion indicates well the validity of SEA; namely when   1 , SEAwave fails, but SmEdA still 

permits to predict the energy flow and appears as alternative to SEA for strong coupling. 

 

Another example, based on plate coupling was presented in reference [2]. Because the coupling 

effects are distributed along a line, spatial coincidence of mode shapes has a significant role and can 

lead several modes of the non excited subsystem, to be uncoupled with modes of the excited 

subsystem. This increases the disparity of the distribution of modal energies, SEA can then 

overestimate energy transfer even if geometric mean modal overlap is equal or greater than one, 

whereas SmEdA gives good results. 

4.1.2. Multiple-subsystems 

 

Now, let us consider a structure composed of 7 pinned-pinned beams coupled rigidly in chain as 

shown figure 8. At each junction, simple supports are introduced in order to simplify subsystems 

modes calculations. This produces also very large overall attenuation that demonstrate clearly the 

difference of predictions between SEA and SmEdA.  
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In the following, rain on the roof excitation is applied on beam 1 and each beam has a damping loss 

factor of 0.1% (=0.001), that is to say modal overlap factor less than unity (geometric mean modal 

overlap factor, 0125.0M ). 

 

SmEdA model has been built for this structure decomposed in 7 subsystems. The boundary 

conditions used to extract the uncoupled subsystems modes are clamped - clamped for beams 2, 4 

and 6 (blocked subsystems), and pinned-pinned for beams 1, 3, 5 and 7 (free subsystems). 

Figure 9 presents modal energies distributions in beams. The main tendency that appears is an 

increase of beam modal energies disparities, subsystem after subsystem. Then, equipartition 

assumption lead to gross overestimates of energy transmission far from the excited beam (see also  

[7]). 

 

The disparities come from resonance frequency coincidences that render one modal interaction 

dominant. Of course, the probability of having the phenomena increases with the number of coupled 

subsystems. In the case of high modal overlap, this effect has no more a significant role and as 

shown figure 10 equipartition of modal energy is achieved. 

 

4.2. HETEROGENEOUS SUBSYSTEMS 

Classical SEA supposes a vibratory diffuse wave field in each subsystem ([19]), then, SEA 

substructuring should be achieved to respect this requirement. However, for industrial structures, 

like panel stiffened by spars and stringers, it is not possible to have a diffuse field because of 

heterogeneity. The assumption of diffuse field of the wave approach can be related to the 

equipartition assumption of the modal approach. Because SmEdA is not assuming equipartition, one 

can expect it can be used for heterogeneous structures. To make clear this point, let us study four 

Euler-Bernoulli beams coupled rigidly at each end with an intermediary support (see figure 11). The 

external ends are simply supported for beam 1 and clamped for beam 4. Beam 1 is excited by rain 

on the roof excitation.  

 

The substructuring which is considered is shown figure 11: beam 1 and beam 4 are independant 

subsystems (subsystem 1 and 3, respectively), whereas beam 2 and 3 constitute a single non 

homogeneous subsystem (subsystem 2). 
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Although analytic modal extraction can be performed, finite elements method was used to calculate 

the modal information of each subsystem. Modal coupling loss factors are obtained by the technique 

used in [1] to calculate coupling loss factors from FEM data. The modal information for each mode 

is eigenfrequency, generalised mass and mode shape at the coupling ends in terms of nodal 

displacement for free junctions and of nodal force for blocked junctions. Expression (80) of 

reference [1] is used to calculate interaction modal works, and then, modal coupling loss factors 

with (13). 

 

For the octave band of central frequency 1000 hz, the energy ratio between the receiving beam 4 and 

the excited beam 1 is equal to –36.3dB using SmEdA and –24.0dB using SEA whereas a reference 

energy ratio obtained by FE numerical experiments (see [31]) is –38.3dB. An error of 14.3dB is 

then made by SEA whereas SmEdA gives a accurate prediction. This can be explained again by 

observing the modal energies distribution of subsystem 2 (figure 12) where important variations can 

be noticed on the modal distribution. SEA being not able to describe these variations, it 

overestimates the energy transfer between subsystems 2 and 3. The heterogeneity of subsystem 2 

produces local modes as illustrated figure 13. The mode shapes act on the modal coupling loss 

factors via the interaction modal works. So, the difference of mode shape amplitudes at each end of 

the subsystem implies the mode is lightly coupled with modes of the right subsystem and strongly 

coupled with the ones of left subsystem (or vice versa). This introduces a strong disparity of mode 

energies which can only be taken into account by considering each mode independently. This 

explains why SEA fails and SmEdA gives good results. In this specific demonstration-case, it can 

be argued, however, that intuitively, one would actually choose four SEA elements for the analysis, 

and such a choice would give similar good agreement for beam 4, namely –34.3 dB. 

  

4.3. CASE OF LOCALISED EXCITATION 

 

In section 4.1. and 4.2., the external sources were of rain on the roof type. This excitation is  

considered in SEA because it produces decorrelation of generalized forces and thus respect of 

modal energies equipartition for the excited subsystem (see [23]). However, in practical situations, 

sources cannot always be assimilated to rain on the roof excitation, leading to difficulty in using 

SEA, contrary to SmEdA. 
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Let us study two thin steel plates coupled in an L shape. Plate 1 is excited by one white noise point 

force. Each plate is simply supported on non coupled edges and flexural motions are considered (see 

figure 14).  

 

Let us assume plate 2 is thinner than plate 1. Then, according to DMF, plate 1 is described by free 

modes at junction and plate 2 by blocked modes. These modal information are given in appendix A. 

The interaction modal work between mode (m,n) of plate 1 and mode (r,s) of plate 2 writes: 
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(26) 

where:  

- a, b, h, E,  are, respectively, longitudinal length, length of the common edge, 

thickness, Young modulus, and Poisson’s ratio for plate , =1,2, and; 

 - r  is a modal parameter given in appendix A.  

 

It can be noticed that the interaction modal work (26) is zero for couple of modes which have not 

the same index on the common edge ( n s ) . 

 

The power injected by the driving force located at point (xi,yi) in mode (m,n) of plate 1 writes: 
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(27) 

where fS is the power spectral density of force for the frequency band of interest (N2/(rad/s)), and, 

1  is mass density of plate 1. 

 

The modal injected power can vary strongly from one mode to another, contrary to the case of rain 

on the roof excitation.  

 

SmEdA application was made using (27) to evaluate modal input power. Twelve different excitation 

positions were studied; theirs coordinates are given table 2. Figure 15 shows plates energies ratio, 

for excitation in the third octave band of central frequency 1000 Hz. A good agreement can be 

noticed between SmEdA and reference results (obtained by DMF calculation taking into account 

modes belonging to the octave band of central frequency 1000 Hz). This is due to the variation of 

modal energies as it is clearly demonstrated figure 16. The variation of modal injected power 
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introduced a variation of modal energy in the excited plate, that was accentuated by modal coupling 

filtering effect for the modal energy distribution in plate 2: in the excited band, 20 resonant modes 

contributes to vibrations for plate 1 and 17 for plate 2, but due to null interaction modal work only 9 

modes of plate 2 are significantly excited. 

 

5. CONCLUSIONS 

In this paper is presented a reformulation of SEA taking modal energy distribution into account. The 

necessary data to built the model are modal information of each uncoupled subsystem: natural 

frequencies, modal masses, modal damping and mode shapes on the coupling boundaries. Finite 

Element Method can be used to calculate modal information in the cases of complex subsystems 

that permit to apply this technique to industrial structures. The results are given in terms of modal 

energies which can be added to calculate subsystem energies. 

 

It has been shown on simple examples the interest of SmEdA.  

The coupling of subsystems of low modal overlap factors which has been abundantly discussed in 

the literature can be solved by SmEdA. In this case, the modal energy distribution is non uniform 

due to the effect of frequency and space coincidences. 

Heterogeneous subsystems energies can be predicted by SmEdA that presents a high interest when 

dealing with industrial structures. 

Localised excitation can lead to important variations in the modal energies distribution of the 

excited subsystem that cannot be described by classical SEA. A coupled plates example has shown 

that SmEdA can correctly predict the effect of source position.  

 

Finally, SmEdA can be easily mixed with classical SEA, in order to calculate energy distribution 

only in subsystems where it is necessary and use SEA for others subsystems. This constitutes a 

practical interest of SmEdA. To apply SEA to coupled subsystems necessitate that all subsystems 

verify SEA assumption. It is very restrictive for industrial practical application because some 

subsystems are highly heterogeneous, locally excited or have weak modal overlap. In this case, the 

coupling of SmEdA for these subsystems and SEA description for others permit to solve the 

problem. Of course, the use of SmEdA necessitate to calculate the uncoupled subsystem modes, but 

is only required for these particular subsystems for which SmEdA is useful. 
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 APPENDIX A. Modal information for the L-shaped plates 

 

The structure and the co-ordinate systems are shown figure 14. According with the DMF, plate 1 is 

described by modes of the uncoupled - free subsystem and plate 2 by modes of the uncoupled - 

blocked subsystem. Thus, the modal information of plate 1 are obtained by considering the plate 

simply supported on its four edges : 

 

 






































































, sinsin,
~

 

,
4

,
112

11

2

11

1111

22

11

2

1

1

2

1

y
b

n
x

a

m
yxW

bah
M

b

n

a

mEh

mn

mn

mn










 

 

 

 

 

(A.1) 

 

(A.2) 

 

(A.3) 

and, those of plate 2 by considering the plate clamped on the coupling edge x2=0 and simply 

supported on the others edges (see the technique of calculation in [33], p. 84-85) :  

 (A.4-A.6) 
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For the case of two plates coupled in an L-shape, the interaction modal work between the mode 

(m,n) of plate 1 and the modes (r,s) of plate 2 is given by : 
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and can be rewritten by using the mode shapes (A3), (A6) : 
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FIGURE CAPTIONS 

 

 

 

Figure 1. Coupling of two continuum mechanical systems. 

 

Figure 2. Representation of the uncoupled subsystems. (a) Uncoupled-free subsystem 1 ; (b) 

Uncoupled-blocked subsystem 2. 

 

Figure 3. Illustration of the interaction between N1 modes of subsystem 1 and N2 modes of 

subsystem 2. 

 

Figure 4. Illustration of the rigid coupled beams.  

 

Figure 5. Beam energy ratio, E2/E1, versus the geometric mean of the modal overlap factors, 

21MM  (octave band 1000 hz). Comparison of four calculations : x, exact ; ___, SmEdA ; ----, 

SEADMF ; *, SEAwave. L1=2.4 m, L2=1.2 m, b1=b2=0,01 m, h1=3 mm, h2=1 mm, E1=E2=7.1010 Pa, 

1=2=2700 kg/m3. N1=10 modes, N2=9 modes. 

 

Figure 6. Modal energy distribution of the receiving beam (dB, ref. 10-12 joule). Resonant modes 

classified with increasing natural frequencies. Four cases : (a) M =7,9.10-3; (b) M =0.09; 

(c) M =0.18 ; (d) M =1.43 . Two calculations : -o-o-, SmEdA ; -+-+-, SEADMF. 

 

Figure 7. Modal coupling loss factors, pq . (Modes classified with increasing natural frequencies.) 

Same cases than the previous figure : (a)  M =7,9.10-3; (b) M =0.09; (c) M =0.18 ; (d) M =1.43 . 

 

Figure 8.  Schematic representation of the 7 rigidly coupled beams. Rain on the roof excitation on 

beam 1. 

L1=2,4 m, L2=1,2 m, L3=2,2 m,L4= 1,4m, L5= 2 m, L6= 1,2 m, L7= 2,3 m, h1=3 mm, h2=1 mm, h3=4 

mm, h4=1,2 mm, h5=2 mm, h6=0,8 mm, h7=3,5 mm, b= 0,01 m, E =7.1010 Pa, =2700 kg/m3, 

=0.001 ([1,7]). 
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Figure 9. Modal energy distributions of the 7 beams in the case of weak modal overlap: =0.001 

([1,7]). Octave band of central frequency 1000 Hz. Two calculations: -o-o-, SmEdA; -+-+-, 

SEADMF.  

 

Figure 10. Modal energy distributions of the 7 beams in the case of geometric mean modal overlap 

factors equal to one (octave band of central frequency 1000 Hz).   Two calculations :  -o-o-, 

SmEdA ; -+-+-, SEADMF. 

 

Figure 11. (a) Illustration of the 4 coupled beams; (b) Substructuring.  

Beams’ characteristics: L1=2,4 m, L2=1,2 m, L3=2,2 m,L4= 1,4m, h1=3 mm, h2=1 mm, h3=5 mm, 

h4=1,2 mm, b= 0,01 m, E =7.1010 Pa, =2700 kg/m3, =0.01 ([1,4]). 

 

Figure 12. Modal energy distribution of subsystem 2  (dB, ref. 10-12 joule) . Modes classified with 

increasing natural frequencies. SmEdA results. 

 

Figure 13. Examples of displacement mode shapes for subsystem 2. (a) mode 1 of the previous 

figure; (b) mode 2 of the previous figure. 

 

Figure 14. Two plates coupled in an L-shape and excited by a point force Fi on plate 1. a1=1,7 m, 

a2=0,8 m, b=1 m, h1=6 mm, h2=3 mm, E1=E2=2.1011 Pa, 1=2=7800 kg/m3, 1=2=0,01. 

 

Figure 15. Total energy ratio for each excitation point. Third octave band of central frequency 1000 

hz. Comparison of three calculations : o, reference obtained from DMF with non resonant modes ; 

___, SmEdA ; ----, SEA.  

 

Figure 16. Modal energy distributions for excitation case number 7 (dB, ref. 10-12 joule). (a) Plate 1. 

(b) Plate 2. Modes classified with increasing natural frequencies. 

 

Table 1. M , geometric mean modal overlap factor ; , damping loss factor ; , gamma factor. 

Values for different cases of figure 5. 

 

Table 2. (xi, yi) co-ordinates of point excitation i. 
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FIGURE 1                              L. MAXIT, J.-L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Coupling of two continuum mechanical systems. 
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P1 P2 

SCoupling  
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FIGURE 2                              L. MAXIT, J.-L. GUYADER 
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Figure 2. Representation of the uncoupled subsystems. (a) Uncoupled-free subsystem 1 ; (b) 

Uncoupled-blocked subsystem 2. 

  

 



 27 

FIGURE 3                              L. MAXIT, J.-L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Illustration of the interaction between N1 modes of subsystem 1 and N2 modes of 

subsystem 2. 

MODE 1  

MODE 3  

MODE 2 

MODE N1  

MODE 1  

MODE 2 

MODE N2  

Subsystem 1 Subsystem 2 
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FIGURE 4                              L. MAXIT, J.-L. GUYADER 

 

 

  

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4. Illustration of the rigid coupled beams.  

 

 

Beam 1 Beam 2 
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FIGURE 5                              L. MAXIT, J.-L. GUYADER 

 

 
 

 

 

 

 

 

 

 

Figure 5. Beam energy ratio, E2/E1, versus the geometric mean of the modal overlap factors, 

21MM  (octave band of central frequency 1000 hz). Comparison of four calculations : x, exact ; 
___, SmEdA ; ----, SEADMF ; *, SEAwave. L1=2.4 m, L2=1.2 m, b1=b2=0,01 m, h1=3 mm, h2=1 mm, 

E1=E2=7.1010 Pa, 1=2=2700 kg/m3. N1=10 modes, N2=9 modes. 
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FIGURE 6                              L. MAXIT, J.-L. GUYADER 
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Figure 6. Modal energy distribution of the receiving beam (dB, ref. 10-12 joule). Resonant modes 

classified with increasing natural frequencies. Four cases : (a) M =7,9.10-3; (b) M =0.09; 

(c) M =0.18 ; (d) M =1.43 . Two calculations : -o-o-, SmEdA ; -+-+-, SEADMF.  
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FIGURE 7                              L. MAXIT, J.-L. GUYADER 
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Figure 7. Modal coupling loss factors, pq . (Modes classified with increasing natural frequencies.) 

Same cases than the previous figure : (a)  M =7,9.10-3; (b) M =0.09; (c) M =0.18 ; (d) M =1.43 . 
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FIGURE 8                              L. MAXIT, J.-L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Schematic representation of the 7 rigidly coupled beams. Rain on the roof excitation on 

beam 1. 

L1=2,4 m, L2=1,2 m, L3=2,2 m,L4= 1,4m, L5= 2 m, L6= 1,2 m, L7= 2,3 m, h1=3 mm, h2=1 mm, h3=4 

mm, h4=1,2 mm, h5=2 mm, h6=0,8 mm, h7=3,5 mm, b= 0,01 m, E =7.1010 Pa, =2700 kg/m3. 
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FIGURE 9                              L. MAXIT, J.-L. GUYADER 

 

 

 

 
 

 

 

Figure 9. Modal energy distributions of the 7 beams in the case of weak modal overlap: =0.001, 

[1,7]. Octave band of central frequency 1000 Hz. Two calculations: -o-o-, SmEdA; -+-+-, 

SEADMF.  
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FIGURE 10                              L. MAXIT, J.-L. GUYADER 

 

 

 
 

 

 

Figure 10. Modal energy distributions of the 7 beams in the case of geometric mean modal overlap 

factors equal to one: =0.08, [1,7].  Octave band of central frequency 1000 Hz.    Two 

calculations : -o-o-, SmEdA ; -+-+-, SEADMF. 
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FIGURE 11                              L. MAXIT, J.-L. GUYADER 
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Figure 11. (a) Illustration of the 4 coupled beams; (b) Substructuring.  

Beams’ characteristics: L1=2,4 m, L2=1,2 m, L3=2,2 m,L4= 1,4m, h1=3 mm, h2=1 mm, h3=5 mm, 

h4=1,2 mm, b= 0,01 m, E =7.1010 Pa, =2700 kg/m3, =0.01 ([1,4]). 

 

Subsystem 1 Subsystem 3 Subsystem 2 



 36 

FIGURE 12                              L. MAXIT, J.-L. GUYADER 

 

 

 
 

 

 

 

Figure 12. Modal energy distribution of subsystem 2  (dB, ref. 10-12 joule). Modes classified with 

increasing natural frequencies. SmEdA results. 
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FIGURE 13                              L. MAXIT, J.-L. GUYADER 
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Figure 13. Examples of displacement mode shapes for subsystem 2. (a) mode 1 of the previous 

figure; (b) mode 2 of the previous figure. 
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FIGURE 14                              L. MAXIT, J.-L. GUYADER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Two plates coupled in an L-shape and excited by a point force Fi on plate 1. a1=1,7 m, 

a2=0,8 m, b=1 m, h1=6 mm, h2=3 mm, E1=E2=2.1011 Pa, 1=2=7800 kg/m3, 1=2=0,01. 
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FIGURE 15                              L. MAXIT, J.-L. GUYADER 

 

 

 
 

 

 

 

 

Figure 15. Total energy ratio for each excitation point. Third octave band of central frequency 1000 

hz. Comparison of three calculations : o, reference obtained from DMF with non resonant modes ; 

___, SmEdA ; ----, SEA.  
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FIGURE 16                              L. MAXIT, J.-L. GUYADER 
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Figure 16. Modal energy distributions for excitation case number 7 (dB, ref. 10-12 joule). (a) Plate 1. 

(b) Plate 2. Modes classified with increasing natural frequencies. 
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TABLE 1                              L. MAXIT, J.-L. GUYADER 

 

 

 

 

M  0.0079 0.016 0.032 0.063 0.127 0.254 0.508 1.016 2.032 

 0.0005 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128 

 91.1 22.77 5.69 1.42 0.35 0.09 0.02 0.01 0.002 

 

 

 

Table 1. M , geometric mean modal overlap factor ; , damping loss factor ; , gamma factor. 

Values for different cases of figure 5. 
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TABLE 2                              L. MAXIT, J.-L. GUYADER 

 

 

 

 

 

i 1 2 3 4 5 6 7 8 9 10 11 12 

xi (m) 0.65 0.14 1.11 0.96 0.50 1.30 0.36 1.49 1.26 0.30 0.84 1.50 

yi (m) 0.75 0.73 0.55 0.63 0.21 0.65 0.06 0.24 0.62 0.80 0.40 0.50 

 

 

 

Table 2. (xi, yi) co-ordinates of point excitation i.  

 

 


