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Abstract. The recent improvements in turbomachinery design combined to the unavoidable
requirements of kerosene savings require to analyze the exceptional operating regime of bladed
disks, for which large deformations and large displacements can occur. It seems then quite
appropriate to consider the geometrically nonlinear effects in the computational models ded-
icated to the analysis of mistuned turbomachinery bladed-disks. A special attention has to be
first given to the case of geometrically nonlinear tuned bladed disks. The large set of nonlinear
coupled differential equations issued from the finite element model of the tuned structure has to
necessarily be solved in the time domain, leading us to establish a reduced-order strategy. The
operators of the corresponding mean nonlinear reduced-order model are then deduced from its
explicit construction as shown in the context of three-dimensional solid finite elements. One
also has to focus on the modeling of the external load, corresponding to a frequency band cho-
sen for the excitation, which has to be selected according to usual turbomachinery criterions.
The external load has to be defined in the time domain but has to represent a uniform sweep
in the frequency domain. We then propose to implement the mistuning uncertainties by using
the nonparametric probabilistic framework . We then obtain a stochastic reduced-order model,
which requires to solve a reasonable set of uncertain nonlinear coupled differential equations
in the time domain, yielding appropriate efficient and dedicated algorithms to be constructed.
Such computational strategy provides an efficient computational tool, which is applied on a fi-
nite element model of an industrial centrifugal compressor with a large number of degrees of
freedom. This allows new high complex dynamical behaviors to be put in evidence.
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1 INTRODUCTION

In general, the natural cyclic symmetry of turbomachinery bladed disks is broken because
of manufacturing tolerances and material dispersions, which create small variations from one
blade to another one. Such phenomena, referred to mistuning, can generate localization effects
combined to a dynamic amplification of the forced response [1]. Many research efforts have
been carried out on this subject, including reduced-order models with probabilistic approaches
in the numerical modeling, for taking into account the random character of mistuning [2} 3] and
giving rise to strategies for the robust design of such structures [4]. Another essential aspect is
to consider the geometric nonlinear effects in the computational models occurring when excep-
tional operating speeds of bladed disks are analyzed due to geometric nonlinearities induced by
large deformations and large displacements [J5,16]. Such situation is realistic when considering a
flutter kind phenomenon induced by unsteady aerodynamic coupling and yielding low damping
levels. Since the unsteady aerodynamic coupling is not considered in this paper, the nonlinear
domain is simulated by increasing the magnitude of the external load, while performing forced
response calculations. The present paper proposes a methodology adapted to geometric nonlin-
ear analysis of mistuned bladed disks combined with an industrial realistic application. The first
part is devoted to the development of an adapted nonlinear reduced-order computational model
for the tuned structure, referred as the MEAN-NL-ROM. It is explicitly constructed in the con-
text of three-dimensional solid finite elements [7] by using an appropriate projection basis [8]
obtained here by a linear tuned eigenvalue analysis. In a second Section, once the MEAN-NL-
ROM is established, mistuning is taken into account by implementing uncertainties through the
nonparametric probabilistic framework [9, [10], yielding a nonlinear stochastic computational
model referred as the STOCH-NL-ROM. The numerical algorithm used for solving such set of
nonlinear stochastic coupled differential equations is explained. Finally, a numerical applica-
tion, consisting of a finite-element model of an industrial integrated bladed disk with about 2,
000, 000 dof is considered. The geometric nonlinear effects are analyzed and quantified through
the dynamic analysis of the magnification factor in both tuned and mistuned cases.

2 CONSTRUCTION OF THE MEAN-NL-ROM RELATED TO THE TUNED STRUC-
TURE

This Section is devoted to the construction of the MEAN-NL-ROM related to rotating bladed-
disks structures with cyclic symmetry. In the present work, the bladed disk under consideration
is assumed (1) to be made up of a linear elastic material and (2) to undergo large displacements
and large deformations inducing geometrical nonlinearities.

2.1 Description of the geometric nonlinear boundary value problem

The structure under consideration is a bladed-disk structure with a M -order cyclic symmetry.
Thus, the geometrical domain, the material constitutive equation, and the boundary conditions
related to the generating sector are invariant under the 27 /M rotation around its axis of sym-
metry. Moreover, the bladed disk undergoes a rotational motion around the axis of symmetry
with constant angular speed (2. The structure is made up of a linear elastic material and is as-
sumed to undergo large deformations inducing geometrical nonlinearities. A total Lagrangian
formulation is chosen, which means that the dynamical equations are expressed in the rotating
frame of an equilibrium configuration considered as a prestressed static configuration. Let Q be
the three-dimensional bounded domain corresponding to such reference configuration and sub-
jected to the body force field g(x, t), in which x denotes the position of a given point belonging
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to domain ©. The boundary 99 is such that 9@ = T UX withTN'E = () and the external unit
normal to boundary 0 is denoted by n. The boundary part T corresponds to the fixed part of
the structure (in the local rotating frame (x;, x2, x3)) whereas the boundary part X is subjected
to the external surface force field G(x, t). Note that the external force fields are derived from the
Lagrangian transport into the reference configuration of the physical body/surface force fields
applied in the deformed configuration. The external load can represent, for instance, the un-
steady pressures applied to the blades. The displacement field expressed with respect to the
reference configuration is denoted as u(x, t).

2.2 MEAN-NL-ROM
Let C be the admissible space defined by

¢ = {veQ, vsufficiently regular ,v = OonT} . (1)

The vector q = (g1, ..., qy) of the generalized coordinates is then introduced as a new set
of unknown variables by projecting the reference nonlinear response u(x, -) on the vector space
spanned by the finite family {¢!,--- , ¢’} of a given vector basis of ¢. The MEAN-NL-ROM
is then described by the approximation u” (x, ¢) of order N of u(x, t) such that

wVixt) = D P (x)qa(t) )
B=1

in which q is solution of the nonlinear differential equation

Mag G5+ (Dag+C(Q)ap) 4 + (KD+KO (Qas+K9) g5 + K} as 4y + K. 5454745 = Fa

3)
The usual convention of summation over Greek or Latin repeated indices is used. Let p(x) be
the mass density field expressed in the reference configuration and let a = {a;j¢}ijke be the
fourth-order elasticity tensor, which satisfies the usual symmetry, boundedness, and positive-
definiteness properties. In Eq. (3), the reduced operators [M ], [K(9)] and [K(¢)] are the mass,
geometrical stiffness, and elastic stiffness real (N x N) matrices with positive-definiteness
property, for which entries are defined by

Mag = / pei e dx 4)
Q
K = | ajrem 92 0l d (5)
af jktm Pk Pom X
Q
k) = / o9 oo P x| ©6)
Q

where the second-order symmetric tensor field 9 = {aﬁf)}ij represents the Cauchy con-
straints acting on the reference configuration, and where v; ; = g—g’fjf . The rotational effects

are taken into account through the reduced operators [c(€2)] and [K(®) ()], which represent the
gyroscopic coupling term with antisymmetry property and the centrifugal stiffness term with
negative-definiteness property, which are written as

Cap(Q2) = /ﬂ 2p (Rl ol dx )

3
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K@) = [ o Rl (R of i ®)
where the (3 x 3) matrix [R] is such that [R];; = —Qe¢;;3, where ¢;;; is the Levi-Civita
symbol such that ¢;;;, = =£1 for an even or odd permutation and ¢;;;, = 0 otherwise. It

should be noted that the centrifugal effects are assumed to be sufficiently small so that the linear
stiffness reduced matrix [K(Q)] = [K©] + [K9(Q)] + [K¥)] is positive definite, yielding only
stable dynamical systems to be considered. The geometric nonlinearities are taken into account
through the quadratic and cubic stiffness contributions K b)) and k) s wWhich are written as

aBy
<, = 5 (RS, + R, + 7). o)
13535)7 = /ﬂ Ajkem Pk 905,@ Comdx (10)
’Cf’éw = % /Q Uit P05 P Prg Pl m X (11)

(
afy

ICSB)w has positive-definiteness property. Concerning the reduced damping operator, a modal
damping model is added. Finally, the reduced external load is written as

It can easily be shown that tensor K£_; has permutation-invariance property and that tensor

Fa :/giapfdx—I—/Gigo?ds , (12)
Q >

Concerning the choice of the projection basis, the one related to the linear eigenvalue prob-
lem of the rotating tuned conservative structure, for which the gyroscopic coupling effects are
ignored, is chosen. Since the tuned structure has a perfect cyclic symmetry, the use of the dis-
crete Fourier transform allows for rewriting the eigenvalue problem of the whole tuned structure
into uncoupled sub-eigenvalue problems related to the generator sector with appropriate bound-
ary conditions [[13}|14]]. The eigenvectors of the whole tuned structure are then reconstructed in
its corresponding physical space. Note that these eigenvectors are ordered by increasing values
of their corresponding eigenvalues A\, € {1,..., N} and verify the following orthogonality
properties,

Mag = bap , KD+ K9 Qap + KD = Nabas (13)

where 0, g is the Kronecker symbol such that 6,3 = 1if a = S and .5 = 0 otherwise. It
should be noted that such projection basis issued from a linear eigenvalue problem is used for
the construction of the MEAN-NL-ROM, which means that a systematic convergence analysis
with respect to NV is carried out so that the MEAN-NL-ROM is representative of the nonlinear
dynamical behavior of the structure.

2.3 Numerical aspects for the construction of the nonlinear reduced operators

The MEAN-NL-ROM is explicitly constructed from the knowledge of the projection basis.
It is carried out in the context of the three-dimensional finite element method, for which the
finite elements are chosen as isoparametric solid finite elements with 8 nodes with a numerical
integration using 8 Gauss integration points. Concerning the construction of the quadratic and
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cubic nonlinear stiffness operators, the methodology presented in [[11] is used. In particular,
2)
afy

and ICSB)’Y s nonlinear stiffness entries have to be explicitly known. The numerical procedure
uses the symmetry properties of the reduced operators, combined with the use of distributed
calculations in parallel computer in order to optimize its efficiency. The main steps, which
can be found in details in [11]], require (1) the computation of the elementary contributions of
each type of internal forces projected on the vector basis, (2) the finite element assembly of
these elementary contributions, (3) the computation of the reduced operators by projecting each
assembled internal force on the projection vector basis.

due to the chosen strategy for the mistuning modeling, it should be underlined that the K

2.4 Strategy for the construction of the external load

In the present case, the presence of the geometric nonlinearities yields the nonlinear differ-
ential equation Eq. to be solved in the time domain, the frequency content of the nonlinear
dynamical response being a posteriori post-analyzed by using a Fast-Fourier-Transform (FFT).
The reduced excitation issued from the external load is assumed to be splitted according to a
spatial part and to a time-domain part such that

Folt) = forag(t) (14)

in which f; is a coefficient characterizing the global load intensity, where r is a R"Y-vector cor-
responding to the spatial modal contribution of the external load, and where ¢(t) describes the
time evolution of the load. Similarly to the usual linear analysis of structures with M -order
cyclic symmetry, the excitation is constructed with a cyclic spatial repartition and a constant
phase shift (27 h)/M from one blade to another one, so that only the eigenfrequencies cor-
responding to a given h circumferential wave number are excited. Note that the use of the
cyclic symmetry property has no real interest for expressing the nonlinear response according
to its harmonic components because a decoupling between the harmonic components cannot
be obtained. Moreover, it should be recalled that the usual linear analysis of bladed-disk struc-
tures requires to display the eigenfrequencies of the structure with respect to its circumferential
wave number. It can be shown that the eigenmodes corresponding to localized blade modes are
characterized by straight lines contrary to the eigenmodes corresponding to global coupled disk-
blade modes. It is well known that the mistuning important effects of response amplification are
concentrated in “veering” zones for which the coupling between the disk motion and the blade
motion is the strongest. For this reason, the nonlinear dynamical analysis has to be performed
in a chosen frequency band of excitation and not for a single frequency excitation. Because of
the geometric nonlinearities, the use of a harmonic excitation seems to be inappropriate because
the set of nonlinear coupled differential equations should be solved for each harmonic excita-
tion considered. The strategy is to simultaneously and uniformly excite all the frequencies of
the given frequency band of excitation so that only one computation of the nonlinear dynamical
problem is required. In Eq. (14), the function g(¢) is defined by
2rAv

g(t) = - sincg (tAv) cos(2m s Avt) (15)

where = — sinc,(z) is the function defined by sinc,(z) = sin(mwx)/(mx). Note that the
Fourier transform of such function is

j(2mv) = 15,(2m) (16)

5
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in which 15(x) = 1if 2 € B and 0 otherwise, and where B, = {—B.}(J{B.} with
Be = 2 (s —1/2) Av, 27 (s + 1/2) Av] . (17)

It should be noted that such time-evolution excitation allows a forced-response problem and
not a time-evolution problem with initial conditions to be considered. The forced-response
problem is thus approximated by an equivalent time-evolution problem with zero initial condi-
tions over a finite time interval, which includes almost all of the signal energy of the excitation.

3 UNCERTAINTY QUANTIFICATION INDUCED BY THE MISTUNING

The random nature of the mistuning is then considered by implementing the nonparamet-
ric probabilistic approach, which presents the capability to include both the system-parameter
uncertainties and the model uncertainties induced by modeling errors (see [9] for a complete
review on the subject). Since the analysis is carried out for the class of integrated bladed disks
that are manufactured from a unique solid piece of material, the uncertainties are not consid-
ered to be independent from one blade to another one (in opposite to the case of a fan). The
MEAN-NL-ROM is constructed by modal analysis without any sub-structuring techniques.

3.1 Nonparametric probabilistic model for the mistuning

It is assumed that only the linear operators of the structure are concerned with the mistuning
phenomenon. The linear reduced operators [M], [D], [c(Q)], [€9], [K(©) ()], and [K®)] of the
MEAN-NL-ROM are replaced by the random matrices [M], [D], [¢(Q2)], [K9], [ (2)], and
[x(©)] defined on the probability space (O, T, P) such that &{[M]} = [M], &{[D]} = [D],
lle(@]} = [e@). (@]} = [K9], {[KO(Q)]} = [K(Q)]. and {[K]} = [£], in
which ¢ is the mathematical expectation.

Let [A] be a (N x N) matrix issued from the MEAN-NL-ROM with positive-definite prop-
erty. For instance, it represents, the mass, the damping, the geometrical stiffness, the linear
elastic stiffness or the centripetal stiffness. The corresponding random matrix [A] is then writ-
ten as

[A] = [La]" [Ga(64)] [La] (18)

in which [Ly4] is the (N x N) upper triangular matrix issued from the Cholesky factorization
of [A], and where [G 4] is a full random matrix with values in the set of all the positive-definite
symmetric (N x N) matrices.

When [A] is the gyroscopic coupling matrix, the corresponding random matrix [.A] is then
written as

(] = [Ua] [La]" [64(A)] [La] (19)
in which the matrices [U4] and [L 4] are the (N x N) matrices defined by [L4] = [S4]'/? [B4]"
and [Uy] = [A][Ba][Sa] [Ba]?, in which the (N x N) full matrix [B,] is constituted of the

eigenvectors of [A] [A]T and where the (N x N) diagonal matrix [S4] is the singular values,
issued from the single value decomposition (SVD) of matrix [A]. Note that the probability dis-
tribution and the random generator of [G 4(04)] is detailed in [9]. The dispersion of random ma-
trix [G 4] is controlled by the hyperparameter ¢ 4 belonging an admissible set D. Consequently,
the mistuning level of the bladed-disk is entirely controlled by the R-valued hyperparameter
8 = (0, 0p,0c, 0k, 0K, dx ), belonging to the admissible set D°.



Evangéline Capiez-Lernout, Christian Soize, and Moustapha Mbaye

3.2 STOCH-NL-ROM of the mistuned bladed-disk

For constructing the STOCH-NL-ROM, the deterministic matrices in Eq. (3] are replaced
by the random matrices. The deterministic displacement field u (-, ) becomes a random field
U™ (-, t) that is written, for all x € £, as

UN(xt) = D e’ (x)Qst) (20)
B=1

in which the R"-valued random variable Q(¢) = (Q;(t),- - ,Qu(t)) is solution of the following
set of stochastic nonlinear differential equations,

. . e c 2 3
Mg Qg+ (Das+C(R)ap) Qs + (KGO (Q)as+69) Qs + £ Qs @, + 62 5050, Q5 =

2D

3.3 Numerical aspects for solving the STOCH-NL-ROM

The solution of the STOCH-NL-ROM is calculated using the Monte Carlo numerical sim-
ulation. For each realization 6 belonging to O, the set of /N deterministic nonlinear coupled
differential equations is considered and solved with an implicit and unconditionally stable in-
tegration scheme (Newmark method with the averaging acceleration scheme). Introducing the
notation Q;(#) = Q(t;; ), related to each sample time ¢;, the following set of N deterministic
nonlinear equations is solved for computing Q;(6)

S (0)]Qu(0) + FN(Qi(0) = F(O) (22)

in which the effective (N x N) matrix [1Cf(0)] and the effective force vector F*(6) are eas-
ily computed at each timet;. Note that matrix [1C{(#)] has no particular signature due to the
presence of the gyroscopic coupling matrix. The nonlinear term FN(Q,(6)), issued from the
presence of the geometric nonlinearities, is written as

FN(Qi(0)) = K2 Qis(0) Qir(0) + k&) 5 Qi(0) Qi (0)Qis(6) (23)

For each sampling time ¢;, the computation of solution Q;(#) is addressed by the fixed point
method because this iterative scheme is few time consuming and does not require the evalua-
tion of the tangential matrix. Nevertheless, when the algorithm does not converge, it is replaced
by the Crisfield arc-length method [?]. Such algorithm introduces a new additional scalar pa-
rameter ; that multiplies the right-hand side member of the nonlinear equation. In this case, at
each sampling time ?;, this nonlinear equation is written as

(0] Qi0) + FY(Qi(0) = () F(0) (24)

The nonlinear equation is solved step by step, each incremental step being characterized by a
given arc length. For a given step, an iterative scheme requiring one evaluation of the tangential
matrix allows a solution (Q;(#), ;(#)) to be computed. Note that the tangential matrix can
algebraically evaluated from Eq. (23). An adaptive arc length, depending on the number of
iterations necessary to obtain the convergence of the preceding increment is also implemented
according to [?] in order to accelerate the computation. An unusual procedure is then added to
the algorithm, because Eq. has to be solved instead of Eq. (24)). In the nonlinear dynamical
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context, parameter , is deterministic and has to be controlled in order to reach the value 1.
This implies that the state of the algorithm corresponding to the preceding increment has to
be stored. When ,(0) is found to be upper than 1, the algorithm is rewind to the preceding
increment and the computation is set again with the half of the arc-length. Such additional
procedure is repeated until parameter () reaches 1 within a numerical tolerance set to 1079,
Even if such procedure is time consuming, because of the necessary evaluations of the tangential
matrix and due to the procedure controlling the value of parameter ,, its main advantage is its
capability of capturing high-nonlinear mechanical behaviors.

4 NUMERICAL APPLICATION

The structure under consideration in an industrial centrifugal compressor belonging to the
class of integrated bladed disks. Due to proprietary reasons, the number M of blades character-
izing the order of the cyclic symmetry of the structure cannot given. The finite element model of
the structure is constructed with solid finite elements and is constituted of about 2, 000, 000 de-
grees of freedom. The structure is in rotation around its revolution axis with a constant velocity
2 = 30,750 rpm. Since the dynamic analysis is carried out in the rotating frame of the struc-
ture, the rigid body motion due to the rotation of the structure corresponds to a fixed boundary
condition at the inner radius of the structure. The bladed disk is made up of a homogeneous
isotropic material. A modal damping model is added for the bladed disk.

The cyclic symmetry is used for constructing the reduced matrices of the mean linear reduced-
order model (MEAN-L-ROM). Let 1, be the first eigenfrequency. In the application, a 5 — th
engine-order excitation located at the tip of each blade is considered. The excitation frequency
band is chosen such that B> = [1.78, 2.34] and is characterized by function ¢(¢) defined with

parameters s = 4, 2V 0.51 from the initial time vy t;,; = —11.79 and with a time dura-
Yo

tion 19T = 184. Figure [l| shows the graphs t/ty — ¢(t) and v/1y — g(27v) for excitation

frequency band B2

2000

1000+
s o fhe
-1000
~2000 | | | | | | | | |
-10 0 10 20 30 40 50 60 70
Dimensionless time (t/to)
1.5
—~ 1r
g
2
<@ 0.5-
0 | | ; ; ; ;
0 0.5 1 15 2 2.5 3

Dimensionless frequency (v/v,)

Figure 1: Representation of the external load in the time domain and in the frequency domain: graph of ¢/t — ¢(t)
(upper graph) and v /v — §(27v) (lower graph) for B? = [1.78, 2.34].

The chosen observation is the displacement u,(¢) corresponding to the out-plane displace-
ment located at the tip of each blade j. Let kg = arg max; (max, JoeB ﬁ]NL(Qm/)) for which
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ﬂ]NL(Zm/) is the Fourier transform of u]NL(t). In the frequency domain, the observation w(27v)
corresponding to the selected blade out-plane displacement is defined by w(27v) = Uy, (27v).
Figure [2| displays the graphs v/vy — wl(27v) (upper graph) and v/ — w™N=(271) (lower
graph) corresponding to a load intensity f, = 2.75 N. The spreading of the vibrational energy
over the whole frequency band of analysis B is due to the nonlinear geometric effects and is
characterized through secondary response peaks. For high frequencies that are located outside
BZ in dimensionless frequency band [3, 3.34], the dynamical response induced by the geometric
nonlinearities is negligible.

Nevertheless, some new resonances appear with the same order of magnitude than the main
resonance in the dimensionless frequency band By, = [1, 1.5] (Note that, in this band, there
exist several tuned eigenfrequencies of the structure, which are only excited through the cho-
sen excitation under the linear assumption). It can be seen that the main resonance amplitude,
located in B, is nearly twice the resonance amplitude located in B2, We put then in evi-
dence a complex dynamical behavior that can be potentially dangerous because non-expected
resonances with non-negligible amplitudes appear outside excitation frequency band B2

0.01

w

€

S

—0.005r

>

B

o

H

0 ; ; ; h ;
0 0.5 1 1.5 2 25 3 35
dimensionless frequency (v/vo)
0.01

B

IS

S

—0.005r

g

2]

” L AV N

0 ¥ 4

0 0.5 1 1.5 2 2.5 3 3.5
dimensionless frequency (v/vo)

Figure 2: Frequency domain observation v/vy — w(27v) related to the linear (upper graph) and the nonlinear
(lower graph) cases for B> = [1.78, 2.34] and fy = 2.75 N.

In the present case, the MEAN-NL-ROM is constructed by modal analysis without sub-
structuring techniques. The uncertainties are not considered as independent from one blade
to another one, which is coherent with the structure under consideration belonging to the
class of integrated bladed disks, that are manufactured from a unique solid piece of metal.
In the present analysis, for a better understanding of the phenomenon, only the matrices re-
lated to the linear part are random. The mistuning level is thus controlled by the R®-vector
& = (0ar,0p,0c,0k.,0x). The analysis is focussed for the excitation frequency band B2
that exhibits the complex dynamic situation described above. The load intensity is fixed to
fo = 2.5 N and the uncertainty level is set to 8 = (07, 0p, d¢, Ik.,dx) = (0,0.2,0.2,0.2,0),
in which 0 = d); = 0g. Thus, the effects of mass and elastic uncertainties combined to un-
certainties for the rotational effects are taken into account in the analysis. For fixed v/vy € B,
let Y (27v) be the random dynamic amplification factor defined by

Y (2nv) = W (2mv) . (25)

max, /,,es W(27V)

9
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Figure 3: Stochastic analysis: frequency domain observation Y N (27v) related to the nonlinear case for 6z =
0y = 0.16 and for 0x, = 0c = dp = 0.2: mean model (thick line), mean of the stochastic model (thin dashed
line), confidence region (gray region).

Amplification factor

"0 0.05 0.1 0.15 0.2 0.25 0.3

Amplification factor

Figure 4: Quantile analysis of amplification factors Y.\ (upper graph) and ZX' (lower graph) with respect to
mistuning level § with P, = 0.5 (e symbol), P, = 0.9 (ll symbol), P, = 0.95 (¢ symbol)

Figures|3[shows the confidence region of the nonlinear observation YNL(27T1/) foré = 0.16.
It is seen that the extreme values related to YNL(27TV) yield moderate amplification even if the
confidence region remains relatively broad. Although not presented in the present paper, it can
be shown that, on the contrary, the linearized assumption clearly increases this amplification. It
can then be deduced that the geometric nonlinear effects clearly inhibit the amplification of the
random response in B2

From now on, the analysis is focussed on the quantification of the amplification with respect
to 0. Let Y be the random amplification factor defined by Y, = max, ,,cg Y (27). We then
define the second random amplification factor, Z,, such that

Zoo — maXV/VOGBsub W(27TV) ) (26)

Max, /vyes,,, W(27V)

sub

10
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Figure {4| compares the similar graphs obtained with random observations Y.N- and ZNL.
Again, it is observed that the geometric nonlinear effects yield a limited sensitivity to mistuning
uncertainties for observation YN, In Fig. 4| a special attention must be given to ZX. In
particular, these graphs exhibit a maximum, yielding the possibility to define some robustness
areas that limit the dynamic amplification. It then points out, not only a complex sensitivity to
uncertainties, but also high amplification levels that may yield unexpected amplifications.

S CONCLUSIONS

The paper has presented an advanced methodology adapted to the mistuning analysis of
bladed disks in the context of high amplitude loads inducing strong geometric nonlinear effects.
The numerical results presented display new complex dynamical behaviors of the dynamical
response of the blades. In particular, the numerical results demonstrate that the life duration
of the industrial bladed disk can be very sensitive to the presence of geometric nonlinearities
combined with mistuning effects.
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